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Featured Application: The proposed Novel Active Disturbance Rejection Control can be applied
to various real-world models such as Permanent Magnet DC (PMDC) motors, Permanent Magnet
Synchronous Motors, Differential Drive Mobile Robots (DDMR), winged-cone Generic Hypersonic
Vehicles (GHV), and spacecraft systems. Authors are encouraged to provide a concise description of
the specific application or a potential application of the work. This section is not mandatory.

Abstract: In this paper, a Novel Active Disturbance Rejection Control (N-ADRC) strategy is proposed
that replaces the Linear Extended State Observer (LESO) used in Conventional ADRC (C-ADRC)
with a nested LESO. In the nested LESO, the inner-loop LESO actively estimates and eliminates
the generalized disturbance. Increasing the bandwidth improves the estimation accuracy which
may tolerate noise and conflict with H/W limitations and the sampling frequency of the system.
Therefore, an alternative scenario is offered without increasing the bandwidth of the inner-loop LESO
provided that the rate of change of the generalized disturbance estimation error is upper bounded.
This was achieved by the placing of an outer-loop LESO in parallel with the inner one that estimates
and eliminates the remaining generalized disturbance originating from the inner-loop LESO due to
bandwidth limitations. The stability of LESO and nested LESO was investigated using Lyapunov
stability analysis. Simulations on uncertain nonlinear single-input-single-output (SISO) system with
time-varying exogenous disturbance revealed that the proposed nested LESO could successfully deal
with a generalized disturbance in both noisy and noise-free environments, where the Integral Time
Absolute Error (ITAE) of the tracking error for the nested LESO was reduced by 69.87% from that of
the LESO.

Keywords: nested extended state observer; generalized disturbance; system uncertainties; linear
extended state observer; active disturbance rejection control; Lyapunov stability

1. Introduction

The performance of a control system is excessively affected by system uncertainties, such as
exogenous disturbances, unmodelled dynamics, and parameter perturbations. Simultaneously
guaranteeing disturbance rejection and good tracking performance in light of the existence of large
uncertainties complicates the design of any controller that aims to address these objectives. Accordingly,
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anti-disturbance methods with both external-loop controllers and internal-loop estimators have been
comprehensively utilized. The precision of such controls mainly depends on the accuracy of the
observer in the internal-loop, this type of controller is called “model-free controller” in contrast to
other controllers that require the dynamics of the system, e.g., disturbance-observers-based control [1].
There have been various observer design philosophies posited, including fuzzy observers, sliding mode
observers, unknown input observers, perturbation observers, equivalent input observers, extended
state observers, and disturbance observers. Of these observers, the Extended State Observer (ESO) was
originally suggested by Han [2]; it is often favoured because, in terms of design, it requires the minimum
information from the system. It estimates the internal states of the system, system uncertainties, and
exogenous disturbances, and it can also be used to design a state feedback controller. Based on this, an
ESO is considered an essential part of the active disturbance rejection control paradigm. ESO-based
control design has thus been widely examined in recent years [3,4]. The basic principle behind the
operation of ESO is to augment the mathematical model of the nonlinear dynamical system with
an additional virtual state that describes all the unwanted dynamics, uncertainties, and exogenous
disturbances, which is termed “generalized disturbance”. This virtual state, together with the states
of the dynamic system, is observed in real-time using the ESO. This form of control design has been
applied to a broad range of systems due to its model-independent operation. Initially, each ESO
was constructed with nonlinear gains; however, it is more realistic to design and tune the ESO using
tuneable linear gains, as proposed in [5]. Two signals, the input and the output of the nonlinear system,
thus feed the ESO with information [6]. An ESO-based control system design offers generally good
performance due to the simplicity of design of ESO, which offers a need for minimum information,
high precision of convergence, and fast-tracking capabilities [7]. In [8], ESO is tested on the nonlinear
kinematic model of the Differential Drive Mobile Robot (DDMR). In [9], a general ESO-based control
technique for nonchain integrator systems with mismatched disturbances was proposed. Recently,
numerous control problems in various fields have also been effectively resolved by utilizing the
ESO technique, including permanent magnet synchronous motor(PMSM) control [10], and attitude
control of an aircraft [11]. The authors in [12] introduced an ESO-based dynamic sliding-mode control
for high-order mismatched uncertainties with applications in motion control systems, and this also
presented excellent tracking performance. In [13], an improved nonlinear ESO was proposed which
achieved an outstanding performance in terms of smoothness in the control signal which leads to less
control energy required to attain the desired performance. Techniques other than classical ones for
dealing with measurement noise are proposed in the literature, e.g., authors of [14,15] have proposed a
novel class of Adaptive ESOs (AESOs) with time-varying observer gains. As a result, the proposed
AESO combines both the advantages of nonlinear extended state observer (NESO) and Linear Extended
State Observer (LESO) and provided more extra design flexibility than LESO. Techniques different
from ESO based estimation methods like time-delay estimators to estimate the generalized disturbance
are proposed in [16,17]. Moreover, disturbance rejection approaches considering robust controllers
combined with disturbance observer can be found in [18,19].

The weak points of the aforementioned methods lie in the following:

(1) For the LESO to increase the estimation accuracy, the bandwidth of the LESO has to be increased,
which tolerates noise and leads to hardware difficulties. Additionally, the LESO suffers from a
peaking phenomenon due to large gain values.

(2) For the nonlinear ESO, the performance will abruptly deteriorate when the amplitude or derivative
of the generalized disturbance goes large to a certain degree [20]. Moreover, stability analysis and
performance analysis are very complicated for the nonlinear ESO.

(3) For other classes of observers like the AESO, the parameter tuning process becomes more
time-consuming as the observer order goes higher.
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In this paper, we offer a novel simple structure based on LESO, namely, the nested LESO,
which combines the advantages of both linear and nonlinear ESOs. It consists of two LESOs connected
in parallel sharing the same plant output. The proposed observer efficiently estimates the generalized
disturbance without increasing the observer bandwidth and requires fewer computations for parameter
tuning since it is built from LESOs which needs a single parameter to be tuned, i.e., the LESO bandwidth.
Moreover, due to its linear structure, the proposed nested LESO inherits the simplicity of the LESO
stability analysis, while the performance evaluation of the closed-loop system of an uncertain nonlinear
signle-input-single-output (SISO) system is achieved very easily with the proposed nested LESO.

An outline of this paper’s contents and organisation follows. Section 2 presents the problem
statement and contribution of this work. Section 3 briefly presents the concepts behind Active
Disturbance Rejection Control (ADRC). A description of the proposed nested LESO and the relevant
stability tests are included in Section 4. The numerical simulations verifying the validity of the proposed
configuration are provided in Section 5. Finally, the conclusion is given in Section 6, along with
recommendations for future work.

2. Problem Description and Contribution

2.1. Problem Description

Consider an n-th dimensional uncertain nonlinear SISO system,

.
x1(t) = x2(t), x1(0) = x10
.
x2(t) = x3(t), x2(0) = x20

...
.
xn(t) = f (t, x1(t), x2(t), . . . , xn(t)) + w(t) + u(t), xn(0) = xn0

y(t) = x1(t)

(1)

where u(t) ∈ C(R, R) is the control input, y(t) is the measured output, f ∈ C(Rn, R) is an unknown
function, w(t) ∈ C(R, R) is the exogenous disturbance, x(t) = (x1(t), x2(t), . . . , xn(t)) is the state
vector of the system, and x(0) = (x10, x20, . . . , xn0) is the initial state. L(t) = f + w(t) is therefore

the “generalized disturbance” [1]. By adding the extended state xn+1(t)
def
== L(t) = f + w(t) to

Equation (1), it can be written as,

.
x1(t) = x2(t), x1(0) = x10
.
x2(t) = x3(t), x2(0) = x20

...
.
xn(t) = x(n+1)(t) + u(t), x(t)

)
= xn0

.
xn+1(t) =

.
f (t, x1(t), x2(t), . . . , xn(t)) +

.
w(t), xn+1(0) = xn+1,0

y(t) = x1(t)

(2)

Let ∆(t) =
.
L(t) = dL

dt ; it is required to estimate the state vector x(t) and the generalized disturbance
xn+1(t) of the nonlinear system (Equation (2)) in the presence of the system uncertainties, exogenous
disturbances, and measurement noise. To solve the above estimation problem, a conventional LESO is
given as per [1]: 

.
x̂1(t) = x̂2(t) + β1(y(t) − x̂1(t)).
x̂2(t) = x̂3(t) + β2(y(t) − x̂1(t))

...
.
x̂n(t) = x̂n+1(t) + u(t) + βn(y(t) − x̂1(t)).

x̂n+1(t) = βn+1(y(t) − x̂1(t))

(3)



Appl. Sci. 2020, 10, 4069 4 of 27

where βi is a constant observer gain to be tuned, i = 1, 2, . . . n + 1. The LESO gains βi are selected as:

βi = aiω
i
0, i = 1, 2, . . . , n + 1 (4)

where ωo is the LESO bandwidth, βi, i = 1, 2, . . . , n + 1 are selected such that the characteristic
polynomial, sn+1 + β1sn + . . . + βns + βn+1 = (s +ω0)

n+1 is Hurwitz. The binomial coefficients
ai, i = 1, 2, . . . ,ρ+ 1 are defined as [21]:

ai =
(n + 1)!

i!(n + 1− i)!
, 1 ≤ i ≤ n + 1 (5)

However, for perfect estimation of the system states x(t) and the generalized disturbance xn+1(t),
large LESO bandwidth ωo is required. Thus, tolerating noise and increasing H/W complexities.
In contrast, reducing ωo leads to large estimation errors xi(t) − x̂i(t), 1 ≤ i ≤ n + 1. Consequently,
to solve the above estimation problem with minimum estimation errors as compared to that of LESO,
a nested LESO is proposed to estimates x(t) and xn+1(t) without increasing ωo.

2.2. Paper Contribution

In this paper, a novel ADRC is constructed by connecting a second LESO in parallel with an
original LESO (the inner LESO) to construct a nested LESO. The advantage of this configuration is
that the second LESO estimates and eliminates the remaining generalized disturbance that eluded
from the inner LESO due to bandwidth limitations. Its excellent performance becomes very evident
when considered in terms of measurement noise. The proposed observer with nested structure differs
from the state observer with a cascade structure, where the latter is just a state observer and used in
special applications with delayed measurements such as the presence of an arbitrarily long delay in the
output [22] or for position and attitude estimation of Unmanned Air Vehicles (UAVs) [23]. It should
be emphasized that our main contribution is proposing a new structure to build a modified linear
extended state observer by nesting two LESOs, sharing the same output rather than modifying the
internal structure of the LESO. To the best of the authors’ knowledge, using double LESOs within the
same ADRC structure, with applications in highly uncertain nonlinear systems, has not previously
appeared in the literature.

3. Conventional Active Disturbance Rejection Control Problem

In ADRC, the model of the nonlinear system is extended with an additional virtual state variable,
which lumps all of the unwanted dynamics, uncertainties, and disturbances that remain unobserved in
the standard system into a single term known as “generalized disturbance”. In addition to estimating
the states of the nonlinear system, the ESO performs online estimation and cancellation of this virtual
state. In this scenario, the nonlinear system is converted into a chain of integrators, which allows
the control system design to be simpler. Figure 1 demonstrations the structure of a Conventional
ADRC, (C-ADRC) which contains three key parts: the Tracking Differentiator (TD), an Extended
State Observer (ESO), and Nonlinear State Error Feedback (NLSEF) [24]. The tracking differentiator
generates the required signal profile, which is the signal itself, free from noise, and a set of signal
derivatives (first derivative, second derivative . . . ). The NLSEF acts as a nonlinear combination of the
error profile. The ESO function is as discussed in the introduction section [25].
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3.1. Tracking Differentiator (TD)

In the tracking differentiator, the output profile of the nonlinear system, in Brunovsky canonical
form [26], must track the transient profile of the reference signal to resolve the problem of set-point jump
in the traditional proportional-integral-derivative (PID) controller as stated in the seminal work [2].
In this manner, when a rapid change occurs in the set point for any reason, the output signal of the
plant will follow the output of the TD and will change gradually to reach the desired set-point, and the
TD can be represented as [2]: 

.
r1 = r2

.
r2 = −R sign

(
r1 − r(t) + r2 |r2 |

2r

) (6)

where r1 is the tracking signal of the input r, and r2 is the tracking signal of the derivative of the input r.
To speed up or slow down the system during transient effects, the coefficient R is adapted, making it
application dependent [27]. Other versions of enhanced TD are proposed in [28–31].

3.2. Nonlinear State Error Feedback (NLSEF)

The linear weighting sum of the PID control is another limitation, involving as it does only the
present, predictive, and accumulative errors, and omitting other important parameters that could
enhance its performance [27]. In the seminal work [2], the following nonlinear control law was
suggested [2]:

f al(e.α.δ) =

 e
δ1−α |x| ≤ δ

|e|αsign(e) |x| ≥ δ
(7)

where α is a tuning parameter. The error signal, e, can thus reach zero more rapidly where α < 1 [27].
Other forms of nonlinear control laws are suggested in [32–35].

3.3. Extended State Observer

Observers acquire data about the system states from its inputs and outputs progressively.
Luenberger first recommended the rule of observers in [36], where it was concluded that the state
vector of the system can be estimated by observing the input and output of the system. Subsequently,
there have been numerous varieties of state observers outlined in the literature that rely upon the
mathematical model of the system, including high gain observers and sliding mode observers [27].
The ESO was the first observer presented that was autonomous of the mathematical model and
presented within the framework of ADRC. Furthermore, ESO has denoted estimators, which are
considered a vital part of modern controls. The basic principle of the ESO is to observe the constituent
parts of the generalized disturbance in real time, including model discrepancy, exogenous disturbances,
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and the unmodelled dynamics of the nonlinear system. Additionally, it compensates for unpredicted
disturbances in the control signal. ESO can be classified into two types. The first is linear ESO, which is
an extension of the Luenberger observer [36,37], where the equations of the ESO contain only the
linear correcting terms in order to simplify the calculations. These terms manipulate the error between
the actual states of the system and the estimated states in such a way that the error approaches zero.
The second type is nonlinear ESO, where the error-correcting terms include a nonlinear function of the
error. These nonlinear functions have the advantage of enhancing the estimation error more rapidly
and smoothly than the linear ESO.

Two approaches are common for ESO tuning: the pole-placement approach, and the
bandwidth-based method. If the end goal is to reduce the number of parameters of the ESO,
the parameters of the ESO can be expressed as a function of the bandwidth of the ESO, allowing only a
single parameter of the ESO to be chosen or tuned. Selecting a bandwidth that is too large leads to
a drop in the estimation error that nevertheless remains within an acceptable bound [38]. Observer
bandwidth is chosen to be sufficiently larger than the disturbance frequency and smaller than the
frequency of the unmodelled dynamics [39]. However, the performance of the ESO will deteriorate if
the bandwidth of the ESO is selected to be too low or too high. High values in the bandwidth of the
ESO and the controller result in good tracking performance and rejection of exogenous disturbances.
The side effects of adopting large values for bandwidth can thus be summarized as (1) measurement
noise causing a degradation in output tracking, introducing chatter on the control signal [40]; (2) a
worsening of the transient response of the ESO, as large values of bandwidth lead to what are known
as high gain observers [41]; and (3) the possibility of some unmodelled high-frequency dynamics
being activated beyond a certain frequency, causing inconsistency in the closed-loop system. The noise
and sampling rates are considered the two main factors constraining increases in the bandwidth.
Based on this, an appropriate estimator bandwidth ought to be chosen in coordination with the noise
tolerance and tracking performance. The authors in [14] designed a new class of Adaptive ESO (AESO)
in which the observer bandwidth varied with time to provide better performance than the LESO.
The disadvantage of this method is that the parameter tuning may become more complex as AESO
order increases [14]. To alleviate the peaking phenomenon caused by different initial values of the ESO,
the small variable ε was designed as in [42]:

1
ε
=

100t3 0 ≤ t ≤ 1

100 t > 1
(8)

The ESO parameters are tuned using Evolutionary Algorithm (EA), optimization techniques like
bacterial foraging optimization (BFO) and particle swarm optimization (PSO) rather than a manual
process. Eventually, the ESO begins estimating these states. Consequently, the effect of lumped
disturbances is cancelled and the controller actively compensates for the disturbances in real time [37].

4. Main Results

The innovative ADRC is constructed by adding an extra LESO, which shares an output signal
with the plant to be controlled with an inner-loop LESO. The structure of the novel ADRC is presented
in Figure 2. The inner LESO accomplishes the estimation of plant states and generalized disturbance.
In a situation where a suitably low bandwidth ω0 is selected for the inner LESO to reduce noise,
the estimation of the generalized disturbance through the augmented state is associated with a relatively
large estimation error, this situation is deeply considered in [43]. The outer-loop LESO will thus
complete the rejection process by choosing an appropriate control law v that depends on the estimated
generalized disturbance ẑn+1.
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Assumption A1. The function L is continuously differentiable and there is a positive constant M such that
∆(t) is bounded by it, i.e.,

sup
0≤t≤∞ |∆(t)| ≤M

This assumption represents wide range of fast and slow disturbances which exist in many
real-world applications.

Assumption A2. There exist constants λ1 and λ2 and positive definite, continuous differentiable functions
V, W : Rn+1

→ R+ such that
λ1||y||2 ≤ V(y) ≤ λ2||y||2 (9)

Letting W(y) = ||y||2, we can assume

ρ∑
i=1

∂Vi
∂yi

(yi − aiy1) −
∂V
∂yρ+1

aρ+1y1 ≤ −W(y) (10)

The stability of the proposed nested LESO is conducted in the following steps. Firstly,
demonstrating the stability of the inner-loop LESO by deriving the error dynamics of the system in
Equation (1) and proving its stability using the Lyapunov function (Theorem 1). Secondly, deriving
the state-space equation of the nonlinear system combined with the inner-loop LESO (dotted square
in Figure 2 given by Equation (26). Then, proving that the derivative of the generalized disturbance
estimation error

.
en+1 is upper bounded by M′, which is less than M defined in Assumption A1

(Lemma 1). Meanwhile, the stability analysis of the outer-loop LESO is demonstrated in Corollary 1
based on the results of Theorem 1. Finally, the stability analysis of the closed-loop system is given in
Theorem 2.

Theorem 1. Given the nonlinear plant (2) and the LESO in (3), then, the steady state estimation is given as

lim
t→∞
|xi(t) − x̂i(t)| =

1
ω0n+2−i

2Mλ2
max(P)

λmin(P)
(11)
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where xi(t) and x̂i(t), i ∈ {1.2. . . . .n + 1} denote the solutions of Equations (2) and (3) respectively, ai,
i ∈ {1, 2, . . . n + 1} are relevant constants, and ω0 is the LESO bandwidth. Moreover, if ω0 → ∞ , then
lim
t→∞
|xi(t) − x̂i(t)| = 0.

Proof. The proof is as follows, set

ei(t) = xi(t) − x̂i(t), i ∈ {1, 2, , n + 1} (12)

Subtracting Equation (3) from Equation (2), this gives

.
x1(t) −

.
x̂1(t) = x2(t) − (x̂2(t) + β1(y(t) − x̂1(t)))

.
x2(t) −

.
x̂2(t) = x3(t) − (x̂3(t) + β2(y(t) − x̂1(t)))

...
.
xn(t) −

.
x̂n(t) = xn+1(t) + u(t) − (x̂n+1(t) + u(t) + βn(y(t) − x̂1(t)) )

.
xn+1(t) −

.
x̂n+1(t) = ∆(t) − βn+1(y(t) − x̂1(t))

where βi = aiω0
i, i ∈ {1.2. . . . .n + 1} are relevant constants. Direct computation shows that the

estimation error dynamics satisfy 

.
e1(t) = e2(t) − β1e(t)
.
e2(t) = e3(t) − β2e(t)

...
.
en(t) = en+1(t) − βne(t)

.
en+1(t) = ∆(t) − βn+1e(t)

(13)

and thus, the final form is: 

.
e1(t) = e2(t) −ω0a1.e1(t)
.
e2(t) = e3(t) −ω0

2a1.e1(t)
...

.
en(t) = ein+1(t) −ω0

nan.e1(t)
.
en+1(t) = ∆(t) −ω0

n+1an+1.e1(t)

(14)

Set

ηi(t) = ω0
n+1−iei

(
t
ωi0

)
, i ∈ {1, 2, . . . , n + 1} (15)

or ei
(

t
ω0

)
= 1

ω0n+1−i ηi(t), then



de1

(
t
ω0

)
d t
ω0

= e2
(

t
ω0

)
−ω0a1.e1

(
t
ω0

)
de2

(
t
ω0

)
d t
ω0

= e3
(

t
ω0

)
−ω0

2a2.e1
(

t
ω0

)
...

den

(
t
ω0

)
d t
ω0

= en+1
(

t
ω0

)
−ω0

nan.e1
(

t
ω0

)
den+1

(
t
ω0

)
d t
ω0

= ∆ −ω0
n+1an+1.e1

(
t
ω0

)
(16)
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From Equation (15), dηi(t)
dt = ω0

n+1−i
dei

(
t
ω0

)
d t
ω0

d
(

t
ω0

)
dt = ωi0

n−i
dei

(
t
ω0

)
d t
ω0

can be derived. Then,

dei
(

t
ω0

)
d t
ω0

=
1

ω0n−i

dηi(t)
dt

(17)

Both Equations (15) and (17) are substituted into Equation (16) and the result is

1
ω0n−1

dη1(t)
dt = 1

ω0n−1 η2(t) −ω0a1. 1
ω0n η1(t)

1
ω0n−2

dη2(t)
dt = 1

ω0n−2 η3(t) −ω0
2a2. 1

ω0n η1(t)
...

dηn(t)
dt = ηin+1(t) −ω0

nan. 1
ω0n ηi(t)

1
ω0−1

dηi,n+2(t)
dt = ∆ −ω0

n+1an+1. 1
ω0n η1(t)

(18)

The time-scaled estimation error dynamics are

dη1(t)
dt = η2(t) − a1η1(t)

dη2(t)
dt = η3(t) − a2η1(t)

...
dηn(t)

dt nηn+1(t) − anηi(t)
dηn+1(t)

dt = ∆
ω0
− an+1.η1(t)

(19)

Consider the candidate Lyapunov functions V, W : Rn+1
→ R+ defined by V(η) =

〈
Pη, η

〉
=

ηTPη, where η ∈ Rn+1 and P is a symmetric and positive definite matrix. Suppose Assumption A2
(9) with λ1 = λmin(P) and λ2 = λmax(P), where λmin(P) and λmax(P) are the minimal and maximal
eigenvalues of P, respectively. Finding the derivative of V(η) w.r.t t along the solution of η in Equation

(19),
.

V(η)|along (19) =
∑n+1

i=1
∂V(η)
∂ηi

.
ηi(t) =

∑n+1
i=1

∂V(η)
ηi

(ηi+1(t) − ai.η1(t)) +
∂V(η)
∂ηn+1

(
∆
ω0
− an+1.η1(t)

)
. Then,

.
V(η)|along (19) =

∑n+1
i=1

∂V(η)
ηi

(ηi+1(t) − ai.η1(t)) +
∂V(η)
∂ηn+1

∆
ω0
−
∂V(η)
∂ηn+1

an+1.η1(t).

Based on Assumption A2,
.

V(η)|along (19) ≤ −W(η) +
∂V(η)
∂ηn+1

∆
ω0

. As V(η) ≤ λmax(P)||η||2 and

|
∂V
∂ηn+1

| ≤ ||
∂V(η)
∂η ||, then | ∂V

∂ηρ+1
| ≤ 2λmax(P)||η||. As V(η) ≤ λmax(P)||η||2 = λmax(P)W(η). Thus,

−W(η) ≤ −
V(η)

λmax( P) . Finally, because λmin(P)||η||2 ≤ V(η), this leads to ||η|| ≤

√
V(η)
λmin(P)

. From

Assumption A1,
.

Vi(ηi) ≤ −
V(η)
λmax(P)

+ M
ω0

2λmax(P)
√

Vi(η)
√
λmin(P)

. As d
dt

√
V(η) = 1

2
1√

V(η)

.
V(η), d

dt

√
V(η) ≤

1
2

1√
V(η)

(
−

V(η)
λmax(P)

+ M
ω0

2λmax(P)
√

V(η)
√
λmin(η)

)
. Thus,

d
dt

√
V(η) ≤ −

√
V(η)

2λmax(P)
+

M
ω0

λmax(P)√
λmin(P)

(20)

Solving ordinary differential Equation (20) gives,√
V(η) ≤

2Mλ2
max(P)

ω0
√
λmin(P)

(
1− e−

t
2λmax(P)

)
+

√
V(η(0))e−

t
2λmax(P) (21)
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From Assumption A2, λmin(P)||η||2 ≤ V(η). This leads to ||η|| ≤

√
V(η)
λmin(P)

, then Equation (21) can

be described as:

||η(t)|| ≤
√

1
λmin(P)

(
2Mλ2

max(P)

ω0
√
λmin(P)

(
1− e−

t
2λmax(P)

)
+

√
V(η(0))e−

t
2λmax(P)

)
||η||(t) ≤ 2Mλ2

max(P)
ω0λmin(P)

(
1− e−

t
2λmax(P)

)
+

√
V(η(0))
λmin(P)

e−
t

2λmax(P)

(22)

It follows from Equation (15) that |xi(t) − x̂i(t)| = 1
ω0n+1−i |ηi(ω0t)| ⇒ |xi(t) − x̂i(t)| ≤ 1

ω0n+1−i ||η(t)|| .
Thus, by using Equation (20),

|xi(t) − x̂i(t)| ≤
1

ω0n+1−i

2Mλ2
max(P)

ω0λmin(P)

(
1− e−

t
2λmax(P)

)
+

√
V(η(0))
λmin(P)

e−
t

2λmax(P)


Finally,

lim
t→∞
|xi(t) − x̂i(t)| ≤

1
ω0n+2−i

2Mλ2
max(P)

λmin(P)
(23)

It is clear that when ω0 → ∞ , lim
t→∞
|xi(t) − x̂i(t)| = 0 �

Based on the result of Theorem 1, a trade-off between noise tolerance and accuracy of the estimation
error can be attained. Equation (23) tells us an accurate state estimation can be obtained when the
bandwidth ω0 leans towards infinity, which could not be feasibly realized. Moreover, with high
bandwidth ω0, the LESO allows measurement noise to propagate through the system. The LESO can
restrain high-frequency noises under certain conditions.

Now, the estimated error of the generalized disturbance en+1 will be expressed as a difference
between the actual generalized disturbance xn+1 and the estimated one x̂n+1. From Equation (12),
setting i = n + 1 gives

en+1 = xn+1 − x̂n+1 ⇒ xn+1 = en+1 + x̂n+1 (24)

Consider the control law u(t) described by,

u(t) = v′(t) − x̂n+1 ⇒ x̂n+1 = v′(t) − u(t) (25)

Substituting Equations (24) and (25) into Equation (1) gives the original uncertain SISO system in
terms of the remaining estimated generalized disturbance error en+1,

.
x1(t) = x2(t)
.
x2(t) = x3(t)

...
.
xn(t) = en+1 + v′(t)

y(t) = x1(t)

(26)

Adding an augmented state to the resultant system Equation (26) results in

.
x1(t) = x2(t)
.
x2(t) = x3(t)

...
.
xn(t) = xn+1 + v′(t)

.
xn+1 = ∆′ =

.
en+1

y(t) = x1(t),

(27)
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The estimated generalized disturbance error en+1 will be further cancelled by the outer-loop LESO
expressed by, 

.
ẑ1(t) = ẑ2(t) + l1(y(t) − ẑ1(t)).
ẑ2(t) = ẑ3(t) + l2(y(t) − ẑ1(t))

...
.
ẑn(t) = ẑn+1(t) + v′(t) + ln(y(t) − ẑ1(t)).

ẑn+1(t) = ln+1(y(t) − ẑ1(t))

(28)

where li = αi
(
ω′0

)i
, i ∈ {1, 2, . . . , n + 1} are outer-loop ESO gains, αi are relevant constants.

Lemma 1. Consider the system given in Equation (2), and the linear extended state observer Equation (3).
The upper bound of the derivative of the generalized disturbance estimation error is given by:

lim
t→∞

an+1→0

|
.
en+1| ≤M′, where M′ ≤M

Proof. From Equation (12), with i = n + 1, en+1 = xn+1 − x̂n+1 ⇒
.
en+1 =

.
xn+1 −

.
x̂n+1 . Thus, |

.
en+1| ≤

|
.
xn+1|+ |

.
x̂n+1|, and from Equations (2) and (3),

|
.
en+1| ≤ |∆(t)|+ |βn+1e1(t)| (29)

From Equation (23), lim
t→∞
|e1(t)| ≤ 1

ω0n+1
2Mλ2

max(P)
λmin(P)

. As βn+1 = an+1ω0
n+1, lim

t→∞
|βn+1e1(t)| ≤

an+1
2Mλ2

max(P)
λmin(P)

. Thus,
lim
t→∞

an+1→0

|βn+1e1(t)| = 0 (30)

From Equations (29) and (30), lim
t→∞

an+1→0

|
.
en+1| ≤ |∆(t)|, and lim

t→∞
an+1→0

|
.
en+1| ≤M. Consider M′ such that

lim
t→∞

an+1→0

|
.
en+1| ≤M′ ≤M (31)

�

Corollary 1. Consider the system given in Equation (27), and the linear extended state observer Equation (28).

Then, lim
t→∞
|xi(t) − ẑi(t)| ≤ 1

(ω′0)
n+2−i

2M′λ2
max(P′)

λmin(P′)
, where xi(t), and ẑi(t), i ∈ {1, 2, . . . , n + 1} denote the solutions

to Equations (27) and (28) respectively, and ω′0 is the bandwidth constant of the outer LESO.

Proof. As in Theorem 1, let the estimation error of the outer-loop ESO of Equation (28) is defined as

ζi(t) = xi(t) − ẑi(t), i ∈ {1, 2, . . . , n + 1} (32)

and γi(t) =
(
ω′0

)n+1−i
ξi

(
t
ω′0

)
, i ∈ {1, 2, . . . , n + 1}. Consider the candidate Lyapunov function V′ =〈

P′γ,γ
〉
= γTP′γ, where γ ∈ Rn+1 and P′ is a symmetric and positive definite matrix with P′ as a

symmetric and positive definite matrix, then

|xi(t) − ẑi(t)| ≤
1(

ω′0

)n+1−i ∗

2M′λ2
max(P′)

ω′0λmin(P′)

(
1− e−

t
2λmax(P′)

)
+

√
V′(γ(0))
λmin(P)

e−
t

2λmax(P′)


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And

lim
t→∞
|xi(t) − ẑi(t)| ≤

1(
ω′0

)n+2−i

2M′λ2
max(P′)

λmin(P′)
(33)

�

Assumption A3. The states xi (i = 1, 2, . . . , n) and the generalized disturbance f of a n-dimensional uncertain
nonlinear SISO system (1) are estimated by a convergent outer-loop LESO which produces the estimated states
ẑi (i = 1, 2, . . . , n) of the plant and the estimated generalized disturbance ẑn+1 as t→∞ respectively, i.e.,

lim
t→∞
|xi − ẑi| = 0, i ∈ {1, 2, . . . , n} (34)

and
lim
t→∞
| f − ẑn+1| = 0 (35)

Assumption A4. A Tracking Differentiator (TD) produces a trajectory ri , i ∈ {1, 2, . . . , n} with minimum set
point change. The trajectory converges to a reference trajectory r(i−1) for i ∈ {1, 2, . . . , n} as t→∞ , i.e.,

lim
t→∞
|r(i−1)

− ri| = 0, i ∈ {1, 2, . . . , n} (36)

The stability of the closed-loop system with the Novel Active Disturbance Rejection Control
(N-ADRC) is considered in the following theorem.

Theorem 2. Consider an n-dimensional uncertain nonlinear SISO system given in Equation (1). The system
Equation (1) is controlled by the Linearization Control Law (LCL) u given by u = v′ − x̂n+1 where

v′ = v− ẑn+1 (37)

and v is given as,
v = ‖1 (̃e1 )̃e1 + ‖2 (̃e2 )̃e2 + . . .+ ‖n (̃en )̃en (38)

where ‖i : R→ R+ is an even nonlinear gain function.
where ẽi = ri − ẑi , i ∈ {1, 2, . . . , n} is the tracking error. Assuming that Assumptions A3 and A4 hold true, then,
the closed-loop system is asymptotically stable, i.e., lim

t→∞
|̃ei| = 0, i ∈ {1, 2, . . . , n}.

Proof. The tracking error between the reference trajectory and the corresponding system estimated
states is given as:

ẽi = ri − ẑi , i ∈ {1, 2, . . . , n} (39)

With outer-loop LESO and TD as in assumptions A3 and A4 respectively, the tracking error can be
described as,

ẽi = r(i−1)
− xi , i ∈ {1, 2, . . . , n} (40)

For the system given in Equation (1), the states xi are expressed in term of the plant output,

xi = y(i−1) , i ∈ {1, 2, . . . , n} (41)

Substitute Equations (41) in (40), and the tracking error is given by

ẽi = r(i−1)
− y(i−1) , i ∈ {1, 2, . . . , n} (42)
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Differentiating Equation (42) with respect to time, gives

.
ẽi = r(i) − y(i) = ẽi+1 , i ∈ {1, 2, . . . , n}.

It follows that the tracking error dynamics ẽi , i ∈ {1, 2, . . . , n} are given below

.
ẽ1 = ẽ2,
.
ẽ2 = ẽ3,

...
.
ẽn = r(n) − y(n) = r(n) −

.
xn

(43)

This together with n-th equation of Equation (27) gives,

.
ẽ1 = ẽ2,
.
ẽ2 = ẽ3,

...
.
ẽn = r(n) − (xn+1 + v′(t))

(44)

From Equation (37), we get 

.
ẽ1 = ẽ2,
.
ẽ2 = ẽ3,

...
.
ẽn = r(n) − xn+1 − v + ẑn+1

(45)

It follows from Equations (35) and (45) that

.
ẽ1 = ẽ2,
.
ẽ2 = ẽ3,

...
.
ẽn = r(n) − v

(46)

The tracking error dynamics given in Equation (46) associated with the control law v designed in
Equation (38) produces the following closed-loop error dynamics if we assume that the n-th derivative
of the reference signal r(n) equal to zero

.
ẽ1 = ẽ2,
.
ẽ2 = ẽ3,

...
.
ẽn = −‖1 (̃e1 )̃e1 − ‖2 (̃e2 )̃e2 − . . .− ‖n (̃en )̃en

(47)

The dynamics given in Equation (47) can by represented as:

.
ẽ = Aẽ



Appl. Sci. 2020, 10, 4069 14 of 27

where

A =



0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 0 1
−‖1 (̃e1) −‖2 (̃e2) −‖3 (̃e3) −‖n−1 (̃en−1) −‖n (̃en)


and ẽ = (̃e1, ẽ2, . . . , ẽn)

T. The characteristic polynomial of A is given by

|λI −A| = λρ + ‖ρ (̃en)λ
ρ−1 + ‖n−1 (̃en−1)λ

n−2 + . . .+ ‖1 (̃e1) (48)

The proposed nonlinear state error feedback controller in this work is based on f al(·) function
given in Equation (7) which can be written in terms of ‖i(·) as follows,

f al(̃ei) = ‖i (̃ei )̃ei, i ∈ {1, 2, . . . , n}

where

‖i (̃ei) =

 1
δ1−αi

|̃ei| ≤ δi

|̃ei|
αi−1

|̃ei| ≥ δi
(49)

which is a positive even function. The design parameters (αi, δi) of Equation (49) are selected to
ensure that the roots of the characteristic polynomial Equation (48) have strictly negative real parts,
i.e., Hurwitz (stable) polynomial. �

5. Simulations Results

The proposed N-ADRC can be applied to various real-world models such as Permanent Magnet
DC (PMDC) motors [13], Permanent Magnet Synchronous Motors [7,10], Differential Drive Mobile
Robots (DDMR) [8], winged-cone Generic Hypersonic Vehicles (GHV) [14], and spacecraft systems [11].
For testing the performance of the proposed control scheme, two nonlinear SISO systems are explained
in the following subsections, with the numerical simulations of the closed-loop system using the
proposed N-ADRC.

5.1. Hypothetical Model

Consider the following uncertain nonlinear SISO system
.
x1 = x2

.
x2 = f (x1, x2) + w(t) + b(t)u

y = x1

(50)

where f (x1, x2) = a1x1 + a2sin(x2), a1 = 0.2, a2 = 0.1, b(t) = (1 + a3 sin(t)), a3 = 0.1, and the
exogenous disturbance w(t) is given as w(t) = exp(−t) cos(t). In this example, L(t) = f (x1, x2) +

w(t) + b(t)u− b0u. This system is uncertain due to the time-varying parameter b(t) and time-varying
periodic disturbance w(t) with varying amplitude and constant frequency. Firstly, the Conventional
ADRC (C-ADRC), given in Figure 1 was first applied on Equation (50) to reject the generalized
disturbance L(t) from Equation (50) with the following elements,

(a) LESO: 
.
x̂1 = x̂2 + β1(y− x̂1)
.
x2 = x̂3 + β2(y− x̂1).

x̂3 = β3(y− x1)

(51)
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where x̂ =
(

x̂1 x̂2 x̂3
)T

is the observer state vector, and β =
(
β1 β2 β3

)T
=

(a1ω0 a2ω2
0 a3ω3

0)
T is the observer gain vector. The design parameters of the LESO were set

to a1 = 0.0255, a2 = 0.2400, a3 = 0.0717, b0 = 1, and ω0 = 100.

(b) The NLSEF control law:

u = f al(̃e1.α1.δ1) + f al(̃e2.α2.δ2) −
x̂3

b0
(52)

where f al(·) is described as in Equation (7), and e = (̃e1 ẽ2)
T is the tracking error vector which

can be defined as ẽi = ri − x̂i, i = 1, 2. The design parameters of the control law were set to
α1 = 0.0047, δ1 = 0.0158, α2 = 0.0498, and δ2 = 0.3316.

(c) The TD is given as [11]: 
.
r1 = r2

.
r2 = −R sign

(
r1 − r(t) + r2 |r2 |

2R

) (53)

where r1 is tracking signal of the input r, and r2 tracking signal of the derivative of the input r,
and where R = 31.6350.

The Novel-ADRC (N-ADRC) based on nested LESO was also implemented for the system
Equation (50) with the following configuration,

(a) Inner-loop LESO

The inner-loop LESO is the same as the conventional LESO of Equation (51) with the same set of
parameter values.

(b) Outer-loop LESO 
.
ẑ1 = ẑ2 + l1(y− ẑ1).
ẑ2 = ẑ3 + l2(y− ẑ1).

ẑ3 = l3(y− ẑ1)

(54)

where ẑ =
(

ẑ1 ẑ2 ẑ3
)T

is the observer state vector, and l =
(

l1 l2 l3
)T

=

(a1ω′0 a2
(
ω′0

)2
a3

(
ω′0

)3
)T is the observer gain vector. The design parameters where selected

as a1 = 0.1305, a2 = 0.0922, a3 = 0.5119, and b0 = 1, and ω′0 = 22.83.

(c) The control law is selected as in Equation (52) with the same parameter values and tracking error
vector defined as ẽi = ri − ẑi, i = 1, 2 as illustrated in Figure 2.

(d) The TD for the N-ADRC is identical to Equation (53) with the same parameter values.

Both controllers and the suggested system were numerically simulated using
MATLAB®/Simulink® ODE45 solver for models with continuous states. The reference input (r(t)) to
the system was cos(0.5t) applied at t = 0 sec. Two test conditions were considered for this work. In the
first case, the output of the proposed system did not include any measurement noise, while in the
second test case, a Gaussian noise was applied with variance (σ) equal to 10−4 and the mean µ = 0.
The simulation results of both conventional ADRC and N-ADRC are shown in Figure 3. The estimated
states x̂2 and x̂3 of the nonlinear system given in Equation (50) using C-ADRC scheme are shown in
Figure 4. These states are also estimated using the N-ADRC scheme and are depicted in Figure 5.
Moreover, the control signals for both schemes are illustrated in Figure 6.
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As shown in Figure 3b, the presence of measurement noise has an adverse effect on the time
response of the output for the in the case of C-ADRC, especially at the time interval [1.5,7] sec which
shows large oscillations in the output response. The effect is not shown in the case of the N-ADRC
(see Figure 3d).

The estimated states of the C-ADRC shown in Figure 4 were highly affected by the measurement
noise included in the output opposite the case of utilizing the N-ADRC, in which the noise had
negligible effect at the estimated state (refer to Figure 5). This behaviour on the control signal was
illustrated in Figure 6. This due to the bandwidth (ω0) of the ESO in the C-ADRC is less than the
bandwidth (ω′0) for the outer ESO.

The numerical results are listed in Table 1. Adding measurement noise to the measured output
significantly affected the output response—the Integral Time Absolute Error (ITAE)—and the total

energy of the actuating signal (ISU) of the C-ADRC controller. In Table 1, ITAE =
∫ 20

0 t|y− r|dt is the

integration of the time absolute error for the output signal, and ISU =
∫ 20

0 u2 dt is the integration of the
square of the control signal.
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Table 1. Performance indices.

Symbol Without Noise With Noise

ITAE ISU ITAE ISU
C-ADRC 1.71 7.17 7.07 457.30
N-ADRC 1.33 6.63 2.13 310.91

Reduction (%) 22.32 7.51 69.87 32.01

It is worth mentioning that, in our simulation, we have set the bandwidth (ω0) of the ESO in the
C-ADRC to 100 rad/sec, while, for our proposed structure, a bandwidth (ω0) for the inner ESO was
set to 100 rad/sec, and a bandwidth (ω′0) for the outer ESO had a value of 22.83 rad/sec. It is clear
that a big reduction in the bandwidth requirements in our proposed structure achieved a noticeable
improvement in the performance in terms of both ITAE and ISU, especially in the noisy case.

The estimation error of the generalized disturbances for the inner LESO is described by e3, which is
given in Equation (12), and the generalized disturbance estimation error of the outer LESO is described
by ζ3, which is given in Equation (32); both of these are illustrated in Figure 7. The ITAE of e3 is 10.5769
and the ITAE of ζ3 is 5.8251, displaying a percentage reduction in the ITAE equal to 45%. Figure 4
more clearly illustrates the reduction in ζ3 against e3. As illustrated in Figure 8 the derivative of the
generalized disturbance ∆(t) = dL

dt is bounded during the transient period by 5.34 and at the steady
state by 0.3. Assumption A1 is already satisfied. Moreover, the estimation errors of the C-ADRC with
and without measurement noise are shown in Figures 9 and 10, respectively. In the same manner,
the estimation errors of the N-ADRC with and without measurement noise are shown in Figures 11
and 12, respectively.Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 27 
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5.2. The Nonlinear Mass–Spring–Damper Model

A simple nonlinear Mass–Spring–Damper (MSD) mechanical system is shown in Figure 13. It can
be described as follows [44]:

M
..
x + g

(
x,

.
x
)
+ f (x) = ϕ

( .
x
)
u (55)

where M is the mass and u is the input force, f (x) is the nonlinear or uncertain term with respect
to the spring, g

(
x,

.
x
)

is the nonlinear or uncertain term with respect to the damper, and ϕ
( .
x
)

is

the nonlinear term with respect to the input term. Let, g
(
x,

.
x
)
= D

(
d1x + d2

.
x3), f (x) = d3x + d4x3,

and ϕ
( .
x
)
= 1 + d5

.
x3, where x ∈ [−a a], and

.
x ∈ [−b b], a, b > 0. The parameters are listed in Table 2.
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Table 2. Model parameters.

Parameter Value

M 1.0

D 1.0

d1 0.01

d2 0.1

d3 0.01

d4 0.67

d5 0

a 1.5

b 1.5

Then, Equation (55) can be rewritten as follows:

..
x = −0.1

.
x3
− 0.02x− 0.67x3 + u (56)

The state-space representation of the nonlinear MSD model is expressed as:
.
x1 = x2

.
x2 = −0.1x2

3
− 0.02 x1 − 0.67 x1

3 + u
y = x1

(57)

The results of the numerical simulation for the case of the nonlinear mass–spring–damper model
using both the C-ADRC and the proposed N-ADRC are shown in Figures 14 and 15, respectively.
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The numerical results are listed in Table 3. Adding an extra LESO to the C-ADRC significantly

affected the output response (ITAE) of the N-ADRC controller. In Table 3, ITAE =
∫ 20

0 t|y− r|dt is the

integration of the time absolute error for the output signal, and ISU =
∫ 20

0 u2 dt is the integration of the
square of the control signal.

Table 3. Performance indices.

Controller ITAE ISU

C-ADRC 0.10 0.17
N-ADRC 0.05 0.16

Reduction (%) 50 6

6. Conclusions

This paper presented a novel approach to the design of a new class of LESO achieved by nesting
an additional LESO in parallel with the original to obtain an N-ADRC. The proposed N-ADRC was
successfully applied to the hypothetical SISO and a highly uncertain nonlinear SISO system with
exogenous disturbance, as given in Equation (50). It can be concluded that the N-ADRC outperforms
the C-ADRC in terms of control effort, output tracking, and disturbance rejection, as well as, more
obviously, in the case of measurement error. In contrast with the C-ADRC, when the order of the
LESO increases, the issue of measurement noise could be challenging, where increasing bandwidth is
the only option for obtaining better performance, the main outcome of this work was to show that
an outer-loop LESO connected in parallel with the inner-loop LESO removes the need to increase
the bandwidth of the inner-loop LESO as has been shown through the numerical simulations of this
work. Furthermore, the N-ADRC can converge to the states of the original system asymptotically.
The N-ADRC reduced the ITAE dramatically for cases both with and without measurement noise.
Due to its simplicity, N-ADRC is suitable to be implemented in real-time applications. In future work,
this approach can be extended to nest more than two LESOs, and nonlinear ESOs could also be used
and their performance investigated for multi-input-multi-output (MIMO) systems. Finally, several
real-world nonlinear models can be used to show the performance of the N-ADRC as given in [45–53].
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