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Abstract: This paper presents new motion planning and robust coordinated control schemes for
trajectory tracking of the underwater vehicle-manipulator system (UVMS) subjected to model
uncertainties, time-varying external disturbances, payload and sensory noises. A redundancy
resolution technique with a new secondary task and nonlinear function is proposed to generate
trajectories for the vehicle and manipulator. In this way, the vehicle attitude and manipulator position
are aligned in such a way that the interactive forces are reduced. To resist sensory measurement
noises, an extended Kalman filter (EKF) is utilized to estimate the UVMS states. Using these estimates,
a tracking controller based on feedback Linearization with both the joint-space and task-space tracking
errors is proposed. Moreover, the inertial delay control (IDC) is incorporated in the proposed control
scheme to estimate the lumped uncertainties and disturbances. In addition, a fuzzy compensator
based on these estimates via IDC is introduced for reducing the undesired effects of perturbations.
Trajectory tracking tasks on a five-degrees-of-freedom (5-DOF) underwater vehicle equipped with a
3-DOF manipulator are numerically simulated. The comparative results demonstrate the performance
of the proposed controller in terms of tracking errors, energy consumption and robustness against
uncertainties and disturbances.

Keywords: underwater vehicle-manipulator system; motion planning; coordinated motion control;
inertial delay control; fuzzy compensator; extended Kalman filter; feedback linearization

1. Introduction

With increasing interest in the field of marine research, autonomous underwater vehicle
manipulator systems (UVMSs) [1] have rapidly developed into important devices for exploring
the ocean, completing underwater tasks, underwater sampling and so on. It is a challenging problem
to accurately control the UVMS in an energy-efficient manner due to the kinematic redundancy and
underwater environment with hydrodynamic uncertainties, unknown external disturbances (such as
ocean currents) and inaccurate sensor information. For solving these problems, inverse kinematics and
robust coordinated control techniques have been developed for the UVMS.

For the inverse kinematics of the UVMS, the solution can be obtained through mapping the
end-effector’s velocities to the velocities of the vehicle and manipulator. As the UVMS has redundant
degrees of freedom (DOFs), there are various combinations of vehicle and manipulator velocities
without affecting the end-effector velocities. A common solution is to adopt the pseudo-inverse
Jacobian matrix of the UVMS or its weighted form [2]. However, this method is not desirable for
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redundant exploration to avoid joint limits, improve system manipulability or save energy. Therefore,
the task-priority redundancy resolution technique [3] was proposed in such a way that the fulfillment of
the primary task has a higher priority than that of a secondary task. Generally, the secondary task is to
optimize the performance index through assigning additional motion in the null space of the primary
task. Sarkar and Podder [4] solved the inverse kinematics of the UVMS on the acceleration level
to minimize the total hydrodynamic drag; however, the performance index of this method requires
dynamic equations which can not be modeled exactly. Han et al. [5] proposed a new performance index
designed to minimize restoring moments without using dynamic equations. However, this method
was implemented for a specific configuration of the UVMS.

The task-priority strategy can be extensible to chain multiple tasks which have a lower order
of priority (Siciliano and Slotine [6]). Antonelli et al. [7] used a fuzzy inference system (FIS) to
handle multiple secondary tasks, such as reduction of fuel consumption and improvement of system
manipulability. In such a way, a secondary task can be activated by FIS when the corresponding
variable is without the safe range. Wang et al. [8] used a fuzzy logic algorithm to decide the priorities
of secondary objectives, such as manipulator singularity avoidance and attitude optimization of the
UVMS. The experimental validation of three difference kinematic control schemes was presented
in [9]. In [10], a multitask kinematic control of the underwater biomimetic vehicle-manipulator system
(UBVMS) was designed. A unifying framework for the kinematic control of UVMSs was proposed
in [11]. A very recent work dedicated to motion planning for the UVMS was presented in [12].

To achieve trajectory tracking, it is very important to design a coordinated motion controller for
the UVMS. The simple control methods (e.g., proportional-integral-derivative (PID) control) are not
suitable for the UVMS due to the inherent nonlinear and coupled dynamics of the system [13–15].
Schjlberg and Fossen [16] proposed a control strategy in terms of feedback linearization. Sarkar and
Podder [4] utilized a computed torque controller (CTC) for trajectory tracking of the UVMS.
Taira et al. [17] proposed a model-based motion control for the UVMS, which can be applicable to three
types of servo systems; i.e., a voltage-controlled, a torque-controlled and a velocity-controlled servo
system. Korkmaz et al. [18] presented a trajectory tracking control for an underactuated underwater
vehicle manipulator system (U-UVMS) based on the inverse dynamics. However, these model-based
controllers are poor in terms of robustness against model uncertainties. In [19], a fuzzy logic control
method was designed for a hybrid-driven UVMS to grasp marine products on the seabed. A model
reference adaptive control approach for an UVMS was proposed in [20]. Antonelli et al. [21] proposed
an adaptive controller based on virtual decomposition; however, a regressor matrix corresponding to
parameter vector is required in this method. An indirect adaptive controller based on the extended
Kalman filter (EKF) was proposed in [22]; meanwhile the performance would be degraded due to the
estimated error via EKF. To eliminate the bias from the EKF estimation, Dai et al. [23] introduced a H∞
control in the indirect adaptive controller to achieve robust performance. However, this method results
in a residual error when the bounds of the disturbance cannot be known prior. To reduce or omit
the estimation error of the uncertainties and disturbances, a fuzzy compensator based on estimations
was utilized [24]. To handle state and input constraints of the UVMS, a robust predictive control
(RMPC) [24], a nonlinear MPC (NMPC) [25], a tube-based robust MPC [26], a fast MPC (FMPC) [27]
and a fast tube MPC (FTMPC) [28] were used for the UVMS trajectory tracking, but these MPC
approaches do not permit the self-motion utilized to perform energy efficient trajectory tracking.

For achieving precise and robust performance, the control design should be enhanced by the
estimations of the system’s uncertainties and disturbances. The popular estimation techniques
include time delay control (TDC) [29,30], the extended state observer (ESO) [31], the disturbance
observer [32], the nonlinear disturbance observer (NDO) [33,34] the uncertainty and disturbance
estimator (UDE) [35,36] (redefined as inertial delay control (IDC) [37]) and so on. Among them,
because IDC is simple in design and easy to complete, it is widely used to estimate the effect of the
lumped uncertainties and disturbances. Generally, the IDC is applied to the sliding mode control (SMC)
for ensuring precise and robust performance. The combined method does not require the bounds of
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uncertainties and disturbances, and it does not use the discontinuous function in the control law.
However, the above-mentioned methods are based on joint-space variables, which may not be

suitable for a variety of underwater tasks with high-precision end-effector position requirements [38].
These task space control schemes can easily adapt to the online modification of the end-effector’s
motion [39,40]. However, the task-space controllers also have disadvantages. (a) The kinematic
redundancy of the UVMS cannot be exploited. (b) The output of the task-space controller should be
mapped into the joint space so as to be realized by thrusters and actuators. Li et al. [34] proposed
a hybrid strategy-based coordinated controller for the UVMS. The hybrid strategy is to transform
the joint-space controller (to exploit the system’s redundancy) to the task-space controller (to ensure
high-accuracy tracking performance).

Inspired by the above studies, new motion planning and coordinated control schemes of the UVMS
are proposed in this paper. The contribution of this work is that the proposed scheme can ensure precise,
energy-efficient and robust performance in the presence of model uncertainties, external disturbances,
payload and sensory noises. First, a new redundancy resolution technique is proposed, where a new
secondary task with a nonlinear function is inserted for generating energy-saving trajectories for
the vehicle and manipulator. Second, an EKF estimation system is employed for resisting sensory
noises. Third, a coordinated motion control with joint-space errors, end-effector errors, IDC and a
fuzzy compensator is proposed as a robust tracking controller against uncertainties and disturbances.
Last, the effectiveness of the proposed scheme is verified through numerical simulations.

The rest of the paper is organized as follows. Section 2 is concerned with the kinematic and
dynamic modeling of the UVMS. In Section 3, an improved redundancy resolution technique is
presented. The proposed control scheme is proposed in Section 4. Numerical simulations and the
detailed performance analysis are presented in Section 5. Section 6 holds the conclusions.

2. Modeling

The UVMS investigated in this paper is composed of an underwater vehicle with a 3 DOFs
manipulator. The coordinate system of the UVMS is shown in Figure 1. In the body-fixed frame {B},
we define that the vectors of vehicle’s linear and angular velocities are ν1 and ν2, where ν1 = [u, v, w]T ,

ν2 = [p, q, r]T and ν = [νT
1 , νT

2 ]
T . The vector of joint positions is assumed to be q =

[
q1, q2 · · · qn

]T
,

where n is the number of manipulator’s joints. The position and orientation vector of the UVMS
relative to the body-fixed frame is assumed to be ζ = [νT

1 , νT
2 , q̇T ]T . In the inertial frame {I}, the vectors

of end-effector’s position and orientation are defined as ηE1 and ηE2, and assume xE = [ηT
E1, ηT

E2]
T .

Figure 1. Coordinate systems of the underwater vehicle manipulator system (UVMS).

The kinematic model of the UVMS [21] can be obtained as shown in (1), where the velocities of
the UVMS in the body-fixed frame (ζ) are mapped into end-effector velocities (ẋE) via J(RI

B, q).

ẋE=

[
RI

B S(RI
B pB

0+RI
0 p0

E)RI
B J I

pos,q
03×3 RI

B J I
ori,q

] [
νT

1 ,νT
2 ,q̇T

]T
=J(RI

B, q)ζ (1)
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where J(RI
B, q) ∈ R6×(6+n), RI

0 = RI
BRB

0 , J I
pos,q = RI

0 J0
pos,q and J I

ori,q = RI
0 J0

ori,q. RB
0 is the rotational

matrix describing the transformation from the manipulator’s base frame to the body-fixed frame,
and p0

E is the position vector from manipulator’s base to the center of the body-fixed frame. p0
E is the

position vector from end-effector to the manipulator’s base. J0
pos,q is the manipulator’s linear Jacobian

matrix, and J0
ori,q is the manipulator’s angular Jacobian matrix. S(·) is the cross-product operator.

The vectors of vehicle’s position and attitude relative to the inertial frame are defined as η1 and
η2, where η1 = [x, y, z]T , η2 = [φ, θ, ψ]T and η = [ηT

1 , ηT
2 ]

T . The velocity vector of the UVMS defined in
the body-fixed frame (ζ) can be obtained by (2).

ζ =

 RB
I 03×3 03×3

03×3 Jν 03×3

03×3 03×3 I3×3


η̇1

η̇2

q̇

 = Jξ(η2)ξ̇ (2)

where ν1 = RB
I η̇1, ν2 = Jvη̇2 and ξ = [ηT

1 , ηT
2 , qT ]T . RB

I is the linear rotational matrix describing the
transformation from the inertial frame to the body-fixed frame, and Jν is the angular rotational matrix.
The values of RB

I and Jν can be referred to the literature [41]. Jξ(η2) is the Jacobian matrix which relates
the vehicle velocities with respect to the inertial frame and the body-fixed frame.

Dynamic Modeling

The nonlinear dynamic equations of the UVMS expressed in the body-fixed frame {B} can be
established as [16,21]:

M(q, η)ζ̇+C(q, ζ)ζ+D(q, ζ)ζ+g(q, RB
I )=τ+τdis (3)

where

M(q, η) =

[
Mν + H1(q) H2(q)

HT
2 (q) Mm(q)

]
, C(q, ζ) =

[
Cν(ν) + C1(q, q̇, ν) C2(q, q̇)

C3(q, q̇, ν) Cm(q, q̇)

]

D(q, ζ)=

[
Dν(ν)+D1(q, q̇, ν) D2(q, q̇, ν)

D3(q, q̇, ν) Dm(q)+D4(q, q̇, ν)

]
, g(q, RB

I ) =

[
gν(η) + g1(q)

gm(q)

]
, τ = [τT

ν , τT
m]

T

where M(q, η) ∈ R(6+n)×(6+n) is the inertia matrix including added mass terms, and H1(q) and
H2(q) are matrices of the inertia effects due to the manipulator. C(q, ζ) ∈ R(6+n) is the Coriolis and
centripetal matrix, and Ci(q, q̇, ν)(i = 1,3)/C2(q, q̇) is the matrix of Coriolis and centripetal forces due
to the coupling effects/due to the manipulator. D(q, ζ)ζ ∈ R(6+n) is the vector of dissipative effects,
and Di(q, q̇, ν) (i = 1 · · · 4) is the matrix of drag effects due to the coupling effects. g(q, RI

B) ∈ R(6+n)

is the vector of gravity and buoyancy effects, gν(η) is the restoring vector of the vehicle, gm(q) is
the restoring vector of the manipulator and g1(q) is the restoring vector due to the manipulator.
τ ∈ R(6+n) is the vector of generalized forces. τdis is the vector of disturbances. Generally, in a deep
water environment, τdis comes from ocean currents, payload, etc. In particular, time-varying ocean
currents increase the uncertainty of the UVMS hydrodynamic forces, making accurate control of the
UVMS difficult.

As for the underwater manipulator, it is assumed that its links are composed of cylindrical
elements. The hydrodynamic effects on cylinders can be referred to [16]. For a cylinder, the inertial
matrix of added mass and added moment is a diagonal matrix, while the off-diagonal elements are
neglected. The drag force can be expressed by a nonlinear function related to the velocity vector of the
center of mass of the link. Generally, when calculating the hydrodynamic forces, the linear skin-friction
force, quadratic drag force and lift force are considered. The third-order and higher order terms of the
drag forces are neglected. In addition, based on the assumption that velocity of the ocean current is
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constant, the diffraction forces can be neglected.
In the real system, the above model parameters are usually difficult to accurately measure or

estimate, especially the hydrodynamic forces acting on the UVMS. Thus, it is advisable to divide
the model parameters into two parts: the normal value part and the bias part. The normal value is
denoted as (·)∗, which can be obtained through using strip theory, pool experiment analysis or CFD
computation. The bias term is denoted as ∆(·), which describes the difference between the real value
and the nominal value. Then, (4) can be obtained. For control design, the normal values are available,
while the bias parts are considered as model parameter uncertainties.

M=M∗+∆M, C=C∗+∆C, D=D∗+∆D (4)

Considering that the vehicle is driven by thrusters and the manipulator is driven by motors,
the generalized force vector τ is related to the vector of thruster forces and actuator torques Ftd
through (5).

τ =

[
Bν 06×n

0n×pν In

]
Ftd = BFtd (5)

where Ftd = [TT , τT
m]

T ∈ Rpν+n. T ∈ Rpν represents the vector of thruster forces, and τm ∈ Rn

represents the vector of actuator torques. Bν ∈ R6×pν is the thruster configuration matrix, and B ∈
R(6+n)×(6+n) is the thruster-actuator configuration matrix. It is known that for an under-actuated
underwater vehicle, pν < 6. Generally, for a manipulator, n joint motors are all available.

3. Proposed Redundancy Resolution

This section proposes a new redundancy resolution technique to generate energy-efficient
trajectories for the vehicle and the manipulator. It is known that infinite solutions of the UVMS
inverse kinematics can be obtained by inverting the mapping (1). The solution using the pseudo
inverse of the Jacobian matrix is expressed as [2]

ζ = J+(RI
B, q)ẋE (6)

where ẋE is the end-effector velocity vector. J+(RI
B, q) is the pseudo inverse of the Jacobian matrix and

J+(RI
B, q) = JT(RI

B, q)(J(RI
B, q)JT(RI

B, q))−1.
However, this solution does not exploit the redundant DOFs of the system, and it is not suitable

from the perspective of energy consumption. Therefore, a new task-priority redundancy resolution
technique is proposed in this section. In the proposed technique, the primary task is to map the
end-effector variables into the joint-space variables, and two secondary tasks are provided to explore
the kinematic redundancy for energy savings, joint limit avoidance and small roll and pitch angles
kept for the vehicle, as shown in (7).

ζd = J+W(ẋEd−K f eE)+(I−J+W JW)[J+s (η, q)(η̇sd−Kses)−αKζ Jξ(η2)ξ̇] (7)

where J+W = W−1 JT(JW−1 JT)−1 is the weighted pseudo-inverse Jacobian matrix. J is considered
as the primary task Jacobian matrix and W ∈ R(6+n)×(6+n) is the motion distribution matrix with
elements belonging to [0, 1]. When the diagonal elements of the former three rows of W are close to
1, the diagonal elements of the later n rows of W will be close to 0. This results in greater movement
of the vehicle and less movement of the manipulator. Otherwise, when the diagonal elements of the
former three rows of W are close to 0, the diagonal elements of the later n rows of W will be close to 1.
This results in less movement of the vehicle and greater movement of the manipulator. The diagonal
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elements of the middle three rows of W correspond to the movement of the vehicle’s attitude. The larger
they are, the greater the movement of the vehicle’s attitude. The off-diagonal elements of W describe
the degrees of the coupling effects between the DOFs of the UVMS, which can refer to our previous
work [15]. The closer the off-diagonal element of W to 1, the greater the corresponding coupling
motion. Js(η, q) and Jξ(η2) are the secondary task Jacobian matrices. It can be recognized that the
secondary tasks are fulfilled in the null space, which will not affect the motion of the primary task.
Moreover, the two secondary tasks have the same lower priority relative to the primary task. ẋEd is
the primary-task vector and eE = xE−xEd is the error of the primary task. η̇sd is a secondary-task
vector to achieve system coordination between its rotational subsystem and translational subsystem,
including the vehicle attitudes and joint angles, and es = η̇s − η̇sd is its error. K f and Ks are positive
definite matrices. The other secondary task vector is the velocity vector of the UVMS ξ̇ = [η̇T

1 , η̇T
2 , q̇T ]T ,

which contributes to the system’s self-motion utilized for reducing energy requirements. Kζ is a
diagonal matrix whose elements belong to [0, ∞). The larger the diagonal element of Kζ , the greater
the corresponding coupling motion. For instance, if the diagonal element of the secondary row of Kζ

is larger, the vehicle will have a larger yaw angle according to the coupling effects. Similarly, if the
diagonal element of the third row of Kζ is larger, the vehicle will have a larger pitch angle. α is a
coefficient belonging to [0, 1], which is used to adjust the values of Kζ .

To effectively utilize the self-motion during the entire UVMS motion, α is defined as a nonlinear
function related to time t ≥ 0, as given in (8).

α =

{
−0.5(1− e−λ(t−ts)) + 0.5 t > ts

0.5(1− e−λ(t−ts)) + 0.5 t ≤ ts
(8)

where ts relatives to the time at which the system enters deceleration phase. λ is the coefficient and
λ > 0.

The curve of the nonlinear function is shown in Figure 2. It can be recognized that the smaller the
value of λ, the smoother the variations of the nonlinear function. Therefore, it is better to choose a
small value of λ to ensure smooth movement of the UVMS.

Figure 2. Nonlinear function of α.

4. Control Design

The purpose of control design is to obtain the values of thruster forces and actuator torques in
order to drive the UVMS to the desired trajectory. In addition, the robustness of the designed controller
is important in the presence of model parameter uncertainties, time-varying external disturbances,
payload variations and sensory noises. In this section, for precise and robust control of the UVMS,
a new coordinated motion controller including inertial delay control (IDC) and a fuzzy compensator is
proposed. Besides, the proposed controller uses the estimated UVMS states via an EKF.
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4.1. Design of an EKF

Due to the presence of sensory measurement noises, the vehicle and manipulator positions
measured by sensors are not inaccurate. Therefore, it is necessary to utilize a nonlinear filter to estimate
the system’s states. As the extended Kalman filter (EKF) is simple and easy to complete and has
low computational complexity, the EKF is used in this study. It is necessary to obtain a linear model
during the KF design process. The dynamic equations of the UVMS can be linearized by ignoring the
higher order terms in the expended Taylor series. The state vector of the system, e.g., position/attitude
and velocity vectors, is defined as X = [ξT , ζT ]T . The measurement model can be expressed as
Z = h(X) = ξ.

Based on (2) and (3), the time derivative of the system state vector X can be obtained as

Ẋ = f (X, t) =

[
J−1

ξ (η2)ζ̇

M−1(τ − τd − b)

]
(9)

where f (X, t) is considered as the estimated model of the system.
With the additive Gaussian white noise, the predicted system state vector X̂−k+1 at t = tk+1 is

given in (10), and the predicted measurement state vector Z−k+1 at t = tk+1 is shown in (11). Then the
covariance matrix of the predicted state vector can be obtained as shown in (12).

X̂−k+1 = X̂k + f (X̂k, t) + Qk (10)

Z−k+1 = h(X̂−k+1) + Γk (11)

P−k+1 = φkPkφT
k + Qk (12)

where X̂k is the predicted state vector at tk. Qk is the vector of system noises. Γk is the vector of
measurement noises. Pk is the covariance matrix of the estimated system states.

Therefore, the estimated system states can be obtained through the following correction step:

Kk+1 = P−k+1HT
k+1(Hk+1P−k+1HT

k+1 + Γk+1)
−1 (13)

X̂k+1 = X̂−k+1 + Kk+1(Zk+1 − Z−k+1) (14)

Pk+1 = (I − Kk+1Hk+1)P
−
k+1 (15)

where φk =
∂ f (X,t)

∂XT

∣∣∣∣∣
X=X̂k

and Hk+1 = ∂h(X)
∂XT

∣∣∣∣∣
X=X̂−k+1

.

4.2. Design of a Tracking Controller

The control objective is to make sure that the tracking errors quickly converge to zero under
the conditions of model parameter uncertainties, time-varying external disturbances and payload.
First, the tracking errors of the system are defined. The vector of end-effector tracking errors is shown
in (16), and the vectors of tracking errors in the joint space are shown in (17)–(19).

eE = x̂E−xEd (16)

e =

 RB
I (η̂1 − η1d)

ηεd − ηεd + S(ε)εd
q̂− qd

 (17)

ė = ζ̂ − ζd (18)

ë = ˙̂ζ − ζ̇d (19)
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where the superscript ˆ(·) denotes the corresponding estimated values via EKF, and the subscript (·)d
denotes the corresponding desired values. [ε, η] and [εd, ηd] are the quaternions of η̂2 and η2d.

Then, the tracking controller based on feedback linearization is given as

u = −M∗(k1e + k2ė− ζ̇d) + C∗ ζ̂ + D∗ ζ̂ + g − JTkEeE − δ̂ (20)

where J = J(RI
B, q) is the Jacobian matrix of the system, as given in (1). k1, k2 and kE are the positive

symmetric matrices. δ̂ is the estimated vector of the lumped uncertainties and disturbances, which is
described in the next subsection.

4.3. Inertial Delay Control (IDC)

Due to the underwater circumstances, the dynamic equations of the UVMS include unknown
external disturbances and an amount of parameter uncertainties caused by identification errors.
These lumped uncertainties and disturbances can be expressed as (21) with reference to (3) and (4).

δ = −(∆M ˙̂ζ + ∆Cζ̂ + ∆Dζ̂) + τdis (21)

where ˙̂ζ and ζ̂ denote the estimates of the system states via EKF.
Then, based on (3), (4) and (21), the acceleration vector of the system can be obtained as

˙̂ζ=−(M∗)−1(C∗ ζ̂+D∗ ζ̂+g)+(M∗)−1(u+δ) (22)

Substituting the proposed control law (20) in (22), dynamical equation of the tracking errors is

ë + k2ė + k1e + (M∗)−1 JTkEeE = (M∗)−1eδ (23)

where eδ = δ− δ̂ is the estimated error vector.
It is assumed that a slow-varying signal can be approximated and estimated by a filter with

appropriate bandwidth [37]. Based on this assumption, the uncertainty and disturbance estimator
(UDE) is proposed for estimating slow-varying uncertainties [35,37]. Then, the estimations of lumped
uncertainties and disturbances δ̂ can be given as

δ̂ = G f (s)δ (24)

where G f (s) is a strictly proper low-pass filter possessing a uniform steady-state gain and a sufficiently
large bandwidth. Based on (24), it is found that by passing the lumped uncertainties and disturbances
δ through a inertial filter G f (s), the estimation vector δ̂ can be obtained. The UDE method is redefined
as inertial delay control (IDC) [37], because it is analogous to the time delay control (TDC) which
delays the plant signals in time to obtain the estimates.

Based on (23) and (24), we can obtain

δ̂ = G f (s)[M
∗(ë + k2ė + k1e) + JTkEeE + δ̂] (25)

A choice of G f (s) with first order is given by

G f (s) =
I

I + Ts
(26)

where T is a diagonal matrix with small positive constant. I is the identity matrix.
Then (25) can be rewritten as

T ˙̂δ + δ̂ = M∗(ë + k2ė + k1e) + JTkEeE + δ̂ (27)
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Therefore, the estimates of the lumped uncertainties and disturbances can be obtained as

δ̂=T−1M∗(ė+k2e+k1

∫ t

0
edt)+T−1 JTkE

∫ t

0
eEdt (28)

From (25) and (26), the equation of estimated errors can be written as

ėδ = −T−1eδ + δ̇ (29)

If the lumped uncertainties and disturbances δ are slowly varying, then δ̇ is small and δ̇ ≈ 0.
Therefore, the estimated errors (eδ) go to zero asymptotically. If δ̇ is not small, but δ̈ is small, eδ is
ultimately bounded and the estimated accuracy can be improved by estimating δ and δ̇.

4.4. Fuzzy Compensator

Based on the estimates via IDC, the fuzzy compensator is given as

u f uzzy = ρδ̂ + ε (30)

where ρ = diag(ρ1, ρ2 · · · ρ6+n) is the parameter of the fuzzy compensator, and ε is a constant vector.
The fuzzy compensator is a multiple-inputs-single-output fuzzy logic controller (FLC) with

the joint-space system errors ei and ej as two input variables and ρi after defuzzification and
denormalization as an output variable. Denote the system error vector e (as given in (17)) as
e = [e1, e2 · · · ei · · · e6+n]. The main advantage of this fuzzy compensator is that the required fuzzy
rules take the dynamic coupling between the vehicle and the manipulator [15,16] into account. It is
known that the roll, pitch and yaw motions of the vehicle are coupled with its surge, sway and heave
motions. As the roll and pitch angles should be kept small for properly working of the bottom sensors,
it is assumed that the surge and sway motions are mostly affected by the yaw angle. Note that the pitch
and heave motions are interactive, and the manipulator’s joints 2 and 3 are interactive. The position of
manipulator’s joint 1 is mostly affected by the sway motion. Based on these analysis, the fuzzy rules
are given in Table 1. Table 2 shows the relationships between an output and two input variables.

Table 1. Rule base for ρi.

|ei|

ρi |ej|
ZE PS PM PB

ZE ZE ZE PS PM
PS PS PS PM PB
PM PM PM PB PB
PB PB PB PB PB

The following symbols are used in Table 1: ZE (zeros), PS (positive small), PM (positive medium),
PB (positive big). Figure 3a,b shows the member functions of the normalized input and output variables
respectively. After the fuzzification stage, the Mamdani inference method is used for fuzzy implication,
and then the centroid method is used for defuzzification. Finally, based on denormalization the actual
output variables can be obtained.

Table 2. Relationships between two input variables and an output variable.

inputs
|ei| |e1| |e2| |e3| |e5| |e6| |e7| |e8| |e9|
|ej| |e6| |e6| |e5| |e3| |e2| |e2| |e9| |e8|

outputs ρi ρ1 ρ2 ρ3 ρ5 ρ6 ρ7 ρ8 ρ9
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Figure 3. Input and output membership functions.

Incorporating the fuzzy compensator, the proposed coordinated motion controller is given as

uc = u− u f uzzy (31)

Then we can obtain the vector of thruster forces and actuator torques Ftd, as shown in (32).

Ftd = B+uc =

[
B+

ν 0pν×n

0n×6 In

]
uc (32)

where B+
ν is the pseudo inverse of Bν and B+ is the pseudo inverse of B.

Therefore, the generalized force vector τ can be obtained based on (5). For an under-actuated
UVMS, τ = u except that the elements of τ corresponding to the underacted motions are zeros.

The proposed control system is schematically represented by a block diagram in Figure 4.
The controller block includes five sub blocks to calculate a control vector; i.e., the tracking controller,
IDC, fuzzy compensator, B+ and B blocks. In addition to system dynamics, the tracking controller
also requires tracking errors of end-effector positions and joint-space states. The end-effector position
tracking errors are calculated according to the desired end-effector positions derived from the trajectory
planning block and the estimated end-effector positions obtained from the forward kinematics block
using the estimated joint-space states. The estimates of joint-space states are obtained from the EKF
block. The proposed redundancy resolution block generates the required joint-space trajectories for
the desired tasks. The IDC block estimates the lumped uncertainties and disturbances of the system.
The fuzzy compensator reduces the influences of perturbation on the UVMS.

Figure 4. Block diagram of the proposed controller.

4.5. Stability Analysis

We define a Lyapunov function which is positive definite as:

V(e, ė, eE, eδ)=
1
2

eTk1k2e+
1
2

ėTk2ė+
1
2

eδ
Teδ+

1
2

eT
Ek2(M∗)−1kEeE (33)

Differentiating V(x1, x2, eE) yields
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V̇(e, ė, eE, eδ)= eTk1k2ė+ėTk2ë+eδ
T ėδ+eT

Ek2(M∗)−1kE ėE (34)

where M∗ is assumed to be constant.
Substituting the proposed control law (31) in (22), and taking into account (29), (34) can be

rewritten as

V̇= eTk1k2ė+eT
Ek2(M∗)−1kE ėE+eδ

T(−T−1eδ + δ̇)

+ėTk2(−k2ė−k1e−(M∗)−1 JTkEeE+(M∗)−1(eδ − ρδ̂− ε))

=−ėT‖k2‖2ė−eδ
TT−1eδ+eδ

T δ̇+ėTk2(M∗)−1((1 + ρ)eδ − ρδ− ε)

=−ėTk2[k2ė− (M∗)−1((1 + ρ)eδ − ρδ− ε)]−eδ(T−1eδ−δ̇) (35)

By choosing large enough values of k2, small values of ρ and small enough values of T such that

k2ė ≥ (M∗)−1((1 + ρ)eδ − ρδ− ε), ‖ρδ‖ ≤ σ, T−1eδ≥ δ̇, (36)

V̇(e, ė, eE, eδ) is negative semi-definite, where σ → 0 is a vector with smaller positive values.
Consequently, the tracking errors and estimated errors of the system all converge to zero
asymptotically; i.e.,

lim
t→∞

e→ 0, lim
t→∞

ė→ 0, lim
t→∞

eE → 0, lim
t→∞

eδ → 0 (37)

Therefore, the closed-loop system is asymptotically stable in the entire state space.

5. Simulation Studies

To verify the performance of the proposed technique, numerical simulations were performed
on a UVMS with a torpedo-type AUV and a 3-DOF underwater manipulator [15] shown in Figure 1.
The AUV is driven by five thrusters in total and its thruster configuration is shown in Figure 5.
The thruster configuration matrix Bν and its pseudo inverse B+

ν are shown in the Appendix A.
The parameters for the AUV and manipulator are given in the Appendix A and Tables 3 and 4.
From Table 4, it can be seen that the whole system is neutrally buoyant, while the manipulator’s
links have negative buoyancy. Thus, the UVMS used for numerical simulations in this paper can
approximate to the real system.

Figure 5. Thruster distribution of the AUV.

Table 3. D-H parameters of the manipulator.

Joint (k) Offset (αk−1) Length (ak−1) Distance (dk) Angle (θk)

1 0◦ 0 0 q1
2 90◦ lq1 0 q2
3 0◦ lq2 0 q3
4 0◦ lq3 0 q4 = 0◦
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Table 4. The list of UVMS parameters.

Length Diameter Mass Buoyancy Weight
(m) (m) (kg) (N) (N)

AUV 1.78 0.26 78.2 771.59 767.14
Link1 0.1 0.06 1.28 11.43 12.54
Link2 0.3 0.0425 1.92 17.2 18.87
Link3 0.3 0.0425 1.92 17.2 18.87

5.1. Simulation Conditions

In the simulations, the UVMS’s end-effector is commanded to follow a spatial circle with diameter
2.24 m and a straight line of length 7.0 m. The simulation time of the circular trajectory is 50 s,
where the initial 10 s is used for acceleration, 30 s is used to follow the circle and the final 10 s is
used for deceleration. The simulation time of the straight-line trajectory is 30 s, where in the initial
10 s the acceleration is a half-period sine function, and then it maintains zeros, and in the final 10 s
it is a half-period negative sine function. The UVMS’s end-effector maintains orientation during the
two trajectory tracking tasks. The initial desired positions and orientations are the same as the initial
actual positions and orientations. The initial desired and actual velocities and accelerations are zeros.
The average speeds of the two trajectories both are 0.23 m/s. The sampling time for the simulation is
t = 20 ms.

In this case, the model uncertainties, external disturbances, payload and sensory noises in position
and orientation measurements are introduced for simulating the real working environment. To reflect
the uncertainties, it is assumed that the modeling inaccuracy for each parameter is 10%. The vector of
time-varying ocean currents in the inertial frame is assumed to be governed by (38). It is supposed that
the end-effector of the manipulator is attached with a payload of 1 kg (in water). The following sensory
noises are introduced: gaussian noise of 0.01 m mean and 0.01 m standard deviation for the vehicle
position measurements; 0.5◦ mean and 0.5◦ standard deviation for the vehicle attitude measurements;
and 0.05◦ mean and 0.05◦ standard deviation for the manipulator’s joint position measurements.
In addition, the thruster dynamic characteristics are inserted into the simulation. Suppose that the
thruster response delay time is 50 ms, and its efficiency is 95%.

νc =
[
0.15 + 0.1cos(0.3t), 0.05cos(0.1πt), 0.1cos(0.2t), 0, 0, 0

]T
m/s (38)

To implement solution (7), the primary task vector is xEd = [ηT
E1d, ηT

E2d]
T . k f = diag(4, 4, 4, 6, 6, 6)

and ks = 25I for the two trajectories. Other parameters are shown in Table 5. A secondary task
is designed to align the vehicle orientation and the joint position with the primary task in terms of
reducing the coupling effects, as shown in (39).

η̇sd =


φ̇

θ̇

ψ̇

q̇1

q̇2

 =


0 0 0
0 0 −α1

0 α2 0
0 −α3 0
0 0 −α4

 η̇E1d (39)

where η̇E1d is the linear part of xEd.

Table 5. Parameters for the proposed redundancy resolution technique.

Trajectory α1 α2 α3 α4 λ ts (s) Kζ

Straight line −0.02 0.13 0 0.05 0.3 15 diag(0, 2, 0.2, 0, 1, 1, 1, 1, 1)
Circle −0.06 0.2 −0.2 0.15 0.3 45 diag(0.1, 0.3, 0.1, 0, 1, 1, 1, 1, 1)
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The distribution matrix is defined as

W−1=

0.02I3×3 03×3 03×3

W1 0.4I3×3 03×3

W2 03×3 0.98I3×3

 , W1=

0 0 0
0 0 0.2
0 0.35 0

 , W2=

0 0.25 0
0 0 0.5
0 0 0

 (40)

To illustrate the effectiveness of the proposed redundancy resolution technique in terms of energy
savings, the comparative redundancy resolution technique is given in (41).

ζd = J+W(ẋEd−K f eE)+(I−J+W JW)[J+s (η, q)(η̇sd−Kses)] (41)

where the difference between (7) and (41) is that the secondary task vector ξ̇ is not included in the
compared technique.

The proposed control scheme is compared with the H∞-EKF method [23] which is given by

uc = M(q)(q̈d − Vė− Pe) + H(q, q̇) + M(q)(−R−1BTPe) + τc (42)

where V and P are the derivative and the proportional gain matrices. q and q̇ are the estimated vectors
from EKF. τc. is the disturbance estimation from EKF as well. R is the given positive definite matrix.

For simple representation, the proposed redundancy resolution is termed case 1 (c1), and the
comparative redundancy resolution is termed case 2 (c2). Hence, the proposed control scheme based
on the proposed redundancy resolution is termed proposed controlc1; the H∞-EKF method based
on the proposed redundancy resolution is termed H∞-EKFc1; and the proposed control based on the
comparative redundancy resolution is termed proposed controlc2.

5.2. Results and Discussion

The results of numerical simulations are shown in Figures 6–13. Figures 6–8 present the
desired and actual spatial trajectories and their tracking errors. From these results it is observed
that the proposed controller drives the UVMS to track the desired spatial linear and circular
trajectories quite satisfactorily in both the proposed redundancy resolution technique (c1) and
the comparative redundancy resolution technique (c2). Moreover, the proposed control scheme
outperforms the H∞-EKF method, and has smaller tracking errors in both positions and orientations
under the conditions of model uncertainties, time-varying ocean currents, payload and sensory noises.
Even though the H∞-EKF method adopted a H∞ robust controller to compensate the estimated bias
from the EKF, the residual tracking errors can not be fully eliminated, as shown in Figure 6b,c and
Figure 6e,f. The proposed controller performs better than the H∞-EKF method in terms of robustness,
which is dedicated to the IDC and fuzzy compensator for reducing the perturbation effects.

Figure 9 plots the norm of the vector Ftd (i.e., thruster forces and actuator torques) and energy
consumption of the UVMS. It can be noted that the comparative redundancy resolution technique
(c2) is consuming more energy in generating trajectories for the vehicle and manipulator during
both the linear and circular trajectories tracking. However in the proposed redundancy resolution
technique (c1), the UVMS states are adjusted by self-motion to minimize interaction effects between
the vehicle and the manipulator. This is because of the introduction of the secondary task vector ξ̇ and
the nonlinear function.
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Figure 6. Spatial linear and circular trajectories and their tracking errors. (a) Desired linear trajectory
and tracking control results; (b,c) position tracking errors in positions and orientations; (d) desired
circular trajectory and tracking control results; (e, f ) tracking errors in positions and orientations.

Figure 7. End-effector errors when tracking the linear trajectory. (a) xee error, (b) yee error, (c) zee

error, (d) tracking errors in the end-effector roll direction, (e) tracking errors in the end-effector pitch
direction, ( f ) tracking errors in the end-effector yaw direction.

For better understanding, the generated trajectories for the vehicle positions/attitudes and
manipulator positions are presented in Figures 10 and 11. It can be seen from the results that the
generated trajectories have larger differences on vehicle attitudes and joint angles than vehicle positions.
This is because the adjustment of the vehicle position has little effect on reducing the interactive forces
between the vehicle and the manipulator without affecting the primary task. Consequently, the energy
consumption can be reduced by changing the vehicle attitude and joint angles. In addition, it is
observed from Figures 10 and 11 that the small roll and pitch angles of the vehicle are kept in the
proposed control scheme, which contributes to properly working of the vehicle’s onboard sensors.
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Figure 8. End-effector errors when tracking the circular trajectory. (a) xee error, (b) yee error, (c) zee

error, (d) tracking errors in the end-effector roll direction, (e) tracking errors in the end-effector pitch
direction, ( f ) tracking errors in the end-effector yaw direction.

Figure 9. Time histories of the norm of the vector Ftd and UVMS energy consumption. (a,b) Results
from the linear trajectory tracking, (c,d) results from the circular trajectory tracking, (Ftd; i.e., the vector
of thruster forces and actuator torques).

Figures 12 and 13 show the required thruster forces for the vehicle and actuator torques for the
manipulator during the linear and circular trajectory tracking. It is observed that the thruster forces
for the two trajectories are less in the proposed redundancy resolution technique (c1), which results
in the reduced energy consumption. In addition, the thruster forces and actuator torques for both
trajectories in the proposed controlc1 are within their constraints (±60 N for the thrusters and ±3 N·m
for the actuators).

The quantitative indexes of the time integral of tracking errors and energy consumption are listed
in Table 6. From these indices, it is indicated that the tracking error in the proposed controlc1 is smaller
than that in the H∞-EKFc1 method, and the energy consumption in the proposed controlc1 is less
than that in the proposed controlc2. Overall, the proposed control scheme based on the proposed
redundancy resolution technique (c1) ensures the precise and robust performance with a reduced
energy requirement under the conditions of model parameter uncertainties, time-varying ocean
currents, payload and sensory noises.

In the simulations, we have taken the model parameter uncertainties, time-varying external
disturbances, payload and sensory noises into consideration. However, in a practical case,
these lumped uncertainties and disturbances may be more complicated, and hence can not be simulated.
Even though the results from computer simulations are promising, it is necessary to validate the
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effectiveness of the proposed control scheme and the proposed redundancy resolution technique
through experiments in a water pool or at sea. This is our future work.

Figure 10. Joint-space positions for the straight line trajectory. (a) X position, (b) y position, (c) z
position, (d) roll angle, (e) pitch angle, ( f ) yaw angle, (g) joint 1 angle, (h) joint 2 angle, (i) joint 3 angle.

Figure 11. Joint-space positions for the circular trajectory. (a) X position, (b) y position, (c) z position,
(d) roll angle, (e) pitch angle, ( f ) yaw angle, (g) joint 1 angle, (h) joint 2 angle, (i) joint 3 angle.
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Figure 12. Thruster forces and actuator torques for the line trajectory tracking. (a–e) Thruster forces T1,
T2, T3, T4 and T5; (g–i) actuator torques Tm1, Tm2 and Tm3.

Figure 13. Thruster forces and actuator torques for the circular trajectory tracking. (a–e) Thruster forces
T1, T2, T3, T4 and T5; (g–i) actuator torques Tm1, Tm2 and Tm3.
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Table 6. Performance analysis of the UVMS for the linear and circular trajectories tracking.

Control Schemes
Linear Trajectory Circular Trajectory

ISEp ISEo
∫
||Ftd||dt ISEp ISE0

∫
||Ftd||dt

Proposed controlc2 0.3083 22.5597 1161.6 0.3318 32.2834 1532.6
H∞− EKFc1 0.6869 34.5853 607.2053 1.0775 63.1945 1420.4

Proposed controlc1 0.2905 26.1319 603.8734 0.3708 40.1401 1428.3

Note : eE = [(η̃E1)
T , (η̃E2)

T ]T , ISEp =
∫
||η̃E1||dt, ISEo =

∫
||η̃E2||dt.

6. Conclusions

This paper presents a motion planning and coordinated control scheme for the trajectory tracking
of the UVMS. A new secondary task with a nonlinear coefficient for redundancy resolution of the
UVMS is proposed. In this way, the interactive effects between the vehicle and the manipulator can be
minimized and the energy consumption of the UVMS is reduced. Simulation results show that the
energy consumption based on the proposed redundancy resolution technique (proposed controlc1)
is reduced by 48% (in the linear trajectory tracking) and 6% (in the circular trajectory tracking),
compared with the comparative redundancy resolution technique (proposed controlc2). The proposed
redundancy resolution technique is simple in design and easy to implement. Furthermore, a control
scheme including a fuzzy compensator and a tracking control with joint-space errors, end-effector
errors and inertial delay control (IDC) is proposed. The proposed control scheme ensures precise
and robust tracking performance in the presence of model uncertainties, time-varying ocean currents,
payload and sensory noises. Simulation results show that the position and orientation tracking
precisions based on the proposed controlc1 are reduced by 57.7% and 24.4% (in the linear trajectory
tracking) and 65.6% and 36.5% (in the circular trajectory tracking), compared with the H∞−EKFc1

method [23]. Even though the effectiveness of the proposed redundancy resolution technique and
coordinated motion control scheme were validated through numerical simulations, experiments should
be carried out on the real UVMS to further enhance the computer simulation results, which will be
done in the future.
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Appendix A. Simulation Data of the AUV

For the torpedo-type AUV, its center of buoyancy (CB) is (0, 0, 0.02) m, its center of gravity (CG)
is (0, 0, 0) m and its moment of inertia is (0.69, 16.82, 16.82) kg ·m2. The AUV is equipped with an
underwater manipulator, and the manipulator’s base position is pB

0 = (0.6, 0, 0.2)T m. Some model
parameters of the AUV given in (3) are composed of rigid-body terms and hydrodynamic terms [42],
as shown in the following equations.
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Mν =MRB+MA, Cν(νr)=CRB(νr)+CA(νr), Dν(νr)=DNLdiag (|νr|)+DLdiag(|νr|)

where MRB and CRB are the rigid-body terms which represent the inertia matrix and the Coriolis
and centripetal matrix. MA, CA, DNL and DL are the matrices related to the hydrodynamic forces.
MA and CA are the added mass matrix and the added Coriolis and centripetal matrix. DNL and DL

are the quadratic damping matrix and the lift matrix. MA, CA, DNL and DL are given in the following
equations [15].

MA=−



Xu̇ 0 0 0 0 0
0 Yv̇ 0 0 0 Yṙ

0 0 Zẇ 0 Zq̇ 0
0 0 0 Kṗ 0 0
0 0 Mẇ 0 Mq̇ 0
0 Nv̇ 0 0 0 Nṙ


=

[
A11 A12

A21 A22

]
, CA=

[
03×3 −S(A11ν1+A12ν2)

−S(A11ν1+A12ν2) −S(A21ν1+A22ν2)

]

DNL=−



Xu|u| 0 0 0 0 0
0 Yv|v| 0 0 0 Yr|r|
0 0 Zw|w| 0 Zq|q| 0
0 0 0 Kp|p| 0 0
0 0 Mw|w| 0 Mq|q| 0
0 Nv|v| 0 0 0 Nr|r|


, DL = −



0 0 0 0 0 0
0 Yuv 0 0 0 Yur

0 0 Zuw 0 Zuq 0
0 0 0 0 0 0
0 0 Muw 0 Muq 0
0 Nuv 0 0 0 Nur


To obtain the above hydrodynamic coefficients, the strip theory is utilized for numerical

calculation, where the fluid density is assumed to be 1030 kg/m3, the linear-skin coefficient is assumed
to be 0.4 and the drag coefficient is assumed to be 1. Moreover, some of the obtained coefficients are
adjusted based on comparisons with data of the REMUS AUV according to dynamic similarity [15].
Then, the adjusted hydrodynamic coefficients are shown in Table A1.

Table A1. The list of AUV coefficients.

Added Mass Coefficients

Force Value Units Moment Value Units

Xu̇ −2.33 Kg Kṗ −0.3 Kg·m2/rad
Yv̇ −90.8 Kg Mq̇ −20.3 Kg·m2/rad
Yṙ 4.53 Kg·m Mẇ −4.53 Kg·m
Zẇ −90.8 Kg Nṙ −20.3 Kg·m2/rad
Zq̇ −4.53 Kg·m Nv̇ 4.53 Kg·m

Drag Coefficients

Force Value Units Moment Value Units

Xu|u| −2.96 Kg/m Kp|p| -0.558 Kg·m2/rad2

Yv|v| −2346 Kg/m Mq|q| −807 Kg·m2/rad2

Yr|r| 0.759 Kg·m/rad2 Mw|w| 8.76 Kg
Zw|w| −242 Kg/m Nr|r| −404 Kg·m2/rad2

Zq|q| −0.759 Kg·m/rad2 Nv|v| −8.76 Kg

Lift Coefficients

Force Value Units Moment Value Units

Yuv −56.5 Kg/m Muq −8.9 Kg·m/rad
Yur 11.8 Kg/rad Muw −24.9 Kg
Zuw −56.5 Kg/m Nur −8.9 Kg·m/rad
Zuq −11.8 Kg/rad Nuv 24.9 Kg
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For the AUV, the thruster configuration matrix and its pseudo inverse are given as

Bν =



1 1 0 0 0
0 0 0 0 1
0 0 1 1 0
0 0 0 0 0
0 0 r3 −r4 0
r1 −r2 0 0 r5


, B+

ν =



r2
r1+r2

− r5
r1+r2

0 0 0 1
r1+r2

r1
r1+r2

r5
r1+r2

0 0 0 − 1
r1+r2

0 0 r4
r3+r4

0 1
r3+r4

0
0 0 r3

r3+r4
0 − 1

r3+r4
0

0 1 0 0 0 0


where r1 = 0.18 m, r2 = 0.18 m, r3 = 0.525 m, r4 = 0.245 m, r5 = 0.485 m.
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