
applied
sciences

Article

Comparison of Instance Selection and Construction
Methods with Various Classifiers

Marcin Blachnik 1,* and Mirosław Kordos 2

1 Faculty of Materials Engineering, Department of Industrial Informatics, Silesian University of Technology,
Akademicka 2A, 44-100 Gliwice, Poland; marcin.blachnik@polsl.pl

2 Department of Computer Science, University of Bielsko-Biała, Willowa 2, 43-309 Bielsko-Biała, Poland;
mkordos@ath.bielsko.pl

* Correspondence: marcin.blachnik@polsl.pl

Received: 7 May 2020; Accepted: 1 June 2020; Published: 5 June 2020
����������
�������

Abstract: Instance selection and construction methods were originally designed to improve the
performance of the k-nearest neighbors classifier by increasing its speed and improving the
classification accuracy. These goals were achieved by eliminating redundant and noisy samples, thus
reducing the size of the training set. In this paper, the performance of instance selection methods is
investigated in terms of classification accuracy and reduction of training set size. The classification
accuracy of the following classifiers is evaluated: decision trees, random forest, Naive Bayes, linear
model, support vector machine and k-nearest neighbors. The obtained results indicate that for the
most of the classifiers compressing the training set affects prediction performance and only a small
group of instance selection methods can be recommended as a general purpose preprocessing step.
These are learning vector quantization based algorithms, along with the Drop2 and Drop3. Other
methods are less efficient or provide low compression ratio.

Keywords: machine learning; classification; preprocessing; instance selection

1. Introduction

Classification is one of the basic machine learning problems, with many practical applications in
industry and other fields. The typical process of constructing a classifier consists of data collection,
data preprocessing, training and optimizing the prediction models and finally applying the best of the
evaluated models. The described scheme is obvious, however we face two types of problems. The first
one is that recently we more often start to construct classifiers with limited resources and the second
one is that we want to interpret and understand the data and the constructed model easily.

The first group of restrictions are mostly related to time and memory constraints, where machine
learning algorithms are often trained on mobile devices or micro computers like Rasberry Pi and other
similar devices. There are basically three approaches to overcome these restrictions:

• using specially tailored algorithms which are designed to face those challenge
• limiting the size of the training data
• exporting the training process from the device to the cloud or other high performance environment

In the paper we focus on the second approach where instead of redesigning the classification
algorithm or sending the data to the cloud we analyze how the data filters or in other words how the
training set reduction methods influence classification performance with the data processing pipeline
depicted in Figure 1.

Appl. Sci. 2020, 10, 3933; doi:10.3390/app10113933 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-3336-4962
https://orcid.org/0000-0002-2031-7561
http://dx.doi.org/10.3390/app10113933
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/11/3933?type=check_update&version=2

Appl. Sci. 2020, 10, 3933 2 of 19

Figure 1. The pipeline of prediction model construction with data filtering.

The data filter has two goals: first it can improve the classifier performance by eliminating noisy
samples from the training data thus allowing to achieve higher classification accuracy, and the second
goal is training set compression. Training set size reduction allows to speed up classifier construction
process but also it speeds up decision making when the classifier is already trained [1]. The speed up
in classifier training is rather obvious when the size of the input data is smaller but the speed up in
the prediction phase results from smaller number of support vectors of the support vector machine,
shallow trees (earlier stopping of tree construction) and lower number of reference vectors in kNN.
Moreover, it speeds up model selection and optimization. Here, the gain should be multiplied by the
number of evaluated classifiers and their hyper-parameters, because the filtering stage is applied once
and then the classifier selection and optimization is carried out.

Training set compression can be also used for solving model interpretability where the so called
prototype-based rules [2,3] can be applied. These rules are also based on limiting the size of the data.
And in this case, even if the original dataset is small, further limiting dataset size is still beneficial.

The main purpose of the paper and the research objective is the analysis of both aspects of data
filtering that is the influence on prediction accuracy of various classifiers and the influence on training
set size reduction.

In the study we evaluate a set of 20 most popular instance selection and construction methods
used as data filters and 7 popular classifiers on 40 datasets in terms of classification performance
and training set compression. The evaluated data filters are: condensed nearest neighbor (CNN),
edited nearest neighbor (ENN), repeated-edited nearest neighbor (RENN), All-kNN, instance based
learning version 2 (IB2), relative neighbor graph editing (RNGE), Drop family, iterative case filtering
(ICF), modified selective subset selection (MSS), hit-miss network editing (HMN-E), hit-miss network
interactive editing (HMN-EI), class conditional instance selection (CCIS) as well as learning vector
quantization version 1,2.1 (respectively LVQ1, LVQ2.1), generalized learning vector quantization
(GLVQ), k-Means. These data filters are selected for the evaluation, because they are the most frequently
used instance selection methods. The datasets after filtering are used to train classifiers such as
k-nearest neighbor (kNN), support vector machine (SVM), decision tree based methods, linear model
and simple Naive Bayes. The hyperparameters of each of these classifiers are optimized with the grid
search approach in order to achieve the highest possible prediction accuracy on the compressed data.
Moreover, the obtained results are compared to the results obtained with simple stratified random
sampling, which defines an acceptance threshold below which particular methods are not beneficial
for given classifiers.

The article is structured as follow: in the next section an overview of instance selection methods
is provided, with a literature overview, and also the research gap is presented, then in Section 3
we describe the experimental setup, and in Section 4 the results are presented. Finally, Section 5
summarizes the paper with general conclusions.

2. Research Background

2.1. Problem Statement

From the statistical point of view, reduction of the training set size will not affect prediction
accuracy of the final classifier when the conditional probability P(c|x) of predicting class c for given

Appl. Sci. 2020, 10, 3933 3 of 19

vector x remains unchanged when estimated from the original training set T and from the set of
prototypes P obtained from the data filtering process.

In the literature one of popular multidimensional probability estimation methods is based on the
nearest neighbor approach [4]. Similarly, for kNN many data filtering methods were developed in order
to select a suitable subset of the training set. These methods are called instance selection methods and
instance construction or prototype generation methods, and mostly they were designed to overcome
weaknesses of the kNN classifier. In instance selection, usually the performance of kNN or even 1-NN
classifier is used to identify those training samples which are important for the classification. These
are mostly border samples close to the decision boundary. Instances which represent larger groups
of instances from the same class and noise samples are usually filtered out because they reduce the
performance of kNN. On the other hand, instance construction methods tend to find optimal position
of the stored samples by 1-NN, so they do not need to represent samples from the original training
set, these are usually new samples. An example effect of applying instance selection methods to the
training set is presented on Figure 2.

(a) (b)
Figure 2. Example effect of artificial 2D training set compression using Drop3 instance selection methods.
(a) Original training set with additional noise (b) Training set after compression.

The idea of applying instance selection and prototype generation methods as data filters is
not new and it is often considered a standard preprocessing step. In particular in Reference [5]
some of the instance selection methods evaluated in our study were considered as the most effective
preprocessing methods.

For example we have applied instance selection in the optimization of metallurgical processes
for data size limitation and rule extraction [6,7], but instance selection methods were also applied
in haptic modeling [8] as well as for automatic machine learning [9]. However, we cannot find in
the literature any comprehensive study analyzing the influence of the instance selection methods on
various classifiers. Most of the authors when presenting new algorithms indicate only the performance
of 1-NN, kNN with fixed k parameter, and sometimes other classifiers but usually also with fixed
hyperparameters. Such a comparison can be considered unfair, because the training set is being
changed during the data filtering so different parameters are required by the classifiers. Unfortunately,
such a comparison requires much larger computational time especially when using grid search with
internal cross-validation procedure, so the process is usually simplified and only classifiers with
fixed parameters are used. Only in References [10,11] some broader comparison is available but the
experiments were conducted on only few (6 and 8) datasets. To fill that gap we provide a detailed
analysis of the influence of the data based on instance selection and construction methods applied to
40 datasets.

Appl. Sci. 2020, 10, 3933 4 of 19

2.2. Instance Selection and Construction Methods Overview

One of the most important properties of data filtering methods is the relation between instances
in the original training set T and the in the selected prototype set P. If P ⊂ T then the methods are
called instance selection algorithms, because the prototypes P are selected directly from the training set
T. This property does not hold for prototype construction also called prototype generation methods.
In this case the elements of P are new vectors which can constitute completely new instances, which
have never appeared in T.

This property is important considering the comprehensibility of the selected samples. In the
case of instance selection methods the instances can be mapped into real objects, while in the case of
instance construction methods the direct mapping is not possible. This is especially important when
working with prototype-based rules [2,12], or other interpretable models.

In the literature perhaps the best overview of instance selection methods can be found in
Reference [13] where the authors provide a taxonomy of over 70 instance selection methods,
and empirically compare half of them in terms of compression and prediction performance of 1-NN
classifier. The same group of authors of Reference [14] perform a similar analysis for prototype
generation methods where 32 methods are discussed and 18 of them are empirically compared in
application only for 1-NN classifier.

The taxonomy of data filtering methods can be presented in the following aspects:

• search direction

– incremental, when given method starts from an empty set P and iteratively adds new
samples, such as in CNN [15] or IB2 [16]

– decremental, when a given method starts from P = T and then samples from P are iteratively
removed such as in HMN-E and HMN-EI [17], MSS [18], Drop1, Drop2, Drop3 and Drop5 [19],
RENN [20].

– batch, when the instances are removed at once after analysis of the input training set.
An examples of such methods are ENN [21], All-kNN [20] RNGE [22], ICF [23], CCIS [24].

– fixed, when a fixed number of prototypes is given as the hyperprarametr of the method. This
group includes LVQ (LVQ1, LVQ2.1, GLVQ) family [25,26], k-Means and random sampling.

• type of selection

– condensation, when the algorithm tries to remove samples, which are located far from the
decision boundary, as in the case of IB2, CNN, Drop1 and Drop2, MSS.

– edition, when the algorithm is designed for noise removal, such as ENN, RENN, All-kNN,
HMN-E.

– hybrid, when the algorithm performs both steps—condensation and edition. Usually these
methods starts from noise removal, and then perform condensation. This group includes:
Drop3, Drop5, ICF, HMN-EI.

• the evaluation method

– filters, where the method uses internal heuristic independent to the final classifier.
– wrappers, when external dedicated classifier is used to identify important samples.

The decision of assigning an algorithm to the right evaluation method depends on the final
prediction model applied after data filtering. If the instance selection or construction method is
followed by 1-NN or kNN classifier they can be considered as wrappers, because internally all of
them use a kind of nearest neighbor based approach to decide whether an instance should be selected
or rejected. On the other hand they can be also considered as filters, when the data filter takes as
input entire training set and returns selected subset which is then used to train any classifier, not

Appl. Sci. 2020, 10, 3933 5 of 19

only the kNN. There are implementations which works as wrappers, so they allow to use all kind of
classifiers such as in Reference [27], where instead of kNN any other classifier can be used, in particular
the MLP neural network was used. The drawback of the wrappers is the increase of computational
complexity. Here in this article we only consider the standard instance selection methods without
any generalization.

3. Experimental Design

There are several factors which determine the applicability of given algorithms as a general
purpose training set filter. Among the most important are compression level and prediction accuracy
of the final classifier. The compression is defined as:

comp = 1− ‖P‖‖T‖ , (1)

so that higher value of compression indicates that more samples were rejected and the resultant set
P is smaller and lower values (close to 0) indicates that the output training set is larger. The second
property is the prediction accuracy of the classifier trained on P. This value is subjective to the applied
classifier, so that for one classifier given set P may result in high accuracy, while for the other the
accuracy can be worse. Here a simple accuracy measure was evaluated:

acc =
#correctly classified samples

#all evaluated samples
. (2)

In order to determine the applicability of instance selection and construction methods as universal
training set filters we designed experiments which mimic typical use cases of training set filtering.
The scheme of the data processing pipeline is presented in Figure 3

Figure 3. The pipeline of data processing used in the experiments.

It starts with data loading and attribute normalization, then the 10 fold cross-validation procedure
is executed which wraps the data filtering stage (our instance selection or construction method)
followed by classifier training and hyperparameter optimization procedure. Finally, the trained
classifier is applied to the test set. During the process execution prediction accuracy and compression
were recorded.

In the experiments the most commonly used classifiers were evaluated. These are: the basic
classifiers for which the evaluated data filters were designed such as 1-NN and kNN; simple classifiers
like Naive Bayes or linear model (GLM); followed by kernel methods such as SVM with Gaussian
kernel and finally the decision tree based methods including C4.5 and Random Forest. Many of these
methods require careful parameter selection such as the value of k in kNN or C and γ in SVM or the
number of trees in Random Forest. All of the evaluated parameters are presented in Table 1. It is
important to note that each of the applied data filters was independently evaluated for each classifier,
because a particular filter may be beneficial for one classifier and unfavorable for another.

Appl. Sci. 2020, 10, 3933 6 of 19

Table 1. Parameter settings of the evaluated classifiers.

Classifier Parameter Values Implementation

1-NN - - RapidMiner

kNN k 1:2:40 RapidMiner

Naive Bayes - - RapidMiner

GLM - - H2O

C4.5 - - Weka

Random Forest # trees {20, 40, 60, 80, 100} Weka

SVM C
γ

1E{−1, 0, 1, 2}
{1, 3, 5, 7, 9}

LibSVM

The entire group of instance selection and construction methods is very broad. As indicated
in Section 2.2 some authors distinguish over 70 instance selection methods and over 32 prototype
construction methods [13,14]. From these groups we selected the most popular ones which can be
found in many research papers as the reference methods [10,11,28–30]. These are CNN, ENN, RENN,
All-kNN, IB2, RNGE, Drop1, Drop2, Drop3, Drop5, ICF, MSS, HMN-E, HMN-EI, CCIS, from the group
of instance selection methods, and from the group of prototype generation methods we selected 3
algorithm from the family of LVQ algorithms, these are LVQ1, LVQ2.1, as well as the GLVQ algorithm.
In the experiments we also evaluated k-Means clustering algorithm which is most often used to reduce
the size of the training set [31]. The k-Means algorithm was independently applied to each class
label, and then the obtained cluster centers were used as prototypes with appropriate class labels [32].
All of the prototype generation methods belong to the group of fixed methods, so they require to
determine the compression manually. For that purpose the experiments were carried out for two
different initial sets of prototypes: randomly selected 10% of the training samples used for initialization
which corresponds to 90% compression and also 30% of the training samples which corresponds to
70% compression. The 90% compression is the lower bound of the compression obtained by most of
instance selection methods.

All evaluated methods were also compared with the random stratified sampling (Rnd), which is
the simplest solution that can be used as a data filter. Similarly as with prototype construction methods,
the experiments with Rnd were conducted for compression 70% and 90% that corresponds to Rnd(0.3)
and Rnd(0.1) (the numbers represent percentage of the samples that remain). The accuracy obtained
for Rnd constitute the lower bound which allows to distinguish beneficial data filters from the weak
ones that are worse than simple random sampling.

The experiments were carried out on 40 datasets obtained from the Keel repository [33]. A list of
the datasets is presented in Table 2. All the calculations were conducted using RapidMiner software
with Information Selection extension developed by the authors [34]. The extension is available at the
RapidMiner Marketplace and the most recent version is also available at GitHub (https://github.com/
mblachnik/infoSel). Some of the evaluated algorithms like HMN-EI and CCIS were taken from the
Keel framework [35] and integrated with the Information Selection extension.

https://github.com/mblachnik/infoSel
https://github.com/mblachnik/infoSel

Appl. Sci. 2020, 10, 3933 7 of 19

Table 2. Datasets used in the experiments. The s/a/c denotes the number of samples, attributes
and classes.

Id. Name s / a / c Id. Name s / a / c

1 appendicitis 106 / 7 / 2 21 page-blocks 5472 / 10 / 5
2 balance 625 / 4 / 3 22 phoneme 5404 / 5 / 2
3 banana 5300 / 2 / 2 23 pima 768 / 8 / 2
4 bands 365 / 19 / 2 24 ring 7400 / 20 / 2
5 bupa 345 / 6 / 2 25 satimage 6435 / 36 / 6
6 cleveland 297 / 13 / 5 26 segment 2310 / 19 / 7
7 glass 214 / 9 / 6 27 sonar 208 / 60 / 2
8 haberman 306 / 3 / 2 28 spambase 4597 / 57 / 2
9 hayes-roth 160 / 4 / 3 29 spectfheart 267 / 44 / 2
10 heart 270 / 13 / 2 30 tae 151 / 5 / 3
11 hepatitis 80 / 19 / 2 31 texture 5500 / 40 / 11
12 ionosphere 351 / 33 / 2 32 thyroid 7200 / 21 / 3
13 iris 150 / 4 / 3 33 titanic 2201 / 3 / 2
14 led7digit 500 / 7 / 10 34 twonorm 7400 / 20 / 2
15 mammographic 830 / 5 / 2 35 vehicle 846 / 18 / 4
16 marketing 6876 / 13 / 9 36 vowel 990 / 13 / 11
17 monk-2 432 / 6 / 2 37 wdbc 569 / 30 / 2
18 movement_libras 360 / 90 / 15 38 wine 178 / 13 / 3
19 newthyroid 215 / 5 / 3 39 wisconsin 683 / 9 / 2
20 optdigits 5620 / 64 / 10 40 yeast 1484 / 8 / 10

4. Results and Analysis

Since simple averaging has limited interpretability, we used both average performance and
average rank to asses the quality of the evaluated methods. In order to make ranking for each dataset
and each classifier the results obtained for particular data filters were ranked from the best to the worst
in terms of classification accuracy and compression. The highest rank (equal to 26, which is the number
of evaluated algorithms) was given to the best filter method for particular dataset and the lowest rank
(1) was assigned to the worst method (rank with ties). Then the ranks over datasets were averaged to
indicate the final performance. Such a comparison does not reflect how much one method differs from
the other in terms of given quality measure, but ranking unlike averaging performances is insensitive
to the data distribution where measures like accuracy can range from 40% on one dataset up to 99%
on another. On the other hand ranking do not provide information on how much the methods differ
so these both quality measures complement each other and should be considered together, where
the ranking gives an answer which method was more often better, and then, the mean performance
indicates how much given method was better from the competitor. Moreover, the threshold obtained
by the random sampling should be applied simultaneously to both values and when any of them is
below the threshold given method should be rejected as useless.

The obtained results including both average ranks as well as average performances are presented
in Table 3. Moreover, the Wilcoxon signed-rank statistical test [36] was used to check whether the results
obtained by the classifier without any data filter significantly differ from the results obtained when
given data filter was used to cleanup the dataset. The calculations were conducted with significance
level α = 0.1. The data filters which did not lead to a significantly decrease of the prediction accuracy
were marked with =. In few cases the data filter allowed to increase the accuracy of a classifier, and if
the increase was statistically significant we marked the results with + sign. In this case the significance
was measured using Wilcoxon tailed sign-rank test.

Appl. Sci. 2020, 10, 3933 8 of 19

Table 3. Average rank of accuracy and compression obtained for data filtering methods for given classifiers. The symbols +,= indicate the results of Wilcoxon sign-rank
test. = represents not significant difference in comparison to No filter, + represents significant positive difference in comparison to No filter.

Random
Compression Compression 1-NN kNN Naive Bayes GLM C4.5 Forest SVM

Method Rnk Cmp Rnk Acc Rnk Acc Rnk Acc Rnk Acc Rnk Acc Rnk Acc Rnk Acc
[-] [%] [-] [%] [-] [%] [-] [%] [-] [%] [-] [%] [-] [%] [-] [%]

ENN 2.97 19.66 17.50 79.74= 17.37 81.44 19.46 74.43+ 18.79 78.72 22.18 79.61= 20.87 83.46 18.08 83.70
RENN 4.18 22.74 15.76 78.75= 14.36 80.43 18.41 74.51+ 15.73 77.57 20.37 78.05 17.18 81.46 13.13 82.24
ALL-KNN 5.28 26.02 15.64 78.66= 12.85 79.55 17.62 74.46= 13.78 77.29 20.45 78.17= 15.45 81.59 13.41 82.28
HMNE 6.03 46.45 16.05 79.22= 16.74 81.42 17.04 72.71= 18.24 78.52 20.42 78.22 17.63 82.67 17.96 83.90
RNG 7.91 53.25 10.14 78.18 15.13 82.38 12.78 68.46 17.23 77.09 14.23 74.34 19.22 83.72 18.42 84.53
HMNEI 11.00 60.86 15.01 79.00= 12.58 80.82 14.42 70.48= 15.41 76.61 15.53 74.30 13.86 79.57 13.28 82.47
CNN 10.46 66.38 10.65 78.42 14.74 82.03 10.74 67.53 13.65 74.28 12.51 72.13 16.03 81.28 17.77 82.96
MSS 10.23 66.88 12.63 79.35 16.40 82.70 10.24 67.68 13.24 74.37 11.58 71.45 15.63 80.87 15.60 82.75
IB2 13.69 73.11 7.33 76.49 10.13 80.69 8.14 66.55 12.05 73.58 8.63 70.13 11.58 79.90 13.72 82.20
ICF 17.87 80.84 10.33 78.22 9.72 80.40 11.31 69.22 11.08 73.41 11.85 71.72 12.42 79.18 11.42 81.11
CCIS 19.28 80.91 9.03 74.78 7.31 76.48 12.18 67.85 10.12 73.25 11.14 69.96 8.55 76.81 7.77 78.74
DROP2 17.69 82.94 13.82 79.44= 11.96 80.92 11.82 68.07 11.74 73.47 13.18 71.94 13.41 79.32 12.23 81.32
DROP5 20.06 85.28 10.94 78.37 10.68 80.38 10.62 69.14 11.29 73.42 10.90 71.07 10.90 78.84 10.99 81.12
DROP1 20.78 85.47 5.55 74.83 5.29 77.38 7.77 64.97 7.59 71.22 7.88 68.18 7.91 76.47 6.35 77.88
DROP3 20.23 85.99 13.64 79.30= 10.87 80.60 11.85 69.15 12.35 75.10= 12.06 72.15 12.58 79.71 10.27 81.28
GLVQ(0.1) 21.33 90.00 19.97 81.70+ 16.27 82.15 13.47 70.56= 10.82 74.51 5.21 62.46 5.47 72.96 9.41 80.58
GLVQ(0.3) 11.13 70.00 22.47 82.49+ 21.85 83.53= 18.42 73.77= 15.45 76.60 12.87 71.93 12.38 79.22 16.50 83.68
LVQ1(0.1) 21.33 90.00 15.47 79.19= 10.90 79.78 13.47 70.69= 9.94 74.62 9.44 70.04 9.51 78.27 9.99 81.10
LVQ1(0.3) 11.13 70.00 14.53 79.42= 15.85 81.62 14.38 72.01 17.03 77.60 15.09 75.54 17.00 82.04 18.09 83.68
LVQ2.1(0.1) 21.33 90.00 20.96 81.33+ 17.69 81.79 13.71 69.29= 10.56 74.17 6.45 64.71 6.27 73.20 9.41 79.26
LVQ2.1(0.3) 11.13 70.00 19.21 81.45+ 19.53 82.97= 15.35 72.82= 15.82 76.95 16.06 74.13 15.77 80.72 16.90 83.40
k-Means(0.1) 21.33 90.00 11.04 77.09 9.37 78.83 11.96 69.81= 10.10 74.76 9.08 70.60 9.63 78.06 10.73 81.12
k-Means(0.3) 11.13 70.00 13.04 78.41 16.04 81.24 14.38 71.05= 15.19 76.97 15.04 75.15 16.05 81.21 18.29 83.24
Rnd(0.1) 21.33 90.00 4.40 72.49 3.41 75.07 11.74 69.94 7.97 73.50 9.54 70.95 7.71 77.25 4.71 77.89
Rnd(0.3) 11.13 70.00 9.17 76.77 11.45 79.67 12.65 71.14 14.99 77.11 16.90 76.30 15.64 81.43 13.95 82.31
No filter 1.01 0.00 16.72 80.33 22.53 83.70 17.05 72.16 20.82 79.00 22.42 79.86 22.36 84.79 22.63 85.65

Appl. Sci. 2020, 10, 3933 9 of 19

To increase readability, the results which represent ranks are also presented graphically
independently for each classifier. In the figures the doted lines represent the performances obtained by
random sampling, so that if any filter method appears within the space defined by the doted lines it is
dominated by simple random sampling (Rnd).

Below in the following subsection the term “reference method” is used to describe the algorithm
without data filter, this is the classifier which was directly applied to the training data.

4.1. 1-NN

The results obtained for 1-NN are visualized in Figure 4. They indicate that the GLVQ and LVQ2.1
significantly outperform other methods and especially the reference solution without any data filter.
From the group of instance selection methods the best ones are noise filters ENN, HMN-E and from
the group of condensation methods—Drop2 and Drop3 are dominating. It is also noticeable that all of
the data filters appear above the base rates defined by the random sampling.

(a)

(b)
Figure 4. Results obtained for 1-NN classifier. (a) Average performance ranks. (b) Average performance.

4.2. kNN

In the case of kNN similarly the best results are obtained for GLVQ and LVQ2.1 (see Figure 5),
but they do not differ significantly from the results obtained by kNN with optimally tuned k parameter.
All other filters appears to decrease classification accuracy. Also noticeable is the fact that now

Appl. Sci. 2020, 10, 3933 10 of 19

IB2 appears to be dominated by the random sampling, as well as All-kNN and Drop1 in terms of
average accuracy.

(a)

(b)
Figure 5. Results obtained for kNN classifier. (a) Average performance ranks (b) Average performance.

4.3. Naive Bayes

The results obtained for Naive Bayes are shown in Figure 6. There is no significant difference
between the accuracy obtained for the two random sampling methods (one with compression 90% and
the second with compression 70%). The difference between these two in terms of ranks is less than 1.
For Naive Bayes the highest accuracy is obtained by the ENN and RENN, for which the comparison to
the reference method is statistically significantly different. Also All-kNN is very high, but the Wilcoxon
test does not indicate significant statistical difference. That is reasonable because noise filters remove
the noise samples which affects the probability distributions estimated by the Naive Bayes classifier.
Here the LVQ family, especially the GLVQ(0.3) algorithm, displays similar performance to noise filters,
but with the compression reaching 70%, unfortunately the difference to the reference method is not
significant. Also other prototype construction methods like other LVQ algorithms as well as k-Means
clustering method do not show significant differences. From the group of evaluated methods almost

Appl. Sci. 2020, 10, 3933 11 of 19

all instance selection algorithms are dominated by the random sampling so all these methods can be
considered as unhelpful.

(a)

(b)
Figure 6. Results obtained for Naive Bayes classifier. (a) Average performance ranks. (b) Average
performance.

4.4. GLM

The linear model without instance selection provided the highest accuracy, as shown in Figure 7
and by applying any data filter we may expect a drop in accuracy. The highest accuracy using filters
is obtained for ENN and HMN-E and for larger compression methods with LVQ1, GLVQ and Drop3,
but all these results are statistically significantly different. It is important to mention that the linear
model can be efficiently implemented, so the data filters are not necessarily required, because they
extend the computation time. For GLM nine models are dominated by random sampling, these are
Drop1, Drop2, Drop5, ICF, CCIS, CNN, MSS, HMN-EI and All-kNN and many are close to the border
like GLVQ, LVQ2.1 or k-Means, so in general it is not recommended to perform any data filtering for
the GLM model.

Appl. Sci. 2020, 10, 3933 12 of 19

(a)

(b)
Figure 7. Results obtained for GLM classifier. (a) Average performance ranks. (b) Average performance.

4.5. C4.5 Decision Tree

In the case of C4.5 decision tree (see Figure 8) it could be expected that any dataset reduction may
result in the drop of accuracy. This is due to the quality of estimated statistics which are determined
when selecting the split nodes. As a result the majority of data filters are dominated by random
sampling. Only noise filters allows to achieve the accuracy comparable to the one obtained by the
reference method, moreover the results for ENN and All-kNN are not statistically significantly different.
This is due to the fact that noise filters have very low compression, but also regularizing the decision
boundary by eliminating the noise samples can have positive influence on the estimated measures of
decision tree nodes quality. For the condensation methods only Drop3, Drop2 and ICF achieve results
not dominated by random sampling.

Appl. Sci. 2020, 10, 3933 13 of 19

(a)

(b)
Figure 8. Results obtained for C4.5 classifier. (a) Average performance ranks. (b) Average performance.

4.6. Random Forest

Random Forest is a classifier which is also based on the decision tree but thanks to the properties
of collective decision making it can overcome some of its weaknesses. As shown in Figure 9 only
ENN achieves comparable accuracy to the one obtained with entire training set. However, almost all
data filtering methods especially instance selection methods are better than random sampling (except
HMN-EI and All-kNN which lie on the border), and almost all prototype construction methods (except
LVQ1) lie on the bounds defined by random sampling. Note that here all methods are statistically
significantly different from the reference method, that is worse than the reference solution.

Appl. Sci. 2020, 10, 3933 14 of 19

(a)

(b)
Figure 9. Results obtained for Random Forest classifier. (a) Average performance ranks.
(b) Average performance.

4.7. SVM

The final of the evaluated classifiers is SVM which is one of the most robust classifiers (similarly
to Random Forest). The results presented in Figure 10 indicate that all the examined instance selection
methods lead to decrease in prediction accuracy. Moreover, for the compression level of up to 70% the
top data filters are ENN, HMN-E, RNGE, CNN, k-Means and LVQ1, which on average share similar
accuracy rank. Further increase in compression leads to significant drop in accuracy rank, so the best
methods with compression equal 90% like k-Means and LVQ1 have accuracy rank almost 8 points lower.
For SVM only RENN, All-kNN and HMN-EI (which all belong to the noise filters) are outperformed by
random sampling. The reason fo that are the figh tolerance on noise in the data that can be controlled
by C parameter in SVM.

Appl. Sci. 2020, 10, 3933 15 of 19

(a)

(b)
Figure 10. Results obtained for SVM classifier. (a) Average performance ranks. (b) Average performance.

5. Conclusions

In the article we investigated the performance of the popular classical instance selection and
prototype generation methods in terms of the obtained compression of the data set and their influence
on the performance of various classifiers. To summarize the obtained results we averaged them for
each data filtering method over all classifiers. This allowed us to compare all the evaluated data
filters. The results are presented in Figure 11. The red line in the plots indicate the methods which
belong to the Pareto front, for example, these ones which are not dominated by the other methods.
The following methods belong to the front: ENN, HMN-E, GLVQ(0.3), LVQ2.1(0.3), HMN-EI, Drop2,
Drop3 and LVQ2.1(0.1). Some other methods like k-Means(0.3) and LVQ1 can be considered as the top
ones because they lie very close to the Pareto front. From the top methods two algorithms provide
compression less than 50%, these are ENN and HMN-E. These methods should be considered only
when the compression is not the primary need.

Appl. Sci. 2020, 10, 3933 16 of 19

(a)

(b)
Figure 11. Average results over all evaluated classifiers. Red line represents Pareto front. (a) Average
performance ranks. (b) Average performance.

In theory, as indicated in the beginning of this article, the goal of data filtering methods is to keep
the estimated conditional probabilities P(c|x) unchanged before and after data filtering so that the
P(c|x)T = P(c|x)P, but in reality each of these classifiers has its own probability estimation technique.
So the one used by the decision trees which is based on the instance frequency calculation within the
bin, do not match with the one of the nearest neighbor classifier. Moreover, SVM and Random Forest
are more robust than kNN so they can better deal with the noisy samples than the data filters which
internally use kNN to assess training instances.

The obtained results indicate that the size of the dataset matters. In general applying any of the
examined data filters result in the decrease in accuracy, and a huge drop in prediction performance can
be observed between compression 70% and 90%, so that the compression 70% can be considered
as a kind of threshold below which we should not compress the dataset. Although, we also
observed, that for bigger datasets instance selection methods proved more efficient allowing for
higher compression. Interestingly, on average the prediction performance slowly drops even for the
noise filters. The exception are 1-NN and Naive Bayes classifiers where some of the tested instance
filtering methods (in particular ENN and the LVQ family) allowed to increase the accuracy. For the

Appl. Sci. 2020, 10, 3933 17 of 19

kNN with tuned k the accuracy may remain unchanged, so the benefit is the execution time of the
prediction phase, which requires fewer distance calculations to make the decision.

The observed phenomenon can be interpreted taking into account that all of the tested instance
selection methods were developed to work with kNN. As it was indicated in Section 2 instance selection
methods can be considered wrappers for the kNN classifier, while for the remaining classifiers they
work as filters. Some authors design specific algorithms for particular classifiers. The examples are
the works of Kawulok and Nalepa who developed memetic [37] and genetic [38] algorithms for SVM,
also de Mello and others developed an algorithm dedicated for the SVM [39]. In [7] we developed
generalized CNN and ENN algorithms which work as wrappers in particular with MLP network.
But these methods are strictly designed for given classifiers and can not be generalized so they were
not considered in this research.

In the literature some authors use instance selection methods for balancing the data distribution
of unbalanced classification problems [40]. In this scenario instance selection methods are applied to
down-sample the majority class, and the minority classes remain unchanged, but this aspect was not
considered in our study. Also the problem of applying instance selection methods to other tasks such
as regression [41], multi-label learning [42] or stream mining [43] was not covered and requires further
studies. Another open question which remains is deeper analysis of why particular of evaluated
methods are better than the competitors. This requires independent analysis on lower number of
methods and remains for future investigation.

In summery, when considering the use of initial data filtering for training set reduction one should
consider GLVQ, LVQ2.1 and in the case where it is needed to use the original training samples and not
newly constructed prototypes one should consider Drop2 Drop3 from the set of evaluated methods.
These methods provide significant dataset size reduction and in general allow to obtain the higher
prediction accuracy in comparison to the other methods with similar compression, but by applying
them we should expect a drop in prediction accuracy for classifiers other than kNN.

Author Contributions: Conceptualization, M.B.; methodology, M.B.; software, M.B.; validation, M.B., M.Kordos.;
formal analysis, M.B.; investigation, M.B. and M.K.; resources, M.B.; data curation, M.B.; writing—original draft
preparation, M.B.; writing—review and editing, M.B., M.K.; visualization, M.B. and M.K.; supervision, M.B.;
project administration, M.B.; funding acquisition, M.B. All authors have read and agreed to the published version
of the manuscript.

Funding: The APC was funded by Silesian University of Technology BK-204/2020/RM4

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SVM Support Vector Machine
Random Forest Random Forest
kNN k-Nearest Neighbor
1-NN 1-Nearest Neighbor
C4.5 C4.5 decision tree
GLM Generalized Linear Model
Naive Bayes Naive Bayes
MLP Multi Layer Perceptron
Linear Regression Linear Regression
ENN Edited Nearest Neighbor Rule
CNN Condenced Nearest Neighbor Rule
RENN Repeated ENN
ICF Iterative Case Filtering
IB3 Instance Based Learining version 3
IB2 Instance Based Learining version 2
GGE Gabriel Graph Editing

Appl. Sci. 2020, 10, 3933 18 of 19

RNGE Relative Neighbor Graph Editing
MSS Modified Selective Subset Selection
LVQ Learning Vector Quantization
LVQ1 Learning Vector Quantization version 1
LVQ2 Learning Vector Quantization version 2
LVQ2.1 Learning Vector Quantization version 2.1
LVQ3 Learning Vector Quantization version 3
OLVQ1 Optimized Learning Vector Quantization
GLVQ Generalized Learning Vector Quantization
SNG Suppervised Neural Gas
CCIS Class Conditional Instance Selection
HMN Hit Miss Network
HMN-C Hit Miss Network Condensation
HMN-E Hit Miss Network Editing
HMN-EI Hit Miss Network Iterative Editing
RNN Reduced Nearest Neighbor Rule

References

1. Blachnik, M. Reducing Time Complexity of SVM Model by LVQ Data Compression. In Artificial Intelligence
and Soft Computing; LNCS 9119; Springer: Berlin, Germany, 2015; pp. 687–695.

2. Duch, W.; Grudziński, K. Prototype based rules—New way to understand the data. In Proceedings of the
IEEE International Joint Conference on Neural Networks, Washington, DC, USA, 15 July 2001; pp. 1858–1863.

3. Blachnik, M.; Duch, W. LVQ algorithm with instance weighting for generation of prototype-based rules.
Neural Networks 2011, 24, 824–830. [CrossRef]

4. Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 066138.
[CrossRef]

5. García, S.; Luengo, J.; Herrera, F. Tutorial on practical tips of the most influential data preprocessing
algorithms in data mining. Knowl. Based Syst. 2016, 98, 1–29. [CrossRef]

6. Blachnik, M.; Kordos, M.; Wieczorek, T.; Golak, S. Selecting Representative Prototypes for Prediction the
Oxygen Activity in Electric Arc Furnace. LNCS 2012, 7268, 539–547.

7. Kordos, M.; Blachnik, M.; Białka, S. Instance Selection in Logical Rule Extraction for Regression Problems.
LNAI 2013, 7895, 167–175.

8. Abdulali, A.; Hassan, W.; Jeon, S. Stimuli-magnitude-adaptive sample selection for data-driven haptic
modeling. Entropy 2016, 18, 222. [CrossRef]

9. Blachnik, M. Instance Selection for Classifier Performance Estimation in Meta Learning. Entropy 2017, 19, 583.
[CrossRef]

10. Grochowski, M.; Jankowski, N. Comparison of Instance Selection Algorithms. II. Results and Comments.
LNCS 2004, 3070, 580–585.

11. Borovicka, T.; Jirina, M., Jr.; Kordik, P.; Jirina, M. Selecting representative data sets. In Advances in Data
Mining Knowledge Discovery and Applications; IntechOpen: London, UK, 2012.

12. Blachnik, M.; Duch, W. Prototype-based threshold rules. Lect. Notes Comput. Sci. 2006, 4234, 1028–1037.
13. García, S.; Derrac, J.; Cano, J.R.; Herrera, F. Prototype selection for nearest neighbor classification: Taxonomy

and empirical study. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 417–435. [CrossRef]
14. Triguero, I.; Derrac, J.; Garcia, S.; Herrera, F. A taxonomy and experimental study on prototype generation

for nearest neighbor classification. IEEE Trans. Syst. Man, Cybern. 2012, 42, 86–100. [CrossRef]
15. Hart, P. The condensed nearest neighbor rule. IEEE Trans. Inf. Theory 1968, 16, 515–516. [CrossRef]
16. Aha, D.; Kibler, D.; Albert, M. Instance-Based Learning Algorithms. Mach. Learn. 1991, 6, 37–66. [CrossRef]
17. Marchiori, E. Hit miss networks with applications to instance selection. J. Mach. Learn. Res. 2008, 9, 997–1017.
18. Barandela, R.; Ferri, F.J.; Sánchez, J.S. Decision boundary preserving prototype selection for nearest neighbor

classification. Int. J. Pattern Recognit. Artif. Intell. 2005, 19, 787–806. [CrossRef]
19. Wilson, D.; Martinez, T. Reduction techniques for instance-based learning algorithms. Mach. Learn. 2000, 38, 257–268.

[CrossRef]
20. Tomek, I. An experiment with the edited nearest-neighbor rule. IEEE Trans. Syst. Man Cybern. 1976, 6, 448–452.

http://dx.doi.org/10.1016/j.neunet.2011.05.013
http://dx.doi.org/10.1103/PhysRevE.69.066138
http://dx.doi.org/10.1016/j.knosys.2015.12.006
http://dx.doi.org/10.3390/e18060222
http://dx.doi.org/10.3390/e19110583
http://dx.doi.org/10.1109/TPAMI.2011.142
http://dx.doi.org/10.1109/TSMCC.2010.2103939
http://dx.doi.org/10.1109/TIT.1968.1054155
http://dx.doi.org/10.1007/BF00153759
http://dx.doi.org/10.1142/S0218001405004332
http://dx.doi.org/10.1023/A:1007626913721

Appl. Sci. 2020, 10, 3933 19 of 19

21. Wilson, D. Assymptotic properties of nearest neighbour rules using edited data. IEEE Trans. Syst. Man
Cybern. 1972, SMC-2, 408–421. [CrossRef]

22. Sánchez, J.S.; Pla, F.; Ferri, F.J. Prototype selection for the nearest neighbour rule through proximity graphs.
Pattern Recognit. Lett. 1997, 18, 507–513. [CrossRef]

23. Brighton, H.; Mellish, C. Advances in instance selection for instance-based learning algorithms. Data Min.
Knowl. Discov. 2002, 6, 153–172. [CrossRef]

24. Marchiori, E. Class conditional nearest neighbor for large margin instance selection. IEEE Trans. Pattern
Anal. Mach. Intell. 2010, 32, 364–370. [CrossRef] [PubMed]

25. Nova, D.; Estévez, P.A. A review of learning vector quantization classifiers. Neural Comput. Appl. 2014, 25, 511–524.
[CrossRef]

26. Blachnik, M.; Kordos, M. Simplifying SVM with Weighted LVQ Algorithm. LNCS 2011, 6936, 212–219.
27. Kordos, M.; Blachnik, M. Instance Selection with Neural Networks for Regression Problems. LNCS 2012, 7553, 263–270.
28. Arnaiz-González, Á.; Díez-Pastor, J.F.; Rodríguez, J.J.; García-Osorio, C. Instance selection of linear

complexity for big data. Knowl.-Based Syst. 2016, 107, 83–95. [CrossRef]
29. De Haro-García, A.; Cerruela-García, G.; García-Pedrajas, N. Instance selection based on boosting for

instance-based learners. Pattern Recognit. 2019, 96, 106959. [CrossRef]
30. Arnaiz-González, Á.; González-Rogel, A.; Díez-Pastor, J.F.; López-Nozal, C. MR-DIS: Democratic instance

selection for big data by MapReduce. Prog. Artif. Intell. 2017, 6, 211–219. [CrossRef]
31. Blachnik, M.; Duch, W.; Wieczorek, T. Selection of prototypes rules – context searching via clustering. LNCS

2006, 4029, 573–582.
32. Kuncheva, L.; Bezdek, J. Presupervised and postsupervised prototype classifier design. IEEE Trans. Neural

Networks 1999, 10, 1142–1152. [CrossRef]
33. Herrera, F. KEEL, Knowledge Extraction based on Evolutionary Learning. Spanish National Projects

TIC2002-04036-C05, TIN2005-08386-C05 and TIN2008-06681-C06. 2005. Available online: http://www.keel.
es (accessed on 1 May 2020).

34. Blachnik, M.; Kordos, M. Information Selection and Data Compression RapidMiner Library. In Machine
Intelligence and Big Data in Industry; Springer: Berlin, Germany, 2016; pp. 135–145.

35. Alcalá-Fdez, J.; Fernández, A.; Luengo, J.; Derrac, J.; García, S.; Sanchez, L.; Herrera, F. KEEL data-mining
software tool: Data set repository, integration of algorithms and experimental analysis framework.
J. Mult. Valued Log. Soft Comput. 2011, 17, 255–287.

36. Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30.
37. Nalepa, J.; Kawulok, M. Adaptive memetic algorithm enhanced with data geometry analysis to select

training data for SVMs. Neurocomputing 2016, 185, 113–132. [CrossRef]
38. Kawulok, M.; Nalepa, J. Support vector machines training data selection using a genetic algorithm. In Joint

IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic
Pattern Recognition (SSPR); Springer: Berlin, Germany, 2012; pp. 557–565.

39. de Mello, A.R.; Stemmer, M.R.; Barbosa, F.G.O. Support vector candidates selection via Delaunay graph and
convex-hull for large and high-dimensional datasets. Pattern Recognit. Lett. 2018, 116, 43–49. [CrossRef]

40. Devi, D.; Purkayastha, B. Redundancy-driven modified Tomek-link based undersampling: A solution to
class imbalance. Pattern Recognit. Lett. 2017, 93, 3–12. [CrossRef]

41. Arnaiz-González, Á.; Díez-Pastor, J.; Rodríguez, J.J.; García-Osorio, C.I. Instance selection for regression by
discretization. Expert Syst. Appl. 2016, 54, 340–350, doi:10.1016/j.eswa.2015.12.046. [CrossRef]

42. Kordos, M.; Arnaiz-González, Á.; García-Osorio, C. Evolutionary prototype selection for multi-output
regression. Neurocomputing 2019, 358, 309–320. [CrossRef]

43. Gunn, I.A.; Arnaiz-González, Á.; Kuncheva, L.I. A Taxonomic Look at Instance-based Stream Classifiers.
Neurocomputing 2018, 286, 167–178. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSMC.1972.4309137
http://dx.doi.org/10.1016/S0167-8655(97)00035-4
http://dx.doi.org/10.1023/A:1014043630878
http://dx.doi.org/10.1109/TPAMI.2009.164
http://www.ncbi.nlm.nih.gov/pubmed/20075464
http://dx.doi.org/10.1007/s00521-013-1535-3
http://dx.doi.org/10.1016/j.knosys.2016.05.056
http://dx.doi.org/10.1016/j.patcog.2019.07.004
http://dx.doi.org/10.1007/s13748-017-0117-5
http://dx.doi.org/10.1109/72.788653
http://www.keel.es
http://www.keel.es
http://dx.doi.org/10.1016/j.neucom.2015.12.046
http://dx.doi.org/10.1016/j.patrec.2018.09.001
http://dx.doi.org/10.1016/j.patrec.2016.10.006
https://doi.org/10.1016/j.eswa.2015.12.046
http://dx.doi.org/10.1016/j.eswa.2015.12.046
http://dx.doi.org/10.1016/j.neucom.2019.05.055
http://dx.doi.org/10.1016/j.neucom.2018.01.062
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Research Background
	Problem Statement
	Instance Selection and Construction Methods Overview

	Experimental Design
	Results and Analysis
	1-NN
	kNN
	Naive Bayes
	GLM
	C4.5 Decision Tree
	Random Forest
	SVM

	Conclusions
	References

