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Abstract: Contemporary education is a vast field that is concerned with the performance of education
systems. In a formal e-learning context, student dropout is considered one of the main problems and
has received much attention from the learning analytics research community, which has reported
several approaches to the development of models for the early prediction of at-risk students. However,
maximizing the results obtained by predictions is a considerable challenge. In this work, we
developed a solution using only students’ interactions with the virtual learning environment and
its derivative features for early predict at-risk students in a Brazilian distance technical high school
course that is 103 weeks in duration. To maximize results, we developed an elitist genetic algorithm
based on Darwin’s theory of natural selection for hyperparameter tuning. With the application of the
proposed technique, we predicted the student at risk with an Area Under the Receiver Operating
Characteristic Curve (AUROC) above 0.75 in the initial weeks of a course. The results demonstrate
the viability of applying interaction count and derivative features to generate prediction models
in contexts where access to demographic data is restricted. The application of a genetic algorithm
to the tuning of hyperparameters classifiers can increase their performance in comparison with
other techniques.

Keywords: at-risk students; genetic algorithm; learning analytics; educational data mining

1. Introduction

Learning analytics (LA) approaches have emerged in the context of the increasing use of
digital information and communication technologies in education [1]. LA provides information and
knowledge so that institutions can overcome core challenges with the qualification of their teaching
and learning processes [2,3]. Student dropout is one of the main problems in e-learning that has
received considerable attention from the research community. Early detection of students at risk of
dropout plays an essential role in reducing the problem, enabling targeted actions aimed at specific
situations [4–6].
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According to OECD [7], contemporary education is vast, and there are many concerns about the
performance of education systems. Among the various important challenges faced in education, one of
the most difficult to tackle is the low completion rates observed in many institutions [8], being the final
representation of the high dropout rates and low student performance in courses. These problems are
related to many factors other than teaching methodologies, such as the profile of the students and their
ability to self-manage time [7,9,10].

Dropout rates in e-learning are generally higher compared with face-to-face education [8].
According to the European Commission on Education and Culture, countries like Poland, Sweden,
and Hungary have dropout rates in higher education of 38%, 47%, and 47%, respectively [11]. In Spain,
the dropout rate is 50% at the Spanish National Distance Education University (UNED) [12]. In Brazil,
the enrolment numbers significantly increased in the last few years, but student dropout rates
simultaneously increased. The last census of distance education in Brazil [13] reported dropout
rates of 50% in the distance courses offered by the Ministry of Education.

Studies have established that student success in distance courses is directly correlated with their
engagement inside virtual learning environments (VLEs). Distance learning technology allows tutors
to measure the engagement of students by looking into system logs and evaluating the intensity of
students’ interactions in the different activities available inside virtual classrooms [9,14,15].

In the educational context, access to data is a considerable challenge [16]. The distribution
of institutional and academic data across numerous systems creates challenges for accessing
social-demographic and previous academic data. This occurs typically because VLEs are usually
unprepared for the storage of this kind of data and because several educational institutions apply
different learning modalities, such as face-to-face learning, hybrid learning, and distance learning,
thus requiring a central academic system. Data are usually concentrated in a central academic system
that has no direct connection with the virtual environment. This situation restricts the automated
retrieval of data external to VLE, for example, to use in dashboards for data visualization or in the
generation of predictive models. In many institutions, the access to use this kind of data is restricted
either due to internal policies or data access legislation [16–18].

One of the main advantages of distance learning courses is the large amount of data generated
by interactions between students and the system, which provides new possibilities for studying and
understanding the data. In e-learning courses, the interaction between students and teachers is usually
mediated by a VLE. Thus, VLEs generate a large volume of data that can be consumed by machine
learning models [19]. Machine learning algorithms have been used to build successful classifiers using
diverse student attributes [10]. While these models showed promising results in several settings, these
results are usually attained using attributes that are not immediately transferable to other courses
or platforms.

In machine learning, the parameters are defined by the model generated by the algorithms,
unlike regular programming, where the term parameter is used to refer to the entry of a given
function. The final accuracy of models is directly linked to the quality of the fine-tuning of their
hyperparameters on the algorithm input [20]. Thus, more adjusted hyperparameters result in more
accurate models [21,22]. The control variables of the classifiers are called hyperparameters, which aim
to define relevant issues regarding the model to be trained, such as the number of estimators in a
random forest algorithm or the number of layers hidden in a neural network [21]. In a neural network
context, parameters are adjusted during the training phase using weights. Hyperparameters are
variables set before the training, such as the network topology or learning information [22].

In this context, we previously proposed exploiting students’ interaction counts solely over time
(and other attributes derived from the counts) to predict at-risk students [23–25]. This approach
was tested and produced good results, allowing the early prediction of students at risk of dropout
and achieving overall accuracies varying from 65% to 90% in the first eight weeks of a two-year
distance courses. These studies produced results comparable to those in the literature. For instance,
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Jayaprakash et al. [26] obtained general accuracies varying from 73% to 94% and Manhães et al. [4]
reported accuracies from 62.22% to 67.77%.

Maximizing the results obtained by predictions is a considerable challenge [27], as the different
algorithms commonly present a wide variation in the performance rates that depend on the
combination of several characteristics (e.g., balance among classes, amount of data, input variables,
and others) and algorithm hyperparameters [28]. Evolutionary computation, and especially genetic
algorithms (GAs), are used for optimization problems and tuning classifiers in several areas such as
medicine [20] and emotion recognition [29], producing significant results. Here, we propose the use of
an evolutionary GA to tune the hyperparameters of the classifiers, thereby optimizing the performance
of the models for the early detection of students at risk of dropping out.

This paper is a continuation of these previous works, now aiming to enhance the results
by applying an approach that uses GAs to tune machine learning algorithms’ hyperparameters.
This paper contrasts the results of two methods for hyperparameter optimization applied on models
to detect at-risk students in technical e-learning courses based on the counting of students’ interactions
inside the VLE. The first method for hyperparameter optimization is based on a GA created by the
authors, and the second is the traditional widely used method called grid search [21]. During this
study, we aimed to answer the following research questions:

RQ1. Does the GA approach to hyperparameter optimization outperform traditional techniques?
RQ2. Does the resulting predictive models generated by the use of the GA approach for

hyperparameter optimization perform better than models with default hyperparameters?

The remainder of this paper is organized as follows: Section 2 presents the theoretical background
and related work about the problem of predicting at-risk students and the use of GAs in this context.
Section 3 presents the case study conducted to test the proposed solution, detailing the data gathered,
the methodology, the proposed GA for fine-tuning, and the experiments. Section 4 discusses the results,
and Section 5 concludes the paper and proposes future work.

2. Theoretical Background

This section presents works focused on predicting at-risk students in different scenarios and
the use of hyperparameter techniques to improve results. Several works in the field of learning
analytics and educational data mining deal with the problem of early predicting at-risk students.
The works usually differ according to several aspects, such as (1) the sources of data used to generate
the models for prediction (demographic, VLEs, surveys, exams); (2) the level of education of the
courses (high school, secondary education); (3) the goal of the predictive models (e.g., to predict
performance or evasion); (4) the scope of the prediction focused on an entire program or a specific
course or discipline; (5) the modality of the course (formal or informal, face-to-face, blended, or distance
learning); and (6) whether or not to use tuning techniques for classifiers.

According to Liz-Domínguez et al. [30], data analysis is the set of techniques used to transform
data into information and knowledge, thus revealing correlations and hidden patterns. The data
resulting from this process can be used to create early warning systems to predict future events.
This process mainly aims to support learning and mitigate some of the problems, such as academic
performance, retention, and dropout. The reliability of the predictions by the predictor is one of the
main factors established by Liz-Domínguez et al. [30] and Herodotou et al. [31] for their application on
a large scale.

According to Liz-Domínguez et al. [30], researchers have experimented with methodologies in
different scenarios. However, according to Hilliger et al. [32] and Cechinel et al. [33], in Latin America,
these studies are mainly concentrated in the university context, so more applications in other contexts
are necessary.

González et al. [34] demonstrated that information and communication technologies have a
greater impact on the teaching and education process. González et al. [34], de Pablo González [35]
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demonstrated the significant impact of the use of VLEs by teachers on student learning.
This impact can be maximized using intervention methods based on machine learning, as proposed
by Herodotou et al. [36]. Herodotou et al. [31] demonstrated that the classes where teachers used
predictive methods produced a performance at least 15% higher than the classes without that use.
This improvement was also observed in comparison with classes with the same teachers but from
previous years.

In the educational context, traditional research usually uses data from educational systems and
virtual environments. The research by Zohair [37] proposed only using data from the academic system
(e.g., extracurricular courses, grades, and age) to predict performance in graduate students. Some of
the extracted data were extracurricular courses taken and the respective grades, initial training course,
and descriptive data about the grades and the age of the student. This study demonstrated that for
small groups of students, this is a logical approach that produces good results with few pre-processing
steps and a limited set of data. The author focused on the use of algorithms that perform well with low
amounts of data, such as support vector machines and multilayer perceptrons (MLP), that produce
results with accuracy above 76%.

The search for methods that can be generalized and therefore replicable for other courses
represents a significant portion of the research. Thus, studies such as [38] proposed an architecture
that is not dependent on a single type of datum, working with the flow of clicks that academics make
in a Massive Open Online Course (MOOC). To do so, data are captured from a course and different
prediction models are trained and tested in other courses and environments. The experiments showed
87% accuracy when testing in different courses and 90% when tested in the same course, not varying
significantly according to the environment.

In [39], several techniques for pre-processing data were compared in terms of interactions with the
virtual environment Moodle in risk prediction. Data from the plugin Virtual Programming Laboratory
(VPL) were used for risk prediction in algorithm and programming disciplines in undergraduate
courses. Data such as weekly interaction count, an average of interactions, median, number of
weeks without interactions, standard deviation, and commitment factor are generated based on a
previously proposed technique [25,40]. Data added included the teacher interaction count, social count,
and cognitive count based on a proposed theory Swan [41]. With naturally unbalanced data,
the synthetic minority over-sampling technique (SMOTE) was applied to create balance. Several
datasets were generated with different variables to compare the techniques. The results demonstrated
that the use of only the interaction count as proposed in [24,25] presented results superior to the other
techniques, including their union.

For instance, [5] proposed a students’ dropout prediction system that combines outcomes from
three different algorithms (neural network, support vector machine (SVM), and probabilistic ensemble
simplified fuzzy Adaptive Resonance Theory (ARTMAP—PESFAM)). The authors gathered static
demographic data, like sex and place of residence; academic data, like performance and scholar degree;
and dynamic data, such as the number of interactions in the virtual environment, grades, and even
delivery dates of activities. After applying the algorithms, three distinct approaches to the dropout
prediction were generated: (1) A student is considered a dropout case if at least one method classified
them as such, (2) a student is considered as a dropout if at least two methods indicated the student to
be a dropout and, (3) the student is only presumed as a dropout if all three techniques classified them
as a dropout. The accuracy of the results obtained ranged from 75% to 85%, and the best results were
achieved using the less restrictive approach, the first one, which achieved accuracies up to 85% on the
first section of a given course.

Jayaprakash et al. [26] proposed a warning system focused on student performance to reduce
dropout and retention rates. The system provides the student with updated feedback on their potential
scholarly performance. To do so, the system uses several types of data, such as demographic (sex and
age), student interactions on the VLE, previous academic performance, time passed since the student
entered the university, online time spent on the VLE, and outcomes from the scholastic aptitude
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test (SAT) (verbal and math). Different models of prediction were produced using J48, Bayesian
networks with naive Bayes, SVM with minimal sequential optimization (SMO), and logistic regression,
considering data from 9938 students. These classifiers presented similar results, with the classifier
based on logistic regression producing slightly superior outcomes (94.2% general accuracy and 66.7%
precision for identifying students at dropout risk).

A classifier able to early predict student dropout using students’ interactions inside a VLE was
proposed [42]. They used information such as if the student watched all video tutorials, if the student
ignored some given material or activity, if the student was delayed in following the virtual classes,
and the student performance in the activities. Students were then classified according to three flags:
Green (low dropout risk), yellow (medium dropout risk), and red (high dropout risk). The authors did
not mention the types of machine learning algorithms used but reported performance (TP accuracy)
varying from 40% to 50% to predict dropout students within two weeks in advance.

Genetic algorithms are widely used in data mining and can be implemented as the classifier
or as a result of the optimizer, as proposed in this approach. One of the applications of genetic
algorithms for optimization is a method combining the predictions generated by classifiers. To this end,
Minaei-Bidgoli and Punch [43] proposed the application of machine learning to predicting student
performance in an online physics course at Michigan State University. For this, data derived from
the tasks performed by the students were used. Ten different variables were extracted, including
success rate, success on the first attempt, the number of attempts, the time between task delivery and
deadline, the time involved in solving, and the number of interactions with colleagues and instructors.
A principal component analysis (PCA) method was applied to transform the variables, and three
different sets with two, three, or nine components were generated. After this, the Bayes classifier,
I-nearest neighbor (I-NN), k-nearest neighbor (k-NN), Parzen-window, multilayer perceptron (MLP),
and decision tree classifiers were applied. Then, the predictions obtained by the classifiers were
combined with the genetic algorithm using 200 individuals with 500 generations. The GA proposed by
the author achieved optimization of 10% to 12% depending on the number of components in the input.

Márquez-Vera et al. [6] proposed the evolutionary algorithms Interpretable Classification Rule
Mining Algorithm (ICRM) [27] and ICRM2 [6] based on grammar-based genetic programming (GBGP).
In Márquez-Vera et al. [6], ICRM was used to predict the dropout of high school students in Mexico.
The authors proposed a double-approach prediction on the same algorithm, creating two classification
rules: One for identifying students who tend to complete the course and the other for students who
tend to drop out. The data used included 60 attributes that range from the entrance test to research
data distributed to students. As a comparison method, the algorithm proposed by the author was
compared with five classifiers: Naive Bayes, decision tree, Instance-based lazy learning (IBK), Repeated
Incremental Pruning (JRip), and SVM. Techniques were also used to reduce the dimensionality of
the base. Using the accuracy as an evaluation metric, the results obtained by the proposed algorithm
showed that it can be a valid approach, especially considering the ease of interpretation of the generated
classification rules.

3. Proposed Approach

The proposed approach consists of the use of a GA for the classifier (hyperparameter) optimization
and selection of the fittest, to predict dropout in distance learning courses. Figure 1 shows the proposed
solution. The following machine learning algorithms were selected to test the solution: Classic
decision tree (DT), random forest (RF), multilayer perceptron (MLP), logistic regression (LG), and the
meta-algorithm AdaBoost (ADA). The proposed approach was compared against the grid search
method regarding hyperparameter optimization and the regular solution without hyperparameter
optimization. The proposed approach uses a classification method, where several classifiers with
different hyperparameters, such as DT, RF, MLP, LG, and ADA, compete against each other. In the end,
the classifier and the hyperparameters with the best results are selected by a fitness function.
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Figure 1. Proposed approach.

3.1. Case Study

The case study consisted of the following steps: Data capture, data pre-processing, data
understanding, and modelling, according to the solution proposed in the Figure 1. These steps
occur in parallel, with tests, implementations, and generation of new features for developing models
for the early prediction of at-risk students in a technical distance learning course. The methodology to
generate the models relies on the counting of interactions of the students inside the VLE, with the use
of the proposed solution described in the previous section.

Data related to the student’s interactions were collected from the logs of the institutional Moodle
platform of a given technical distance course of the Instituto Federal Sul Rio-grandense (IFSul) in Brazil.
Table 1 shows the number of logs collected, the number of students enrolled in the course, and the
percentages of dropout and success. The course is taught in 18 different cities throughout the state of
Rio Grande do Sul and involves weekly activities that are posted on the VLE by the teacher. Students
have one week to develop the activities with the help of tutors. The course has a maximum completion
time of 103 weeks, with a total workload of 1215 h divided into disciplines. The maximum duration is
24 months, with three breaks also called vacations, and the student’s final situation is determined by
their performance in the evaluations and their re-enrolment every six months.

The maximum term for completion of the curriculum is four years, and the student may repeat
each discipline only once and, therefore, the year. The student has the option of taking up to two
subjects for the next year and taking them concurrently with the others. For approval, the student must
have a grade of six or higher in each of the disciplines of the curriculum. Students who spend 365 days
without interactions with the virtual environment or do not perform their annual re-enrolment are
considered absent and are removed from the course. Thus, the student receives a grade from 0 to 10 at
the end of a given discipline, and one of two states is associated with the student: Approved or failed.
However, we aimed to predict students who drop out during the course. For this, the student will
be considered dropped out if they leave, do not perform the activities during the course, and their
enrolment in the following semester.

Table 1. Dataset summary.

Number of Log Rows Number of Students Dropouts (%) Success (%)

1,051,012 752 354 (47%) 398 (53%)

The choice to only use data from the counting of interactions was motivated by previous research
that achieved satisfactory results using the same approach [23,25]. This choice was also related to
limitations on capturing other kinds of data for the present study. In previous works, we sought to
create models that are easy to generalize so that they could be applied to other courses. To accomplish
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that, we used four courses, where the model created by one was applied to the others, and the models
generated with data from three courses were applied to the remaining one. In these experiments,
the labeling of the type of interaction was tested and did not show significant results. When testing
the models generated with data from one course on data from other courses, this type of labeling
negatively impacted the results.

Studies such as Macarini et al. [39] tested the application of different types of interactions
and derived data, with their labeling showing no significant differences in performance. Thus,
we applied the methodology that presented the best previous results to model other courses in the
same educational context, even if the model is derived from data from one course only.

The courses studied here are offered in several cities throughout the interior of Brazil and present
a large demographic diversity. Nowadays, the collection of demographic data is a task manually
performed by eighteen different teaching centers through a printed questionnaire that is sent to IFSul
after completion. This process generates a series of problems, such as lack of data, reading and typing
problems, and consequently low diversity and inconsistencies. These factors led to the lack of reliability
in these data and their consequent non-use.

Data capture consisted of collecting raw data from student interactions with Moodle VLE. The data
initially had the format presented in Table 2. After selection, data were validated. This stage consisted
of comparing the student situation data in the VLE to the data on the institutional academic system.
Both systems are independent and have no integration. Cases of inconsistency were handled manually
by checking other types of internal control.

Table 2. Information contained in the log files.

Column Comment

Course Name of the virtual classroom accessed

Time Day and time of the access

IP Address IP Address of the machine

Full name User (student) name

Action
Event Name

The action represents the type of interaction that the
student performed in the classroom. For instance:

(1) Visualization and participation on chats;
(2) Visualization and inclusion of posts in forums;
(3) Visualization of resources; and
(4) Visualization of the course.

Description Detailed description of the event. Example: Download the .pdf file.

The course format analyzed in this project consists of 103 weeks divided over two years. As stated
by [5], early identification of a risk situation is a fundamental criterion for its reversal. Thus, for this
work, we chose to use the methodology based on [4], which consists of the application of data mining
on the data of the first subjects of the course. Using this process, we chose to use data from the 50 weeks
that compose the first year of the course. Every two weeks starting from the fourth, a prediction model
was generated, so the approaches used in this work created 23 models in the period.

After validation, data were anonymized and preprocessed, and variables were generated (features
extraction). Table 3 describes the variables extracted to be used as the input for training and testing
the predictive models. The table shows that all variables were based on the counting of students’
interactions inside the VLE. Figure 2 exemplifies the behavior of the Weekly interactions variable for
some weeks of the course and according to the Student Final Status category.

Exploratory data analysis (EDA) seeks to visualize dataset information to better understand the
student’s behavior when using the VLE. Table 4 shows how dropout rates evolved after every 10 weeks
of the course until week 50. The table also shows the dropout rates for the first and second year of
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the course after week 50. We considered a student as dropped out after a period of six weeks without
interactions with the VLE. The idea here was to pinpoint the period where the departure occurs.

The evasion rates between the two years of the course are practically the same (182 dropouts for
year 1 and 172 dropouts for year 2). However, if we look proportionally at the number of students
enrolled at the beginning of each year, the dropout rate is slightly higher in the second year, with 30.06%
compared with 24.20% in the first year. These values differ from the average dropout rates known from
higher institutions in Brazil [44] as well as from secondary and technical schools [45]. Unfortunately,
there are no national data related to the distance learning modality to enable a more precise comparison.

A total of 86.81% of the course dropouts of the first year are concentrated in the first 20 weeks
(152 dropouts of the1 82 in the first year). This shows a tendency of the students to leave at the very
beginning of the course, which could be related to difficulties faced in the initial studies. This tendency
is also reported in the literature in relation to face-to-face courses where difficulties in the beginning of
the course are reported as the most critical factor leading students to drop out.

Figure 2 presents the bi-weekly total count, the means, and the standard deviations of the students’
interactions. In the figure, students identified as dropped out in a given week are not counted in the
following weeks. As shown in the figure, dropout students present a higher number of interactions
than successful students until week 13. One possible explanation for this behavior is that those students
are experiencing difficulties during their learning process, so they interact more with the VLE to obtain
assistance. The total count of interactions per group is lower for the dropout group (considering the
whole period). Figure 3 presents a boxplot of the counting of interactions for each group of students,
which highlights the differences in these groups regarding the use of the VLE.

Figure 2. Interactions every two weeks.
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Figure 3. Boxplot success X dropout.

Table 3. Features extracted to be used as input for the models.

Variable Description

Daily interactions Count of interactions of a given day (from 1 to 350 days)
Weekly interactions Count of interactions of a given week (from 1 to 50 weeks)
Mean of the week Average of the count of interactions of a given week
Standard deviation of the week Standard deviation of the count of interactions of a given week

Student final status Dependent variable representing the student final status: Dropout or success

Table 4. Evolution of dropout during the course.

Year Period Number of Students
in Course

Number of Dropout
Students (NDS)

NDS
Rate

Accumulated
NDS

Accmulated
NDS Rate

Year 1

Week 10 752 87 11.56 87 11.56
Week 20 665 71 10.67 158 21.01
Week 30 594 21 3.5 179 23.27
Week 40 573 1 0.17 180 23.4
Week 50 572 2 0.34 182 24.20

Total of First
50 Weeks 752 182 24.20 182 24.20

Year 2
Total after
50 Weeks 572 172 22.87 354 47.07

Final
Values Total 752 354 47.07 354 47.07

In Figure 4, the central diagonal presents the density plots of the Weekly Interactions variable for
weeks 1, 10, 20, 30, and 40. The two groups of students (dropout and success) initially presented similar
behavior at the beginning of the course (weeks 1 and 10), and gradually started to differ after week 20
when the number of weekly interactions of the successful students was slightly higher. The scatterplots
help to better visualize the behavior of the interactions and their comparison between the weeks.
The scatter plots demonstrate that there is no direct positive correlation between weeks. Students who
were successful in the course tended to have more interactions, similar to that observed in Figure 2.
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Figure 4. Density and scatter plots of weekly interactions.

3.2. Fine Tuning with Proposed Genetic Algorithm

In the GA, the solution set is defined by a space where a search for an optimal solution occurs,
which may not be the global best solution [46]. This factor is directly dependent on the problem,
the time that can be spent searching, the expected result, and the input dataset, among others.
These should be considered when the algorithm is designed [47]. In this work, a time-limited search
approach is proposed, so the algorithm creates a number N of generations, where N is predefined at
the time of configuration. In the end, the algorithm returns a solution with the setting that produced
the best performance according to the predefined metric [48]. In this case, a learning machine model
together with its hyperparameters were optimized for the prediction of students at risk in technical
distance courses. As previously mentioned, this solution can be global or local. The steps of this
process are presented in Figure 5.

The proposed approach is executed according to the general steps of classical GA solutions,
which are: (1) Generate population, (2) fitness function, (3) selection, (4) crossover, and (5) mutation.
For the context of our solution, the following definitions are provided:

(a) Epoch: One complete cycle execution of the GA (from Steps 1 to 5). The proposed approach works
with 50 epochs;

(b) Individual (or candidate): A machine learning algorithm/classifier (DT, RF, MLP, LG, and ADA)
together with its hyperparameters;

(c) Chromosome: A vector of hyperparameters for a given individual (machine learning algorithm).
As different machine learning algorithms have different hyperparameters, the chromosomes in
our study have different sizes and meaning according to the machine learning algorithm to which
they are referring.
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Figure 5. Genetic algorithm flow: An example of crossover and mutation with a multilayer perceptrons
(MLP) chromosome.

Here, we outline each step of the process in the context of our proposed approach:

• Step 1 (generate population): The GA generates 100 individuals (candidates) for each machine
learning algorithm (DT, RF, MLP, LG, and ADA) with hyperparameters (chromosomes) randomly
defined considering the available list of options. The classifiers are trained and tested using
10-fold cross-validation and their performances are measured by using the area under the receiver
operating characteristic curve metric (AUROC) [49] and as conducted by Gašević et al. [50].

• Step 2 (fitness function): The performance obtained by each of the 100 individuals of each machine
learning algorithm are then compared by the fitness function.

• Step 3 (selection): The 25 individuals with the highest AUC for each machine learning algorithm
are selected for the next step.

• Step 4 (crossover): The crossover is conducte using the concept based on the genetic inheritance
of sexual reproductions, where each descendant receives a part of the genetic code (chromosome)
of the father and part of the mother, as exemplified in Figure 5. Thus, the configurations of the
fittest individuals of the last step are combined, one being the father and the other the mother.
In the implemented algorithm, the individuals who will assign part of their genetic code to form
a new member are chosen randomly from among the 25 best placed of that classifier in the last
generation. This step results in 25 new individuals for each machine learning algorithm.

• Step 5 (mutation): This step randomly alters the chromosome (hyperparameter) of the 25 best
individuals. In other words, a certain characteristic of an individual selected in the previous step
receives a randomly generated configuration. As shown in Figure 5, an individual of the MLP
type with hyperparameter “Active” set to “RELU” was changed to “TAHN”. The mutation is set
to change only one hyperparameter of the chromosome.

After Step 5, if the GA did not run the predefined number of epochs (50 for our experiment),
a new population is generated in Step 1. The last important factor in generating a new population is
randomness. For each generation, 25 new individuals are randomly generated again, even though
they may have already been generated in earlier epochs. This seeks to ensure population diversity by
narrowing the hypothesis that the solution reaches a local maximum and has no opportunity to evolve
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to the global maximum. The quantitative formation of the population from the second epoch onwards
for each machine learning algorithm is:

• 25 individuals selected from the previous generation from the fitness function (Steps 2 and 3);
• 25 individuals formed by crossover (Step 4);
• 25 individuals formed by mutations (Step 5); and
• 25 new individuals randomly generated (Step 1).

The process is repeated for 50 epochs. In the end, for each of the five machine learning algorithms,
the individual with the highest aptitude (highest AUC) is selected. With the selection of the fittest for
each machine learning algorithm, the five remaining individuals compete against themselves, and the
one with the best AUC is selected.

3.3. Experiments

This section outlines the experiments with three different approaches to predict students at risk of
dropout in the database described earlier. The first is the proposed genetic algorithm, the second is
a grid search method called GridSearchCV, implemented using the Scikit-learn package. The third
and last is the use of classifiers with their default hyperparameters. The machine learning techniques
implemented in this study used the Python programming language with the Scikit-learn, Pandas,
and Numpy libraries.

GridsearchCV allowed the testing of different combinations of hyperparameters for classifiers,
facilitating choosing the best one. The hyperparameters needed to be explicitly declared and all
possible combinations tested. All available combinations in Table 3 were checked with the same
algorithms defined in the GA (DT, RF, MLP, LG, and ADA). For each week of the course, we selected
the classifier together with its hyperparameters that achieved the best performance for the given week.

The same machine learning algorithms with their default hyperparameters were also implemented
for comparison with the GA and GridsearchCV approaches. All experiments were performed with
10-fold cross-validation, and the number of combinations was approximately 5000 individuals created
by the GA. Appendix A shows the quantities tested in each of the classifiers in the Evaluations column.

An essential task in machine learning is choosing the performance appraisal metric. For this
work, we decided to use the area under the ROC curve, also known as AUC and AUROC. AUC is
calculated from the size of the area under the plotted curve where the y-axis is represented by true
positive rate (TPR) or sensitivity (Equation (1)), and the x-axis is true negative rate (TNR) or specificity
(Equation (2)):

Sensitivity =
TP

TP + FN
(1)

Speci f icity =
TN

TN + FP
(2)

According to Gašević et al. [50], the AUC may be interpreted as follows:

• AUC ≤ 0.50: Bad discrimination;
• 0.50 < AUC ≤ 0.70: Acceptable discrimination;
• 0.70 < AUC ≤ 0.90: Excellent discrimination; and
• AUC > 0.90: Outstanding discrimination.

4. Results and Discussion

This section presents the results obtained by the models generated by each of the selected
algorithms compared with the application of the GA. Table 5 presents the AUC results for each tested
machine learning algorithm without hyperparameter optimization and for the grid search (GRID) and
GA approaches.
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Table 5. AUC for 50 weeks.

Approach or
Machine Learning

Algorithm

Hyperparameter
Optimization AUC Mean AUC Median AUC Standard Deviation

GA Yes 0.8454 0.8498 0,0637

GRID 0.7939 0.8288 0.1056

ADA

No

0.7509 0.8062 0.1342

DT 0.6771 0.7065 0.1008

LG 0.6943 0.7198 0.1110

MLP 0.7353 0.7946 0.1277

RF 0.7752 0.8243 0.1150

As can be seen from Table 5, the best AUC results were produced by the GA approach with a
mean of 0.8454 and median of 0.8498. GA also produced the lowest AUC standard deviation (0.0637)
among all tested approaches. Figure 6 helps visualize the performance of the models for the 50 weeks
of the course.

To confirm the research hypothesis in this work (RQ1 and RQ2), two tests of statistical significance
were applied. The objective of the tests was to verify if there was a significant difference in the
treatments applied and, if so, which method was the most accurate. The central idea involved in
the process of statistical significance is to test whether one treatment, in this study GA, presents a
significant result concerning the others [51].

The results had a normal distribution, so analysis of variance (ANOVA) was chosen to verify
the existence of a significant difference, and Tukey’s test to determine in which treatment it occurred.
For this, the p-value was set to 0.05; thus, values lower than this indicated that the treatment was
significant and higher than not significant. In ANOVA, the p-value was 0.0006865, which reflects the
existence of significant differences between the approaches. In Tukey’s test, the results produced a
p-value of 0.0475 for the GridSearch and 0.0003 for standard RF, indicating a statistically significant
difference between the performance. Thus, statistically, the results obtained by GA were superior to
the other treatments.

Figure 6. AUC results for each tested technique during the 50 weeks of the course.

The results obtained from the three approaches are presented in Figure 6. The GA achieved
excellent discrimination (AUC > 0.7) as early as week 4. This held until week 24, where the GA
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provides outstanding discrimination (AUC > 0.9). The other approaches still yielded acceptable
discrimination results (AUC < 0.7) until week 22. However, from week 30, the performance of the
GA considerably decreased, with the other approaches progressing. One of the factors determining
this drop in GA performance was the increase in the number of input attributes. In this situation,
the GA tends to find a local solution quickly and converge on it. However, this solution is probably
a plateau and the GA getting stuck. This is a problem specific to genetic algorithms that does not
occur in the other approaches tested. In the proposed algorithm, the reinsertion step tries to soften this,
but as verified from weeks 32 to 42, the GA is still susceptible to this failure. However, the GA was
considerably better in early prediction and with limited data. This demonstrates that the refinement of
the GA is essential for tuning hyperparameters.

Table 6 presents the best configuration obtained by the GA approach for week 25 of the course
(individual 37, fourth epoch), with an MLP with an AUC of 91.54, in comparison with the configuration
for the same algorithm without hyperparameter optimization. From the first weeks of the courses,
satisfactory results were already produced in the prediction of students at risk of dropout.

In general, the results of the models generated by GA per the AUC were satisfactory, allowing
the prediction of at-risk students in the early stages of the courses. Data were naturally balanced,
with similar percentages of dropout and success students. The models developed here produced
similar or better results in comparison to some of the works in the literature that focused on the early
prediction of dropout students.

Table 6. Comparison between configurations of models for week 25.

Hyperparameter
Optimization

Hidden Layer
Sizes Activation Solver Alpha max

Iter
Warm
Start AUC

yes 30 logistic sgd 0.2855486101 353 False 0.9154
no 100 relu adam 0.0001 200 False 0.849

According to [31,52], one of the main factors involved in the acceptance of learning analytics
by teachers and students when using prediction models is the correctness rates involved in the
process. The GA proposed in this work was able to increase these rates compared to the results
obtained in previous works [23,24]. However, direct comparison with these experiments is somewhat
complicated, as they used the true positive (TP) and true negative (TN) of the models as metrics,
and we used AUCROC.

In these previous experiments, the results obtained in scenarios similar to this experiment
showed rates of TP and TN varying between 58 and 82 in the first 25 weeks of the course. However,
with the approach proposed in this work, it was possible to reach an initial AUCROC above 0.75,
which increased over the first 25 weeks until reaching values above 0.90.

The comparison with prominent works of predictors of educational environments is necessary
to situate the results obtained. Some limitations for comparison include the various techniques used
to measure the results, such as accuracy, TP, TN, AUC, and AUCROC, among others [32] Cechinel
et al. [33] Liz-Domínguez et al. [30]. Still, a significant part of the works on LA are characterized
by the exploration of data from disciplines of a specific course or semester, whereas the work
presented in this paper is characterized by the use of data from a course of two years in duration [32].
However, even when we compare the results obtained with the related works, the rates are satisfactory.
Previous studies Lykourentzou et al. [5], Zohair [37], Whitehill et al. [38] reported rates of 85% and
Jayaprakash et al. [26] reported 94% overall accuracy, but only 66.7% dropout prediction.

The results obtained in the optimization with the proposed GA are close to those of the literature
Minaei-Bidgoli and Punch [43], which obtained an optimization of 12%. The proposed GA was able to
reach values above 10% in the experiments until the 20th week compared to the algorithms in their
standard configuration. When compared to the other optimization method, Gridsearch, in that same
period, GA obtained values always above 6%, sometimes reaching 15%.
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The method followed here is the result of an incremental process of a series of experiments
previously performed [23,24]. As such, when comparing the results achieved in this work with the
results from previous actions, the hyperparameters generated by the GA allows the generation of
more robust models and higher performance. This is also demonstrated in comparison to the other
methods tested in this article. Thus, the methodology used both for the development of the GA and
for the generation of input data from genetic algorithms demonstrated that it could be used for early
prediction of students at risk of dropout. Concerning data modeling, although the use of interaction
count is not unprecedented, the methodology used in this study has several attributes that produced
the results.

5. Final Remarks

This paper presented the results of an approach for the early prediction of students at risk of
dropout using the counting of their interactions inside the VLE. This approach uses genetic algorithms
for the hyperparameter of classifiers. The methodology of generating a prediction model every two
weeks allows every student to be followed throughout the course. This is an approach that differs from
the traditional methods [6] that define models that seek to predict dropout using all available data at
the end of the course. This difference and, consequently, the results obtained with smaller amounts of
data contribute to the early prediction of the risk of dropout.

The proposed approach is based on the premise of allowing greater generalization when
replicating the methodology in other courses and platforms, since it only uses the count of interactions
within the VLE without distinguishing the types of actions performed and without using information
from different data sources (demographic data, questionnaires, curriculum, etc.), the availability of
which may vary between e-learning platforms. The results can be considered satisfactory since they
allow the identification of students at risk of dropout with reasonable performance rates even before
the end of the first semester of the course.

The prediction of academic issues, such as performance and dropout, is concentrated at the
university level, with about 70% of the research destined for this purpose [10]. This trend is repeated
in Latin America, with few applications considering the context of education at the secondary and
technical levels [33]. While not unprecedented, the application of prediction techniques in other
contexts, such as technical high school e-learning, is also relevant [10].

RQ1. Does the approach for hyperparameter optimization with a GA outperform traditional
techniques?

The proposed GA must be evaluated to emphasize that testing different combinations of
hyperparameters within the same algorithm is a complicated and time-consuming task that may require
a large amount of processing time. However, the accuracy of prediction models is directly linked to the
quality of hyperparameter optimization. Thus, the more adjusted they are, the more accurate the rates
of the models tend to be. The alternatives to applying exhaustive search methods, such as grid-search,
are computationally expensive when searching in large spaces [53]. Thus, the refinement obtained by
GA with its mutation and crossover stages produces better results for model generation, surpassing
the traditional techniques and grid-search. Compared to standard algorithms, the performance of the
proposed method is clearly superior.

RQ2. Does the resulting predictive models generated by the use of the GA approach for
hyperparameter optimization perform better than models with default hyperparameters?

In comparison with the classifications using the default hyperparameters, the GA produced
significantly better results. In the first 20 weeks of the course, the difference between the two methods
varies from 10% and 15%. Tukey’s test demonstrated that the overall values obtained are significantly
different. However, all techniques have advantages and limitations. The drawback of the GA is
the lack of assurance that the solution is global; the positive aspect is the number of resultant
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hyperparameters accepted without significantly altering the processing cost and the final results.
In grid-search, the computational cost is the biggest issue, as previously reported; however, it delivers
the best possible combination of hyperparameters. Concerning the standard classifiers, we highlight
the cost–benefit factor as the method produces satisfactory results in short processing time, which,
depending on the project, can be an essential point.

The main limitation of the proposed methodology presents is that for each course analyzed,
the calendar must be studied to identify periods without classes, such as holidays. This causes extra
work, which does not occur when socio-demographic data are used. Another limitation concerns
generalization; although the methodology may be generalized, the models are unlikely to be suitable
for courses that do not follow the same timetable as ETec. Models that seek long-term predictions are
more susceptible to failures due to external situations, such as economic and epidemiological crises.

An important point to note is that the GA possibly presents slightly different results for each
execution. Thus, it may be interesting to run the GA multiple times (e.g., 10). Analysis of other
metrics, such as overall accuracy and true positive (TP) and true negative (TN), may provide different
perspectives. The application of other hyperparameter search methods, such as random search,
and algorithms, such as XGBOOST, can still be explored. These questions will possibly be studied in
the future stages of this project, as well as hybrid choice methods such as the vote theory, for final
classification selection.

The results obtained in this work enable the development of an early warning system using the
proposed approach. Currently, the development of this system is occurring in the form of a plugin
integrated with Moodle. Another future work toward improving the results is the application of
survival analysis to increase student retention and consequently reduce dropout.
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Abbreviations

The following abbreviations are used in this manuscript:
ADA ADABoost
ANOVA Analysis of Variance
AUC Area Under the Curve
AUROC Area Under the Receiver Operating Characteristic Curve
DT Decision Tree
EDA Exploratory Data Analysis
EDM Educational Data Mining
GA Genetic Algorithm
GBGP Grammar-Based Genetic Programming
GRID Grid SearchCV
IBK Instance-Based Lazy Learning
ICRM Interpretable Classification Rule Mining Algorithm
IFSul Instituto Federal Sul Rio-grandense
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INN I-nearest neighbor
kNN k-Nearest Neighbor
LA Learning Analytics
LG Logistic Regression
LMS Learning Management Systems
ML Machine Learning
MAE Mean Absolute Error
MLP Multilayer Perceptron
NDS Number of Dropout Students
PCA Principal Component Analysis
RQ Research Question
RF Random Forest
SAT Scholastic Aptitude Test
SMOTE Synthetic Minority Over-Sampling Technique
SVM Support Vector Machine
TNR True Negative Rate
TPR True Positive Rate
VLE Virtual Learning Environment

Appendix A

Table A1. Classifiers, Hyperparameters and Number of Evaluations.

Alg. Hyperparameters Possibi-Lities Number of Ind. Grid Eval.

DT

criterion: [gini, entropy],
max_depth: range (0, 32),
min_samples_split: range (1, 15),
min_samples_leaf: range (1, 20)

19.200 5.100

criterion: [gini,entropy],
max_depth: [0, 1, 2, 3, 5, 7,
10, 12, 15, 17, 20, 23, 25, 30],
min_samples_split: [0, 1, 2, 3,
5, 7, 10, 12, 15]
min_samples_leaf: [0, 1, 2, 3, 4,
5, 7, 9, 10, 12, 15, 17, 20]

3.726

RF

n_estimators: range (1,200),
criterion: [gini, entropy],
max_features [1, 2, 3,4],
min_samples_split: range (2, 21),
min_samples_leaf: range (1, 2),
bootstrap: [True, False]

128.000 5.100

n_estimators: [1, 10, 20, 30, 40,
50, 70, 100, 120, 130, 150,
170, 190, 200],
criterion: [gini, entropy],
max_features [1, 2, 3, 4],
min_samples_split: [2, 3, 4, 5,
7, 9, 10, 12, 15, 17, 20],
min_samples_leaf: [1, 2],
bootstrap: [True, False]

4.928

ADA

algorithm: [SAMME,
SAMME.R], n_estimators:
range (1, 200), random_state:
range (None, 50), learning_rate:
range (1e-2,1)

2 KK 5.100

algorithm: [SAMME, SAMME.R],
n_estimators: [1, 10, 20, 30, 40, 50,
70, 100, 120, 130, 150, 170, 190,
200], random_state: [None, 1, 5,
10, 15, 20, 25, 30, 40, 50 ],
learning_rate: [1e-2, 5e-2, 7e-2,
1e-1, 3e-1, 5e-1, 7e-1, 1]

2.240

MLP

hidden_layer_sizes: range (1,200),
activation: [identity, logistic,
tanh, relu], solver: [lbfgs, sgd,
adam], max_iter: range (50, 200),
alpha: range (1e-4, 1e-1],
warm_start: [True, False]

720 KK 5.100

hidden_layer_sizes: [(50,50,50),
(50,100,50), (100,), (50,), (10,),
(1), (5)], activation: [identity,
logistic, tanh, relu], solver:
[lbfgs, sgd, adam], max_iter: [1,
2, 5, 10, 30, 50], alpha: [1e-4,
1e-3, 1e-2, 5e-2, 1e-1],
warm_start: [True, False]

5.040

RL

penalty: [l1, l2, elasticnet],
C: [1e-4, 1e-3, 1e-2, 1e-1, 5e-1,
1, 5, 10, 15, 20, 25],
dual: [True, False],
solver: [newton-cg, lbfgs, lbfgs,
sag, saga], multi_class: [ovr,
auto], max_iter: range (50,200)

99.000 5.100

penalty: [l1, l2, elasticnet],
C: [1e-4, 1e-1, 5e-1, 1, 5, 15, 25],
dual: [True, False], solver:
[newton-cg, lbfgs, lbfgs, sag, saga],
multi_class: [ovr, auto], max_iter:
[1, 10, 20, 30, 40, 50, 70, 100, 120,
130, 150, 170, 190, 200]

5.800
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