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Abstract: Walnuts have been widely investigated because of their chemical composition, which is
particularly rich in unsaturated fatty acids, responsible for different benefits in the human body.
Some of these fruits, depending on the harvesting area, are considered a high value-added food, thus
resulting in a higher selling price. In Italy, walnuts are harvested throughout the national territory,
but the fruits produced in the Sorrento area (South Italy) are commercially valuable for their peculiar
organoleptic characteristics. The aim of the present study is to develop a non-destructive and shelf-life
compatible method, capable of discriminating common walnuts from those harvested in Sorrento (a
town in Southern Italy), considered a high quality product. Two-hundred-and-twenty-seven walnuts
(105 from Sorrento and 132 grown in other areas) were analyzed by near-infrared spectroscopy (both
whole or shelled), and classified by Partial Least Squares-Discriminant Analysis (PLS-DA). Eventually,
two multi-block approaches have been exploited in order to combine the spectral information collected
on the shell and on the kernel. One of these latter strategies provided the best results (98.3% of correct
classification rate in external validation, corresponding to 1 misclassified object over 60). The present
study suggests the proposed strategy is a suitable solution for the discrimination of Sorrento walnuts.

Keywords: Walnuts; Classification; Traceability; Near Infrared Spectroscopy; Partial Least
Squares-Discriminant Analysis; PLS-DA; Multi-Block; Data Fusion; Sequential and Orthogonalized
Partial Least Squares Linear Discriminant Analysis (SO-PLS-LDA); Sequential and Orthogonalized
Covariance Selection Linear Discriminant Analysis (SO-CovSel-LDA)

1. Introduction

Walnut is the fruit of the Juglans regia L. tree. It is an economically interesting arboreal species,
appreciated for its wood and edible fruits, which grows in temperate climate areas. Its seed is an
important source of phospholipids, tocopherol, proteins, and mono- and polyunsaturated fatty acids.
Overall, it is a noticeable source for some microelements, such as iron, copper, selenium, and zinc. In
addition, as it has been observed that their consumption is capable to reduce the incidence of coronary
diseases, walnuts have been deeply studied in the last few years [1]. In Italy, walnuts are harvested
throughout the national territory; nevertheless, the fruits produced in the Sorrento area (South Italy)
are commercially valuable for their peculiar organoleptic characteristics, confirmed by genetic criteria
established by Foroni et al. [2]. From this reason arises the necessity of characterizing Sorrento walnuts,
in order to discriminate it from common fruits (having lower market value), preventing possible
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commercial frauds (e.g., counterfeits). In general, many analytical techniques have been exploited
in walnut analysis: chromatographic approaches have been involved in studies on polyphenolic
fraction [3,4], to quantify bioactive compounds [5], or lipids [6]; moreover, thermogravimetric analysis
coupled with gas chromatography/mass spectroscopy (GC/MS) has been used to study the thermal
behavior of walnut shell [7], while Inductively Coupled Plasma Optical Emission Spectroscopy
(ICP-OES) was exploited to study the mineral composition of walnuts and walnut oils [8]. In some
works, also Simple Sequence Repeats (SSRs) is used to study different walnuts [1,9], while Ercisli et
al. used image processing to distinguish different cultivars on the basis of dimensional, gravimetric,
and morphological features of the fruits [10]. Eventually, Sinesio and Moneta discriminated walnuts
varieties on the basis of morphological and organoleptic characteristics [11].

Near-infrared spectroscopy (NIRS) presents several advantages: if coupled with an integrating
sphere, it allows carrying out analysis on raw samples, without any physical pre-treatment, resulting
in a fast, green, relatively cheap, noninvasive, and automatable technique. Moreover, it is possible
to analyze samples before selling them, in a time range compatible with their shelf-life and avoiding
any loss of product. For this reason, NIRS was elected as the tool of choice to address the Sorrento
walnut authentication problem. There are many examples in literature about the use of NIRS coupled
with chemometric classification tools in food-related authentication issues; for instance, on dried
foodstuff (cereal, fruits, and nuts) such as rice [12,13], tea [14,15], macadamia [16], hazelnuts [17],
almonds [18,19], and several others [20] can be found. NIR (coupled with linear discriminant analysis)
has been used for varietal discrimination on Portuguese walnuts, providing indication of the feasibility
of this approach [21]. Under this perspective, NIRS has been paired with two different classification
strategies, with the aim of distinguishing Sorrento from non-Sorrento walnuts. In particular, it has been
coupled with Partial Least Squares-Discriminant Analysis (PLS-DA), which has been applied on data
collected on the shell and on spectra of the kernels. This classifier is one of the most used in different
fields [22–25], and it has been chosen because it had performed well in similar situations [26–29], and it
is therefore a common choice in this context. Eventually, in order to investigate whether a simultaneous
analysis of both sets of spectra could improve predictions, two multi-block strategies have been tested.
In particular, Sequential and Orthogonalized Partial Least Squares Linear Discriminant Analysis
(SO-PLS-LDA) [30] and Sequential and Orthogonalized Covariance Selection Linear Discriminant
Analysis (SO-CovSel-LDA) [31] have been exploited, handling together both data blocks. These
methods have been pursued because it is acclaimed that, when possible, data fusion provides more
accurate results than individual models, and because the same strategies have been already applied
with the same aim providing successfully results [32–35].

2. Materials and Methods

2.1. Samples and Dataset

Two-hundred-and-thirty-seven (237) walnut samples, belonging to different varieties, were
gathered from different areas, as shown in Table 1.

Table 1. Provenance of the examined walnuts samples.

Type Number of Samples Class

California 32 Non-Sorrento
Italy (no Sorrento) 87 Non-Sorrento

Moldavia 13 Non-Sorrento
Sorrento 105 Sorrento

For each sample, NIR spectra were collected on the nutshell (two replicates, one per side) and
on the kernel (two replicates, one per side), for a total of 4 spectra collected on each walnut. This
procedure led to a total of 948 (237 × 4) NIR spectra. These measurements were organized into two
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data matrices, the first one (X1 -of dimensions 237 × 3112-), containing all the spectra collected on the
shell (averaged over the two replicates) and the second one (X2 -of dimensions 237 × 3112-), made of
the spectra collected on the kernel (averaged over the two replicates).

NIR spectra were collected by the OMNIC software (Thermo Scientific Inc., Madison, WI), and
imported in MATLAB 2015b (The Mathworks, Natick, MA) for calculations. Prior to the creation of
classification models, spectra were divided into training and test sets by using the Duplex algorithm [36]
to pursue external validation of the models. In order to divide samples into subsets taking into account
the variability of both X1 and X2, the procedure described in [37] was applied. Eventually, the training
set included 177 samples (77 samples belonging to the “Sorrento class” and 100 to “non-Sorrento class”),
while the test set comprehended 60 objects (28 Sorrento walnuts and 32 non-Sorrento); obviously, the
same division was used for both X1 and X2.

2.2. Chemometric Tools

2.2.1. Partial Least Squares Discriminant Analysis (PLS-DA)

Partial Least Squares Discriminant Analysis (PLS-DA) [38,39] is a widely applied tool in the
context of discriminant classification. One of its major benefits is that it allows handling ill-conditioned
data matrices (a condition often encountered working with spectral data) [40]. This approach, despite
being a classifier, starts from the resolution of a regression problem defined between a predictor data
matrix X and a dummy response y [41]. The dummy y has a key role in the application of the PLS-DA
algorithm; in fact, it encodes class information through binary ciphering, and it allows solving the
classification problem by estimating the regression equation represented by Equation (1):

y = Xb (1)

The solution is achieved by Partial Least Squares (PLS) [42,43]. In Equation (1), b represents the
regression coefficients.

When the investigated problem involves only two classes (as in the present work), y is a binary
vector whose elements represent whether the corresponding sample belongs to one class (y = 1) or to
the other (y = 0). For example, in a two-category case, for six samples equally distributed between the
two classes (the first three objects belonging to the first class and the remaining ones to the second
category), the y dummy would be y = [ 1 1 1 0 0 0]T. Once the calibration model is built on the training
samples (i.e., a set of objects whose class-membership is known), it is possible to classify unknown
samples (Xnew) and estimate the predicted ŷnew. Nevertheless, ŷnew will be made of real numbers, and,
consequently, the class-membership cannot be directly deduced. Different classification rules have
been proposed to face this issue (see, e.g., in [44–47]; in the present work, the solution suggested by
Indahl and collaborators, i.e., to apply linear discriminant analysis on the predicted response, has been
applied [46].

In the present work, PLS-DA has been (separately) applied on spectra collected on the shell (X1)
and on the kernel (X2).

2.2.2. Sequential and Orthogonalized Partial Least Squares Linear Discriminant Analysis
(SO-PLS-LDA)

Sequential and Orthogonalized-PLS is a multi-block regression approach developed to handle
data matrices removing redundant information possibly present [48]. For two predictor blocks (X1 and
X2) and a response matrix y, the algorithm can be ensemble in four steps:

1. X1 is used to estimate y by PLS. Scores Tx1 and y-residuals e are calculated.
2. X2 is orthogonalized with respect to Tx1, obtaining X2orth

3. X2,orth is used to estimate e by PLS.
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4. The equation y = X1b + X2c + f is solved (b and c being the regression coefficients and f the
residuals).

Sequential and Orthogonalized Partial Least Squares Linear Discriminant Analysis leans on
SO-PLS, exploiting it for features reduction. In fact, in order to apply SO-PLS-LDA analysis [30] it is
sufficient to create the SO-PLS model, and then applying LDA on the predicted y or on the concatenated
scores. For more details on SO-PLS-LDA the reader is referred to the works in [30,49]. Calculations
were made using in-house written functions running under Matlab, which are freely downloadable
at [50].

In the present work, SO-PLS-LDA has been used to distinguish Sorrento and Non-Sorrento
walnuts, simultaneously handling data collected on the shell (X1) and on the kernel (X2).

2.2.3. Sequential and Orthogonalized Covariance Selection Linear Discriminant Analysis
(SO-CovSel-LDA)

Sequential and Orthogonalized Covariance Selection Linear Discriminant Analysis [31] is a
multi-block classifier based on the combination of the regression approach called SO-CovSel and
LDA. The algorithm of SO-CovSel is similar to the one for SO-PLS; the main difference being the fact
the feature reduction operated by PLS (in SO-PLS) is replaced by the variable selection achieved by
CovSel [51]. Briefly, considering the two predictor blocks X1 and X2, for the prediction of the response
matrix y, the SO-CovSel algorithm can be summarized as follows.

1. Variables in X1 are selected by CovSel, obtaining the reduced matrix X1sel

2. X1sel is used to predict y by ordinary least squares
3. X2 is orthogonalized with respect to X1sel, obtaining X2orth

4. Variables in X2orth are selected by CovSel, obtaining the reduced matrix X2orth,sel

5. X2orth,sel is used to estimate the residuals from step 2
6. The equation y = X1b + X2c + f is solved (b and c being the regression coefficients and f the

residuals).

Eventually, if the aim is to create a classification model, LDA can be calculated on the y predicted
at step 6. For more details on SO-CovSel-LDA, the reader is addressed to the work in [31]. Calculations
were made using in-house written functions running under Matlab, which are freely downloadable
at [52].

3. Results

After the division into training a test set described in Section 2.1, data collected on the shell (X1)
and on the kernel (X2) were analyzed by PLS-DA. The outcomes of these analyses are reported in
Sections 3.1 and 3.2, respectively. In both cases, different spectral pretreatments were tested on the
spectra, in order to remove spurious information possibly present. The tested preprocessing approaches
are 1st and 2nd derivatives calculated according to the Savitzky–Golay approach (19 points window,
and second- or third-order interpolating polynomial, respectively) [53], Standard Normal Variate
(SNV) [54], and their combinations. These pretreatments were chosen because derivatives are expected
to remove both addictive and multiplicative effect from spectra, whereas SNV has been conceived to
attenuate the artifacts given by the scattering. Moreover, the width of the interpolation window was
selected on the basis of our previous experience with similar NIR data as the one providing the best
compromise between noise reduction and excessive (artifact) smoothing.

Eventually, a multi-block strategy has been exploited for the joint analysis of both sets of spectra.
The results of this latter analysis are reported in Section 3.3. In all the classification models described
in these three sections, the optimal data pretreatment model parameters were selected as the ones
leading to the lowest classification error in a 7-fold cross-validation procedure on the training samples.
Regardless the pretreatment used, blocks were always mean-centered prior to the creation of any model.
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3.1. PLS-DA Analysis of NIR Spectra Collected on the Shell

As mentioned, NIR spectra were collected on the whole nuts (i.e., on the shellnut); the average
spectra for samples belonging to Class Sorrento (red line) and Class Non-Sorrento (blue line) are
reported in Figure 1. From the plot is clear that the two spectra are very similar.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 14 

 

Figure 1. Average raw spectra collected on Sorrento (blue line) and Non-Sorrento (red line) walnuts 

(nutshell). 

Different pretreatments were tested on the data. The average classification error in cross-

validation (reported in Table 2) was used to select the optimal preprocessing.  

Table 2. Partial Least Squares-Discriminant Analysis (PLS-DA) modeling of the spectra collected on 

the nutshell– results of cross-validation (LVs: Latent variables). 

Pre-treatment LVs Average Classification Error (%CV) 

Mean Centering (MC) 9 2.8 

1st derivative (+ MC) 11 1.6 

2nd derivative (+ MC) 9 2.9 

SNV (+ MC) 12 3.4 

SNV+ 1st derivative (+ MC) 11 2.8 

SNV+ 2nd derivative (+ MC) 9 2.9 

The model providing the lowest classification error was the one built on data preprocessed by 

1st derivative. The application of this model to the test set led to 92.9% sensitivity and 96.9% specificity 

for Class Sorrento; naturally, due to the symmetry of the classification results for a two class-problem, 

these values are reversed in the case of Class Non-Sorrento, for which sensitivity was 93.6% and 

specificity 92.9%. Altogether, two Sorrento and one Non-Sorrento test objects were misclassified. A 

graphical representation of this outcome is also reported in Figure 2, where the predicted y is 

displayed as a function of the sample index. In the figure, training objects are represented by empty 

symbols, while the test ones are displayed as filled items. The black dashed line in the plot is the 

threshold: samples falling above it are assigned by the model to Class Sorrento, whereas those below 

the line are predicted as belonging to Class Non-Sorrento. From the representation, it is easy to spot 

the three misclassified test samples: one object belonging to Class Non Sorrento (Blue square) and 

two samples appertaining to Class Sorrento (red diamonds).  

Figure 1. Average raw spectra collected on Sorrento (blue line) and Non-Sorrento (red line) walnuts
(nutshell).

Different pretreatments were tested on the data. The average classification error in cross-validation
(reported in Table 2) was used to select the optimal preprocessing.

Table 2. Partial Least Squares-Discriminant Analysis (PLS-DA) modeling of the spectra collected on
the nutshell–results of cross-validation (LVs: Latent variables).

Pre-Treatment LVs Average Classification Error (%CV)

Mean Centering (MC) 9 2.8
1st derivative (+ MC) 11 1.6
2nd derivative (+ MC) 9 2.9

SNV (+ MC) 12 3.4
SNV+ 1st derivative (+ MC) 11 2.8
SNV+ 2nd derivative (+ MC) 9 2.9

The model providing the lowest classification error was the one built on data preprocessed by 1st
derivative. The application of this model to the test set led to 92.9% sensitivity and 96.9% specificity for
Class Sorrento; naturally, due to the symmetry of the classification results for a two class-problem, these
values are reversed in the case of Class Non-Sorrento, for which sensitivity was 93.6% and specificity
92.9%. Altogether, two Sorrento and one Non-Sorrento test objects were misclassified. A graphical
representation of this outcome is also reported in Figure 2, where the predicted y is displayed as a
function of the sample index. In the figure, training objects are represented by empty symbols, while
the test ones are displayed as filled items. The black dashed line in the plot is the threshold: samples
falling above it are assigned by the model to Class Sorrento, whereas those below the line are predicted
as belonging to Class Non-Sorrento. From the representation, it is easy to spot the three misclassified
test samples: one object belonging to Class Non Sorrento (Blue square) and two samples appertaining
to Class Sorrento (red diamonds).



Appl. Sci. 2020, 10, 4003 6 of 14

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 14 

 

Figure 2. PLS-DA analysis: Predicted Y vs. sample index. Legend: Class Sorrento: Red diamonds; 

Class Non-Sorrento: Blue squares. The black dashed line represents the classification threshold 

between the two classes (Sorrento for y > threshold; Non-Sorrento for y < threshold). Empty and filled 

symbols represent training and test samples, respectively. 

Eventually, in order to understand which spectral variables contribute the most to the 

discrimination between the two categories, Variable Importance in Projection (VIP) [55] analysis was 

performed. Applying this approach, it is possible to obtain a VIP index for each predictor (i.e., spectral 

variable), reflecting its contribution to the discriminant model. Customarily, a variable presenting a 

VIP index higher than 1 is counted as relevant. Handling spectral data, the outcomes of VIP analysis 

can be straightforwardly inspected through a graphical representation such as the one reported in 

Figure 3. 

 

Figure 3. Variable Importance in Projection (VIP) Analysis. Mean spectrum (black line). Variables 

presenting a VIP index > 1 are highlighted in red. 

In the plot, variables presenting a VIP index higher than 1 are highlighted in red, over the mean 

spectrum of the samples. From the figure, it can be noticed that the area between 4000 and 4200 cm−1 

is selected. These variables interest the combination bands of C–H bonds and are probably due to the 

presence of fatty acids in walnuts. The spectral features constituting the peak at 5199 cm−1 

(approximately from 4840 cm−1 to 5363 cm−1) also present VIP index > 1. These variables are linked to 

the CC and CH combination modes of unsaturated fatty acids [54]. A VIP index higher than 1 are is 

shown by variables in the spectral range 7000 to 7200 cm−1; this area is associable to the presence of 
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Class Non-Sorrento: Blue squares. The black dashed line represents the classification threshold between
the two classes (Sorrento for y > threshold; Non-Sorrento for y < threshold). Empty and filled symbols
represent training and test samples, respectively.

Eventually, in order to understand which spectral variables contribute the most to the
discrimination between the two categories, Variable Importance in Projection (VIP) [55] analysis
was performed. Applying this approach, it is possible to obtain a VIP index for each predictor
(i.e., spectral variable), reflecting its contribution to the discriminant model. Customarily, a variable
presenting a VIP index higher than 1 is counted as relevant. Handling spectral data, the outcomes of
VIP analysis can be straightforwardly inspected through a graphical representation such as the one
reported in Figure 3.
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Figure 3. Variable Importance in Projection (VIP) Analysis. Mean spectrum (black line). Variables
presenting a VIP index > 1 are highlighted in red.

In the plot, variables presenting a VIP index higher than 1 are highlighted in red, over the mean
spectrum of the samples. From the figure, it can be noticed that the area between 4000 and 4200 cm−1

is selected. These variables interest the combination bands of C–H bonds and are probably due
to the presence of fatty acids in walnuts. The spectral features constituting the peak at 5199 cm−1

(approximately from 4840 cm−1 to 5363 cm−1) also present VIP index > 1. These variables are linked to
the CC and CH combination modes of unsaturated fatty acids [54]. A VIP index higher than 1 are is
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shown by variables in the spectral range 7000 to 7200 cm−1; this area is associable to the presence of
carbohydrates, or to the absorption of non-bonded O-H groups in fatty acids [56]. Eventually, some
variables between 8800 cm−1 and 8900 cm−1 are selected by VIP analysis. In this range, the absorptions
of the second overtone of the C–H bonds and the combinations bands of the O–H bond take place [57].

3.2. PLS-DA Analysis of NIR Spectra Collected on the Kernel

As discussed before, after measuring the shellnut, each walnut was opened and NIR spectra were
collected on the kernels. Mean spectra for samples belonging to Class Sorrento (red line) and Class
Non-Sorrento (blue line) are reported in Figure 4. Moreover, in this case, it is not possible to appreciate
a significant difference between the spectra collected on samples belonging to the two categories.
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(kernel).

PLS-DA analysis was carried out following the same procedure used for spectra collected
on the nutshell. Consequently, different pretreatments were tested, and the optimal pretreatment
and complexity to build the final calibration model were selected on the basis of smallest average
classification error in cross validation. The results from this part of the analysis are summarized in
Table 3.

Table 3. PLS-DA modeling of the spectra collected on the kernel: results of cross-validation (LVs:
Latent variables).

Pre-Treatment LVs Average Classification Error (%CV)

Mean Centering (MC) 10 2.8
1st derivative (+ MC) 12 1.6
2nd derivative (+ MC) 10 4.1

SNV (+ MC) 10 7.1
SNV+ 1st derivative (+ MC) 12 2.8
SNV+ 2nd derivative (+ MC) 10 2.8

The PLS-DA model providing the lowest average classification error is the one built on data
preprocessed by 1st derivative. Consequently, this pretreatment was considered the most suitable for
the investigated data. When the calibration model was used to predict test samples, it correctly classified
all Class Sorrento objects (i.e., 100% of sensitivity) with a specificity of 93.8%, and it misclassified two
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(out of 32) Non-Sorrento samples (corresponding to a sensitivity of 93.8%), the specificity being 100%,
due to the symmetry of the classification results for a two-class problem.

The predicted y is displayed as a function of the sample index in Figure 5. The plot is quite
self-explanatory. As before, samples associated to a y higher than the threshold are predicted as
belonging to Class Sorrento (otherwise, they are predicted as Class Non-Sorrento). From the figure,
it is clear only two samples are misclassified: two Non-Sorreto samples (blue squares) predicted as
belonging to Class Sorrento (red diamonds).
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Figure 5. PLS-DA analysis: Predicted Y vs. sample index. Legend: Class Sorrento: Red diamonds;
Class Non-Sorrento: Blue squares. The black dashed line represents the threshold between the two
classes (Sorrento for y > threshold; Non-Sorrento for y < threshold). Empty and filled symbols represent
training and test samples, respectively.

VIP analysis was run also on this model. The variables identified as important were in agreement
with the ones discussed in Section 3.1; consequently, they will not be discussed again here, but they are
shown in Figure A1 in Appendix A.

Comparing the predictions provided by the PLS-DA models built on spectra collected on the
nutshell and on the kernel, it can be observed how one of the misclassified samples (belonging to Class
Non-Sorrento) was wrongly predicted by both models. This is not completely surprising because, as
detailed in Table 1, some Non-Sorrento walnuts are Italian, so they could have been harvested in an
area nearby Sorrento or in a town presenting similar pedoclimatic conditions.

3.3. Multi-Block Analysis

3.3.1. SO-PLS-LDA Analysis

The sequential data fusion model was built using data preprocessed by the optimal pretreatment
selected in individual analysis: first derivative. Building SO-PLS-LDA models, the optimal number of
latent variables, six for X1 and seven for X2, was selected based on a cross-validation procedure. The
corresponding optimal classification model provided a sensitivity of 98.7% and a specificity of 98.0%
for Class Sorrento and vice versa for Class Non-Sorrento (i.e., 98.0% sensitivity and 98.7% specificity).
When this SO-PLS-LDA model was used to predict validation samples, the classification rates were
extremely satisfying. In fact, it correctly classified all test samples except one belonging to Class
Non-Sorrento. In Figure 6 the histograms representing the scores of the training and test samples along
the canonical variate are displayed both as scatterplot (panel a) and as histograms (panels b and c).
Taking a look at this graphical representation of the results, it appears that samples belonging to Class
Sorrento (red bars) present negative value of the canonical variate score; on the contrary, Non-Sorrento
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samples present positive or slightly negative values of CV1. The misclassified test sample is the
Non-Sorrento object whose score on the canonical variate is at around −0.1. VIP analysis has been
carried out also on this model, following the procedure described in [58]. The selected variables
are approximately the same highlighted before, so the discussion is not reported here; the graphical
representation is displayed in Figure A2 in Appendix A.
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(SO-PLS-LDA) analysis: Investigation of the canonical variate. (a) Plot of the samples’ scores onto
the only canonical variate for the training (empty symbols) and test (filled symbols) sets. Legend:
Sorrento—red diamonds, Non-Sorrento—blue squares; (b) distribution of scores for the calibration
model; (c) distribution of scores for the validation model.

3.3.2. SO-CovSel-LDA Analysis

Similarly to the procedure described in Section 3.3.1, the SO-CovSel-LDA model was built using
both predictors blocks preprocessed by 1st derivative. The optimal number of selected variables
(defined on the basis of cross-validation) was 1 for X1 and 20 for X2. The cross-validated calibration
model provided sensitivities of 96.1% and 96.0% for Class Sorrento and Class Non-Sorrento, respectively.
The application of this model to the test samples led to the correct classification of 58 over 60 validation
objects. This outcome is good, comparable to those obtained by PLS-DA, but less satisfying than
SO-PLS-LDA analysis.

4. Discussion

All the discussed models served as suitable tools for the discrimination of Sorrento walnuts from
all the other inspected samples. This outcome was not that obvious, because, among the investigated
walnuts, there are fruits produced on the Italian territory, not necessarily far from Sorrento and/or
grown in particularly different soils and climatic conditions. Ideally, the best solution for the problem
under consideration would be to allow discrimination by using the spectra collected on the nutshell,
because this means avoiding any loss of product, with the consequence of having a lower economic
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impact. The results described in Section 3.1 demonstrate that this is actually possible, with a relatively
low total classification error (5%, corresponding to 3 over 60 misclassified test samples). It has to be
noticed that, among the misclassified samples, two belong to Class Sorrento and only one to Class
Non-Sorrento, indicating the possibility of false positive (i.e., Non-Sorrento walnuts predicted as
Sorrento) is definitely reasonable (1 sample out of 32, corresponding to ~3% of error).

Despite the results obtained on the individual analysis were satisfying, the application of the
multi-block strategies, and, in particular, of SO-PLS-LDA, provided an improvement from the prediction
point of view. Consequently, whether the aim is to maximize the efficiency of the analysis, even
considering the possibility of losing part of the product (which could anyhow be sold as shelled
walnuts) SO-PLS-LDA represents a definitely suitable solution, with a rather low total error rate of
~1% in prediction.

5. Conclusions

Two-hundred-and-thirty-seven walnuts have been investigated by NIR spectroscopy coupled
with chemometrics in order to understand whether it is possible to discriminate fruits harvested in the
Sorrento area from other walnuts. NIR spectra were collected on the whole fruit (i.e., with shell) and on
the kernels, and then classified by PLS-DA. As auspicated, the PLS-DA model built on data collected
on the shells provided satisfying results (3% of total classification error rate in external validation),
indicating the proposed strategy is a suitable solution to discriminate Sorrento samples avoiding any
loss of product (walnuts can be sold as they are after NIR analysis on the shell). Nevertheless, whether
a more accurate solution is required, the multi-block strategy represents the ideal approach. In fact,
SO-PLS-LDA led to a total classification rate of 1% in external validation.
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curation, R.B. and L.A.; writing—original draft preparation, L.A. and A.B.; writing—review and editing, A.B.
and F.M.; visualization, A.B. and F.M.; supervision, A.B. and F.M.; project administration, F.M. and R.B.; funding
acquisition, R.B. and F.M. All authors have read and agreed to the published version of the manuscript.
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Appendix A

In Figure A1, the graphical representation of VIP analysis on spectra collected on the kernels
is displayed.
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Appendix A 

In Figure A1, the graphical representation of VIP analysis on spectra collected on the kernels is 

displayed. 

 
Figure A1. VIP Analysis: Mean spectrum (black line). Variables presenting a VIP index > 1 are
highlighted in red.
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In Figure A2, the graphical representation of VIP analysis on the SO-PLS-LDA model is displayed.
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