THz-TDS for Detecting Glycol Contamination in Engine Oil
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. THz-TDS Spectrometer
2.2. Sample Preparation
2.3. THz Time-Domain Spectroscopy
2.4. Data Analysis of THz-TDS
3. Results and Discussion
3.1. Refractive Index
3.2. Absorption Coefficient
3.3. Regression Models
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mackney, D.; Clague, N.; Brown, G.; Fish, G.; Durham, J. Automotive Lubricants. In Automotive Lubricants and Testing; Tung, S.C., Totten, G.E., Eds.; ASTM: West Conshohocken, PA, USA, 2012; pp. 23–46. [Google Scholar]
- Lansdown, A.R. Lubrication and Lubricant Selection A Practical Guide, 3rd ed.; Professional Engineering Publishing: London, UK, 2004. [Google Scholar]
- Liddell, G.J.; Marshall, R. A Test for Antifreeze Contamination in Crankcase Oil; SAE Technical Paper, (No. 520054); SAE: Warrendale, PA, USA, 1952; pp. 1–8. [Google Scholar]
- Deere & Company. Fuels, Lubricants, Coolants, and Filters; Deere & Company: Moline, IL, USA, 2008. [Google Scholar]
- Bonner, D.W. The Problem of Coolant Contamination. Ind. Lubr. Tribol. 1974, 26, 133–135. [Google Scholar] [CrossRef]
- ASTM. ASTM D2982-07 Standard Test Methods for Detecting Glycol-Base Antifreeze in Used Lubricating Oils; ASTM: West Conshohocken, PA, USA, 2013. [Google Scholar] [CrossRef]
- Booser, E.R. CRC Handbook of Lubrication and Tribology, Volume III: Monitoring, Materials, Synthetic Lubricants, and Applications, Volume III; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Wang, S.S.; Lee, H.S. The application of ac impedance technique for detecting glycol contamination in engine oil. Sens. Actuators B Chem. 1997, 40, 193–197. [Google Scholar] [CrossRef]
- Lulu, J.; Xinjie, Y.; Yong, H. Identification of automobile transmission fluid using hyperspectral imaging technology. Int. J. Agric. Biol. Eng. 2014, 7, 81–85. [Google Scholar] [CrossRef]
- Soleimani, M.; Sophocleous, M.; Glanc, M.; Atkinson, J.; Wang, L.; Wood, R.J.K.; Taylor, R.I. Engine oil acidity detection using solid state ion selective electrodes. Tribol. Int. 2013, 65, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Kasberger, J.; Fromherz, T.; Saeed, A.; Jakoby, B. Miniaturized integrated evanescent field IR-absorption sensor: Design and experimental verification with deteriorated lubrication oil. Vib. Spectrosc. 2011, 56, 129–135. [Google Scholar] [CrossRef]
- Mohammed, A.J.; Hassan, M.A. Piezesensors for monitoring degradation of automotive engine oil. Sci. Tech. 2013, 3, 42–45. [Google Scholar] [CrossRef]
- Jakoby, B.; Scherer, M.; Buskies, M.; Eisenschmid, H. An automotive engine oil viscosity sensor. IEEE Sens. J. 2003, 3, 562–568. [Google Scholar] [CrossRef]
- Agoston, A.; Ötsch, C.; Jakoby, B. Viscosity sensors for engine oil condition monitoring-Application and interpretation of results. Sens. Actuators A Phys. 2005, 121, 327–332. [Google Scholar] [CrossRef]
- Price, R.J.; Clarke, L.J. Chemical sensing of amine antioxidants in turbine lubricants. Analyst 1991, 116, 1121–1123. [Google Scholar] [CrossRef]
- Borin, A.; Poppi, R.J. Application of mid infrared spectroscopy and iPLS for the quantification of contaminants in lubricating oil. Vib. Spectrosc. 2005, 37, 27–32. [Google Scholar] [CrossRef]
- Schmitigal, J.; Moyer, S. Evaluation of Sensors for On-Board Diesel Oil Condition Monitoring of U.S. Army Ground Equipment; SAE: Warrendale, PA, USA, 2005; SAE Technical Paper 2005-01-1810. [Google Scholar]
- Jepsen, P.U.; Cooke, D.G.; Koch, M. Terahertz spectroscopy and imaging–Modern techniques and applications. Laser Photonics Rev. 2011, 5, 124–166. [Google Scholar] [CrossRef]
- Mathanker, S.K.; Weckler, P.R.; Wang, N. Terahertz (THz) applications in food and agriculture: A review. Trans. ASABE 2013, 56, 1213–1226. [Google Scholar] [CrossRef]
- Naftaly, M.; Foulds, A.P.; Miles, R.E.; Davies, A.G. Terahertz transmission spectroscopy of nonpolar materials and relationship with composition and properties. Int. J. Infrared Millim. Waves 2005, 26, 55–64. [Google Scholar] [CrossRef]
- Tian, L.; Zhou, Q.; Jin, B.; Zhao, K.; Zhao, S.; Shi, Y.; Zhang, C. Optical property and spectroscopy studies on the selected lubricating oil in the terahertz range. Sci. China Ser. G Phys. Mech. Astron. 2009, 52, 1938–1943. [Google Scholar] [CrossRef]
- Lu, T.; Qing-Li, Z.; Kun, Z.; Yu-Lei, S.; Dong-Mei, Z.; Song-Qing, Z.; Cun-Lin, Z. Consistency-dependent optical properties of lubricating grease studied by terahertz spectroscopy. Chin. Phys. B 2011, 20, 010703. [Google Scholar]
- Zhao, H.; Zhao, K.; Bao, R. Predicting cold flow properties of diesel by terahertz time-domain spectroscopy. ISRN Spectrosc. 2012, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Arik, E.; Altan, H.; Esenturk, O. Dielectric properties of diesel and gasoline by terahertz spectroscopy. J. Infrared Millim. Terahertz Waves 2014, 35, 759–769. [Google Scholar] [CrossRef]
- Adbul-Munaim, A.M.; Reuter, M.; Koch, M.; Watson, D.G. Distinguishing gasoline engine oils of different viscosities using terahertz time-domain spectroscopy. J. Infrared Millim. Terahertz Waves 2015, 36, 687–696. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Munaim, A.M.; Reuter, M.; Abdulmunem, O.M.; Balzer, J.C.; Koch, M.; Watson, D.G. Using terahertz time-domain spectroscopy to discriminate among water contamination levels in diesel engine oil. Trans. ASABE 2016, 59, 795–801. [Google Scholar] [CrossRef]
- Abdul-Munaim, A.M.; Aller, M.M.; Preu, S.; Watson, D.G. Discriminating gasoline fuel contamination in engine oil by terahertz time-domain spectroscopy. Tribol. Int. 2018, 119, 123–130. [Google Scholar] [CrossRef]
- Méndez Aller, M.; Abdul-Munaim, A.M.; Watson, D.G.; Preu, S. Error Sources and Distinctness of Materials Parameters Obtained by THz-Time Domain Spectroscopy Using an Example of Oxidized Engine Oil. Sensors 2018, 18, 2087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdul-Munaim, A.M.; Ornik, J.; Koch, M.; Watson, D.G. Terahertz Time Domain Spectroscopy to Detect Different Oxidation Levels of Diesel Engine Oil. Lubricants 2019, 7, 18. [Google Scholar] [CrossRef] [Green Version]
THz | Refractive Index * | Absorption Coefficient (cm−1) * | ||||||
---|---|---|---|---|---|---|---|---|
0 ppm | 150 ppm | 300 ppm | 500 ppm | 0 ppm | 150 ppm | 300 ppm | 500 ppm | |
0.25 | 1.4662 b ± 0.0001 | 1.4663 b ± 0.0001 | 1.4669 a ± 0.0003 | 1.4671 a ± 0.0004 | 0.148 a ± 0.009 | 0.168 a ± 0.028 | 0.162 a ± 0.008 | 0.171 a ± 0.017 |
0.50 | 1.4657 b ± 0.0001 | 1.4659 b ± 0.0001 | 1.4664 a ± 0.0003 | 1.4666 a ± 0.0003 | 0.286 c ± 0.012 | 0.310 bc ± 0.026 | 0.319 ab ± 0.015 | 0.343 a ± 0.029 |
0.75 | 1.4654 b ± 0.0001 | 1.4656 b ± 0.0001 | 1.4661 a ± 0.0003 | 1.4662 a ± 0.0003 | 0.477 c ± 0.009 | 0.521 b ± 0.029 | 0.544 ab ± 0.014 | 0.579 a ± 0.040 |
1.00 | 1.4652 b ± 0.0001 | 1.4653 b ± 0.0001 | 1.4658 a ± 0.0003 | 1.4659 a ± 0.0003 | 0.690 c ± 0.011 | 0.755 b ± 0.034 b | 0.796 b ± 0.010 | 0.845 a ± 0.049 |
1.25 | 1.4649 b ± 0.0001 | 1.4651 b ± 0.0001 | 1.4655 a ± 0.0002 | 1.4656 a ± 0.0003 | 0.918 d ± 0.020 | 1.005 c ± 0.043 | 1.068 b ± 0.008 | 1.130 a ± 0.056 |
1.50 | 1.4647 b ± 0.0001 | 1.4648 b ± 0.0001 | 1.4652 a ± 0.0002 | 1.4653 a ± 0.0002 | 1.149 d ± 0.031 | 1.261 c ± 0.052 | 1.345 b ± 0.010 | 1.418 a ± 0.066 |
1.75 | 1.4645 b ± 0.0001 | 1.4647 b ± 0.0001 | 1.4650 a ± 0.0002 | 1.4651 a ± 0.0002 | 1.387 d ± 0.038 | 1.524 c ± 0.060 | 1.625 b ± 0.011 | 1.712 a ± 0.075 |
2.00 | 1.4644 b ± 0.0001 | 1.4645 b ± 0.0001 | 1.4648 a ± 0.0002 | 1.4649 a ± 0.0002 | 1.631 d ± 0.047 | 1.800 c ± 0.069 | 1.918 b ± 0.021 | 2.021 a ± 0.097 |
2.25 | 1.4642 b ± 0.0001 | 1.4643 b ± 0.0001 | 1.4646 a ± 0.0002 | 1.4647 a ± 0.0002 | 1.936 d ± 0.066 | 2.142 c ± 0.090 | 2.266 b ± 0.041 | 2.392 a ± 0.117 |
2.50 | 1.4641 b ± 0.0001 | 1.4642 b ± 0.0001 | 1.4645 a ± 0.0003 | 1.4645 a ± 0.0002 | 2.209 c ± 0.098 | 2.457 b ± 0.117 | 2.584 b ± 0.058 | 2.743 a ± 0.143 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulmunem, O.M.; Abdul-Munaim, A.M.; Aller, M.M.; Preu, S.; Watson, D.G. THz-TDS for Detecting Glycol Contamination in Engine Oil. Appl. Sci. 2020, 10, 3738. https://doi.org/10.3390/app10113738
Abdulmunem OM, Abdul-Munaim AM, Aller MM, Preu S, Watson DG. THz-TDS for Detecting Glycol Contamination in Engine Oil. Applied Sciences. 2020; 10(11):3738. https://doi.org/10.3390/app10113738
Chicago/Turabian StyleAbdulmunem, Oday M., Ali Mazin Abdul-Munaim, Mario Mendez Aller, Sascha Preu, and Dennis G. Watson. 2020. "THz-TDS for Detecting Glycol Contamination in Engine Oil" Applied Sciences 10, no. 11: 3738. https://doi.org/10.3390/app10113738
APA StyleAbdulmunem, O. M., Abdul-Munaim, A. M., Aller, M. M., Preu, S., & Watson, D. G. (2020). THz-TDS for Detecting Glycol Contamination in Engine Oil. Applied Sciences, 10(11), 3738. https://doi.org/10.3390/app10113738