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Abstract: Numerous applications of human–machine interfaces, e.g., dedicated to persons with
disabilities, require contactless handling of devices or systems. The purpose of this research is to
develop a hands-free head-gesture-controlled interface that can support persons with disabilities to
communicate with other people and devices, e.g., the paralyzed to signal messages or the visually
impaired to handle travel aids. The hardware of the interface consists of a small stereovision rig
with a built-in inertial measurement unit (IMU). The device is to be positioned on a user’s forehead.
Two approaches to recognize head movements were considered. In the first approach, for various
time window sizes of the signals recorded from a three-axis accelerometer and a three-axis gyroscope,
statistical parameters were calculated such as: average, minimum and maximum amplitude, standard
deviation, kurtosis, correlation coefficient, and signal energy. For the second approach, the focus was
put onto direct analysis of signal samples recorded from the IMU. In both approaches, the accuracies
of 16 different data classifiers for distinguishing the head movements: pitch, roll, yaw, and immobility
were evaluated. The recordings of head gestures were collected from 65 individuals. The best
results for the testing data were obtained for the non-parametric approach, i.e., direct classification
of unprocessed samples of IMU signals for Support Vector Machine (SVM) classifier (95% correct
recognitions). Slightly worse results, in this approach, were obtained for the random forests classifier
(93%). The achieved high recognition rates of the head gestures suggest that a person with physical
or sensory disability can efficiently communicate with other people or manage applications using
simple head gesture sequences.
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1. Introduction

Human–System Interaction (HSI) is currently actively pursued as a separate research field
dedicated to the development of new technologies facilitating human communication with systems [1].
Depending on the application, such interaction systems are also referred to as Human–Computer
Interfaces (HCI) or more generally human–machine interfaces. The design and construction of
such systems requires an interdisciplinary research approach and involves knowledge of sensory
perception mechanisms in humans, cognitive processes, and information processing, as well as basics
of ergonomics. A well-designed user interface often determines the usefulness of an entire system [2].

Designing interfaces accessible for persons with sensory and motor disabilities is a particularly
challenging research issue [3,4]. It is necessary to develop innovative solutions that enable handicapped
users to communicate with such devices or systems. The interfaces use alternative, often multimodal
communication methods that compensate for the diminished or lost sensorial or physical functions [5].
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Individuals with hearing loss use sign language (one of the so-called visual-spatial languages) and
are aided by sign language computer applications. For people with physical disabilities, special
input-output devices utilizing inertial sensors and innovative interfaces are built so that “contactless”
communication with a computer via, among others, Brain–Computer Interfaces (BCI) [6] and video
interfaces, which are capable of tracking eye movements [7] or detecting intentional blinks [8], have
been developed. The work reported in [9] shows that people with cerebral palsy can communicate
with the use of personalized gesture datasets while aided by an intelligent user interface. The visually
impaired, on the other hand, interact with computers using speech synthesizers and the so-called
Braille displays that allow them to type in and display the Braille alphabet. A more complex problem
for a blind person is handling devices while in motion. The basic mobility aid that the blind use is a
white cane, which engages one hand and hence, complicates the operation of an additional device, e.g.,
a navigation tool during a walk.

The control of computer applications is traditionally performed using a keyboard and/or a
computer mouse or a touch screen. However, solutions that enable people with serious physical
disabilities to work with computers are increasingly more common. In [10], an interface based on
the recognition of head movements and simultaneous lip movements designed for users with limb
disability was reported. It is, however, not only computer applications that can be controlled in a
non-contact manner. It was shown that the movement of an electric wheelchair of a disabled person
can be controlled by means of head movements [11–13] or eye gaze [14] and even EEG signals [15].

Recent advances in electromechanical MEMS (Micro Electro Mechanical Systems) technologies
have made it possible to develop miniature and cheap inertial sensors, and consequently use them in
human–computer interfaces [16]. In [17], in order to identify eight different types of physical activity,
a three-axis accelerometer placed on the wrist of the dominant hand was used. In [18], five acceleration
sensors were used to recognize the movement of hands and to distinguish gait from immobility.
The sensors were placed on the chest and on all the limbs. Similarly to our work, 3-axis compass, 3-axis
accelerometer and 3-axis gyroscope were mounted on the user’s head and used to identify six different
head gestures [19]. In [20], a system that can be utilized to monitor the body movements of people with
neurodegenerative diseases was reported. In this system, signals recorded from three sensors were
analyzed, one of them was mounted on the head and the other two on the shins. The fusion of signals
acquired from an accelerometer and surface EMG electrodes was used in [21] to assess Parkinson’s
disease-related symptoms. In [22], simultaneous processing of images and signals from inertial sensors
was employed to estimate six degree-of-freedom head movements. In the above-mentioned studies,
the first processing step in analyzing IMU signals is to parametrize the signals for predefined analysis
time windows [17,18]. The extracted parameters are then used to build appropriate classifiers that
recognize given types of movements.

In a recent work [23], novel methods for recognizing human physical activity that are based on the
so called symbolic representation algorithms were presented. Using three database sets, the authors
have shown that their approach performs best in terms of accuracy, processing time, and memory
consumption in comparison to other classic approaches that were based on supervised classification
techniques. In another very recent work [23], IMU were applied to measure the 3D range of motion of
the trunk and lower limb joints. The results of this study show that inertial sensors can be successfully
applied to investigate maladaptive movement strategies.

In our study, we propose a hands-free interface enabling blind persons to control the menu of a
navigation device by means of head movements. We also envision that such an interface can serve as a
communication aid for people with serious motor disabilities, e.g., for the paraplegic individuals.

The main contribution of our work, which has not been addressed in earlier studies [17–19,24],
is the comparison of the parametric and the time domain representations of IMU signals on which
different classifiers are trained to recognize four head movement patterns. Similarly to the work
reported in [25], in which IMU were used to recognize types of physical activities, we studied the
dependence of different lengths of time windows on the parametric representation of inertial signals
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to recognize different types of head gestures. In our work, we show that time domain approaches
to analysis of inertial signals can outperform parameter-based ones and are less computationally
demanding. The latter feature is particularly important for mobile implementations of the interface.
The ultimate motivation for our research is to develop user-friendly and efficient electronic travel aids
that will help the visually impaired retain orientation and mobility in unfamiliar environments [26,27].

The remainder of this paper is organized as follows. In Section 2, we describe the experimental
methods that we used for data recording and data pre-processing. We also shortly review the applied
data classifiers. In Section 3, we present the head gesture recognition results for the parametric and
time domain representations of IMU signals. Finally, in Section 4 we apprise the achieved results, show
the envisioned applications of our study, and point out limitations of the presented work.

2. Materials and Methods

In our proof of concept approach, we have applied a DUO MLX device (see Figure 1b)
equipped with a stereovision camera, a three-axis electronic gyroscope, three-axis acceleration sensor,
a thermometer, and a magnetometer [28]. The device is of small form factor: 52 × 25 × 13 mm and
weighs 12.5 g. The device is mounted on the user’s forehead (see Figure 1a). The study was conducted
with 65 persons. The participants were mainly second year university students, 44 of whom were
women. The trials were approved by the bioethics commission of the Medical University of Lodz
(No. RNN/261/16/KE). All the trial participants were informed about the purpose of the study, the
materials used and their role in the trial sessions. After fixing the DUO MLX device on their forehead,
the users were asked to perform rehearsal head movements and were instructed to proceed with
the movements just within a comfort zone of their head positions. During collection of the data, the
participants remained in a sitting position. Each participant was sitting straight in a chair and did not
change position during the experiment and performed only the given motions (yaw, pitch, roll, and
immobility). Each user had the DUO MLX device mounted rigidly on their forehead. The participant
did not touch the DUO MLX device or change its position on the forehead during the experiment.
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and immobility (head at rest). A single movement cycle lasted 2.5 s on average with 1.2 s standard 
deviation of the movement period. The recordings of test and learning datasets from one individual 
took approx. 4 min. each. 

Sample plots of the signals recorded by the acceleration sensor and the gyroscope are shown in 
Figure 2. The recorded accelerations ax, ay, and az along axes Ox, Oy, and Oz respectively are plotted 
in Figure 2a and angular velocities ωα, ωβ, and ωγ (as shown in Figure 1b) recorded from the gyroscope 
are plotted in Figure 2b. All the signals are recorded at a sampling rate of 100 Hz. 

Figure 1. (a) Placement of the inertial measurement unit on the user’s head; (b) DUO MLX Stereo
System equipped with inertial sensors with marked coordinate axes Ox, Oy, and Oz, and angular
velocities ωα, ωβ, and ωγ.

The aim of the study was to automatically classify three basic head gestures: roll (head movement
“sideways”), pitch (head movement “up-down”) and yaw (head movement “left-right”), and immobility
(head at rest). A single movement cycle lasted 2.5 s on average with 1.2 s standard deviation of the
movement period. The recordings of test and learning datasets from one individual took approx.
4 min each.

Sample plots of the signals recorded by the acceleration sensor and the gyroscope are shown in
Figure 2. The recorded accelerations ax, ay, and az along axes Ox, Oy, and Oz respectively are plotted in
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Figure 2a and angular velocities ωα, ωβ, and ωγ (as shown in Figure 1b) recorded from the gyroscope
are plotted in Figure 2b. All the signals are recorded at a sampling rate of 100 Hz.Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 16 
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Figure 2. Example signal waveforms recorded by: (a) acceleration sensors and (b) gyroscope sensors.

2.1. Signal Recordings and Pre-Processing

Signal recordings from 65 participants were grouped into the following datasets:

1. The learning dataset recorded from a randomly selected 53, i.e., approx. 80% of all the 65
trial participants. Signals that were used as the learning set were recorded as follows: 10 s
immobility—2.5 min of a specific motion type—10 s immobility, the type of gestures performed by test
participants were: yaw, roll, pitch, and immobility. The collection of the learning signals therefore
consisted of 53 × 4 = 212 recordings.

2. Two types of testing datasets that have not been used for training the classifiers:

• T_53_set that was recorded for 53 trial participants for whom the learning data were recorded,
• T_12_set that was recorded for the rest of the trial participants, i.e., 12 individuals who did

not take part in the recordings of the learning datasets,

further, for each of the two testing data sets there were two different testing scenarios applied:

• testing scenario T1 for which the dataset was recorded following the sequence of: 20 s of
immobility—40 s of yaw head movement—20 s of immobility—40 s of roll—20 s of immobility—40 s
of pitch—20 s of immobility; thus, two types of the testing datasets were recorded T1_53_set
and T1_12_set, respectively

• testing scenario T2 for which the datasets were recorded according to the following procedure:
head gesture sequences of roll, yaw and pitch gestures in random order for time periods
lasting from 5 to 20 s and no immobility time gaps between the gestures; thus, two other
types of the testing datasets were recorded: T2_53_set and T2_12_set respectively.

The signals recorded from the IMU were processed according to the two following procedures:

1. With signal parameterization (SP): for each of the six recorded IMU signals, i.e., three signals from the
accelerometer (ax, ay, az) and three signals from the gyroscope (ωα, ωβ, ωγ), the following features
were extracted: (1) average, (2) minimum, (3) maximum, (4) standard deviation, (5) kurtosis,
(6) correlation coefficients for pairs of signals from the accelerometer and pairs of signals from the
gyroscope, and (7) signal energy. Thus, the total number of parameters derived from the signals
was: 6 signals × 7 parameters = 42 parameters.
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These parameters were calculated for different time window widths, i.e., T ∈ {0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.8, 1.0, 2.0} given in seconds. The work focuses on the causal recognition mode of the gestures for
which the time windows are determined for current and past samples only. The consecutive windows
were shifted by a 0.1 s time step as shown in Figure 3.

2. Time domain representation (TDR): current samples of signals recorded from the accelerometer
(ax, ay, az) and gyroscope (ωα, ωβ, ωγ) were used directly as six-element training vectors for
the classifiers.
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In order to eliminate user errors related to an excessively slow start of the selected type of
movement, too rapid cessation of motion or incorrect initial movement, the learning datasets comprised
90 s recordings approx. in the middle of the 150 s time recording span.

According to the described recording procedure of the learning datasets (collected from 53
individuals), the following datasets were built:

1. For the procedure with signal parametrization: 900 42-element vectors for each individual.
The calculations of these 900 vectors were made for each time window width T ∈ {0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.8, 1.0, 2.0}, given in seconds, that were shifted with time steps of 0.1 s.

2. For the procedure based on the time domain: 9000 vectors for each individual, with six signal
samples representing a “time capture” of the given head motion.

Finally, the test datasets on which the performance of individual classifiers were evaluated were
correspondingly as follows:

1. For the SP procedure—set with 42-element vectors. Calculations for these testing vectors were
made for time windows of widths T ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 2.0} seconds, that were
shifted with time steps of 0.1 s.

2. For the TDR procedure—set of vectors each with six signal samples.

The datasets are available for download at [29].

2.2. The Classifiers

For the purpose of classification of the head gestures on the basis of the recorded IMU signals,
data classifiers generally recognized to be very efficient were applied [30]. In particular, various
architectures of decision trees and decision forests were used since they can provide an insight into the
data decision process, i.e., these classifiers can decompose the classification task into decision rules
of the input data features. The data classifiers that were applied were the following: (1) a decision
tree, (2) a decision tree with a minimum number of samples per leaf equal to 5, (3) a random forest
consisting of 10 decision trees, and (4) a random forest consisting of 10 decision trees, each of which
contained a minimum number of leaf samples equal to 5, (5) k-nearest neighbors method (k-NN) for
k ∈ {1, 3, 5, 7, 9, 11, 13, 15, 19}, (6) Support Vector Machines (SVM) with a radial basis function kernel,
and lastly (7) the SVM with a third degree polynomial as the kernel function.
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2.2.1. Decision Trees and Random Forest

Decision tree is a supervised non-parametric classifier that allows building decision rules by
multistage divisions of the dataset into disjoint classes [31].

Different algorithms can be used for building decision trees. In this work, we have employed
the CART (Classification and Regression Trees) algorithm and used the so-called Gini coefficient as a
measure of the diversity of classes in the tree nodes [25]. Classification trees can be combined into
groups to form the so-called random forests. The final classification of the vector is performed by
voting, i.e., a vector is assigned to the class for which it receives the largest number of votes from
individual decision trees. Random forests are efficient classifiers for very large data sets [32,33].

2.2.2. The k-Nearest Neighbor classifier

The k-Nearest Neighbor Classifier (k-NN) is another non-parametric data classification technique.
This is an instance-based learning algorithm that works on a simple scheme in which data sample x is
assigned to a class for which there is a majority of data prototypes within the k nearest neighbors [34].
The k value should be selected in such a way as to retain the balance between overtraining and
insufficient fit. We have evaluated the performance of this classifier for k ∈ {1, 3, 5, 7, 9, 11, 13, 15, 17,
19} neighbors. However, we present just the best classification results obtained for k = 7 for training
procedure SP, i.e., with IMU signal parametrization and for k = 19 obtained for the time domain
analysis. In all the tested k-NN classifiers, the Euclidean distance was used as the distance metric.

2.2.3. Support Vector Machines (SVM)

The SVM classifier is particularly suitable for classifying large dimensional datasets [35,36].
The basic optimization goal in this classifier is to maximize the margin, i.e., the between-class
separation region. The margin is defined as the distance between the decision boundary (separation
hyperspace) and the nearest learning samples, called the support vectors. The aim is to obtain decision
boundaries with the widest possible margins. In our implementation of the SVM classifier for the
multiclass problem, a scheme in which the one-vs-rest classification approach was adopted, we tested
the performance of these classifiers for regularization parameter values C ∈ {0.1, 1.0, 5.0, 10.0} for the
two types of kernels, a RBF kernel and a 3rd degree polynomial. The best classification results were
obtained for C = 1.0 for the parametrized signals and for C = 10.0 for time domain analysis. Thus,
we present the classification results for the regularization parameter values for which the corresponding
SVM classifiers performed best.

3. Classifier Training and Results

The classifiers were trained according to the procedures described in Section 2.1. The main aim
was to compare the performance of different classifiers for parametrized signals and raw signal samples
recorded from the inertial sensors.

The 10-fold cross validation method was used to evaluate the classifiers’ performance in the
head gesture classification task. The training sets (for both the SP and TDR training procedure) were
therefore randomly divided into 10 different subsets of equal cardinality. Each subset was sequentially
used as the validation set while the other nine subsets served as a training set for the classifiers.
Each classifier was cross validated on the same subsets, i.e., the division of the training and validation
sets was made first and then each classifier was trained on identical data subsets. Tables 1 and 2 report
the results of the 10-fold cross-validation for the SP and TDR training procedures, respectively.
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Table 1. Results of 10-fold cross-validation training—classification accuracy for the classifiers trained
on the parametrized data consisting of 42 parameters (training procedure SP).

No. Decision
Tree

Cropped
Decision

Tree

Random
Forest

Cropped
Random

Forest

k-NN for
k = 7

SVM with
RBF Kernel

SVM with
3rd Degree
Polynomial

1. 97.63 97.84 98.57 98.52 95.40 97.82 98.14
2. 97.58 97.79 98.56 98.55 95.57 97.80 98.22
3. 97.50 97.74 98.64 98.58 95.51 97.86 98.22
4. 97.66 97.88 98.62 98.55 95.55 97.76 98.08
5. 97.55 97.87 98.71 98.60 95.52 97.68 98.17
6. 97.45 97.86 98.56 98.52 95.41 97.79 98.10
7. 97.49 97.81 98.57 98.57 95.50 97.77 98.03
8. 97.52 98.01 98.64 98.61 95.64 97.88 98.23
9. 97.62 97.86 98.65 98.55 95.49 97.84 98.17

10. 97.85 98.04 98.79 98.78 95.45 97.87 98.23
Mean ± Std 97.59 ± 0.11 97.87 ± 0.09 98.63 ± 0.07 98.58 ± 0.07 95.50 ± 0.07 97.81 ± 0.06 98.16 ± 0.07

Table 2. Results of 10-fold cross-validation training—classification accuracy for the classifiers trained
on the IMU signal samples (training procedure TDR).

No. Decision
Tree

Cropped
Decision

Tree

Random
Forest

Cropped
Random

Forest

k-NN for
k = 19

SVM with
RBF Kernel

SVM with
3rd Degree
Polynomial

1. 97.45 97.59 98.17 98.05 98.19 94.27 92.58
2. 97.41 97.59 98.27 98.14 98.24 94.14 92.54
3. 97.48 97.57 98.26 98.13 98.21 94.31 92.59
4. 97.41 97.59 98.26 98.11 98.21 94.05 92.39
5. 97.41 97.52 98.18 98.06 98.20 94.25 92.53
6. 97.43 97.57 98.19 98.08 98.17 94.26 92.55
7. 97.45 97.60 98.27 98.10 98.19 94.28 92.53
8. 97.43 97.61 98.29 98.13 98.28 94.02 92.32
9. 97.42 97.63 98.23 98.11 98.22 94.14 92.41

10. 97.40 97.58 98.22 98.12 98.21 94.43 92.72
Mean ± Std 97.43 ± 0.02 97.59 ± 0.03 98.23 ± 0.04 98.11 ± 0.03 98.21 ± 0.03 94.22 ± 0.12 92.51 ± 0.11

For the classifiers trained on the parametrized signals (training procedure SP), the random forests
and the SVM with a third degree polynomial kernel excelled and achieved accuracies over 98%.
The poorest classification results were obtained for the k-NN classifier, but even this classifier achieved
accuracies exceeding 95%.

For the classifiers trained directly on signal samples (training procedure TDR), all classifiers but
the SVM achieved accuracies better than 97%. Although, the SVM classifier yielded results no worse
than 92% correct head gesture recognitions.

We have evaluated the performance of the classifiers and compared whether the accuracies they
yield are statistically different. Because we consider more than two classifiers and our data do not have a
normal distribution, the Friedman test was used for this purpose [37]. For both the training procedures,
i.e., the SP (with parametrization of IMU signals that generate 42 dimensional training vectors) and the
TDR (raw IMU signal samples that generate six dimensional training vectors), we have rejected the
null-hypothesis, i.e., we concluded that there are statistically significant differences (p < 0.05) between
the classifiers. We also compared the chosen seven classifiers (Tables 1 and 2) by conducting the
paired Wilcoxon signed rank test. For the SP training procedure for all classifiers we have also rejected
the null-hypothesis. In the case of the TDR training procedure, there were no significant differences
between the random forest and the k-NN for k = 19 (the null-hypothesis accepted). For other classifiers
for the TDR procedure we have rejected the null-hypothesis, i.e., the classifiers’ performances are
statistically equal.

3.1. Results for Datasets Consisting of the Parametrised IMU Signals

For the parametrized signals (the SP training procedure), the classifier performances were
evaluated for different time window widths T for which the statistical parameters of the signals were
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calculated. The results obtained for the combined test scenarios T1 and T2 are shown in Figure 4
for different time window sizes. Also, Figure 5 compares the results of head gesture classifications
obtained for two different testing datasets, i.e., the test data for trial participants whose data was
used for training the classifiers and the test data from trial participant whose data was not used for
training the classifiers. We can conclude that the results shown in Figure 5 show the user independent
performance of the system.
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Interestingly (as illustrated in Figure 4), the best results were obtained for the shortest time
window, i.e., T = 0.1 s window containing 10 signal samples. An increase in the width of the time
window negatively affected the classification accuracy. Note that for the test dataset, regardless of
the width of the time window, the best classifier was the SVM with a 3rd degree polynomial kernel
(accuracy better than 92%). The best classification accuracy for the k-NN classifier was obtained for
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k = 7 and was slightly worse than the one achieved by the random forest classifier (both with an
accuracy above 91%).

For the shortest time windows, the accuracies of individual classifiers tend to differ, whereas for
larger time windows, the performance of all the classifiers converges to similar albeit poorer values.
Figure 5 illustrates in more detail how the classifiers performed for the shortest time window (T = 0.1 s).

3.2. Results for Datasets Taken Directly from IMU Signal Samples

Subsequently, we evaluated the classifier performances for the testing datasets that were drawn
directly from the samples of IMU signals. The achieved classifiers’ accuracies for the test datasets are
shown in Figure 6.
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6 parameters).

Thus, we can note that for the classifiers trained on the IMU signal samples, the best accuracies
exceeding 95% were achieved for the SVM classifiers. Also, an important observation is that their
performance did not depend on the test data type (T_53_set or T_12_set).

3.3. Person Independent Recognition of Head Gestures

Here we report on the performance of the classifiers for the test data recorded for the 12 trial
participants for whom the recorded IMU signals were not used for training the classifiers. In Figures 5
and 6, we compare the recognition rates of head gestures for the new 12 users and the classification
results obtained for the test dataset recorded for 53 trial participants. Figure 5 contains the results for
the shortest time window T = 0.1 s for which 42 statistical parameters were computed and used for
training the classifiers, whereas Figure 6 shows the results for the classifiers trained on IMU signal
samples, i.e., on six-element vectors.

For the person-independent test datasets, i.e., for the 12 participants who did not take part in
training the classifiers, the best head movement recognition results for vectors with 42 parameters
were obtained for the SVM and random forests. For all of these classifiers, about 90% accuracy or
higher was achieved (Figure 5). Note also that for the person independent test datasets, the results
obtained were inferior to those for the T_53_set test data (i.e., person dependent dataset) except for the
SVM classifiers which performed equally on the two test datasets (for the TDR training procedure).
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On the other hand, for the classifiers trained directly on the IMU signal samples, head gesture
recognition accuracy exceeded 90% for all classifiers, except the decision tree classifier (see Figure 6).
Interestingly, the accuracy for all classifiers except SVM was better for T_12_set, however, the SVM
performed best for both T_53_set and T_12_set test datasets.

3.4. Head Gesture Recognition Rates for T1 and T2 Testing Scenarios

We also verified how the classifiers’ accuracy depends on the type of testing scenario as defined
in Section 2.1. For the causal system, the best results were obtained for test scenario T1 (see Figure 7).
The accuracy of all classifiers exceeded 90%. The results obtained for test scenario T2 were distinctly
inferior. For this testing scenario, the accuracy of the classifiers was below 90%. Again, the best
classifiers were the SVM and the random forests.
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recorded for individuals who did not record the training data (T_12_set) and the SP training procedure
(classifiers trained on the parameters of the IMU signals).

For the signal samples recorded directly from the IMU (vectors with six parameters), almost all
classifiers’ accuracies were above 90%. As is evident in Figure 8, except for the SVM, the best results
were obtained for test T2. Note that for the SVM classifier, the recognition accuracy for both tests was
almost identical and exceeded 95%.
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We have also verified which head gestures were most often confused with one another for the
classifiers which yielded the best results, i.e., for the SVM classifier with a 3rd degree polynomial and
regularization parameter C = 1.0 for the SP training procedure and for the SVM with an RBF kernel and
C = 10.0 for the TDR training procedure. The results are presented as confusion matrices in Tables 1
and 2. These tables show the results obtained for the 12 trial participants who did not take part in
training the classifiers.

As shown in Table 3, the highest error rate was reported for pitch (5.5% of the gestures recognised
as immobility). Further, considerably high error rates were noted for roll (4.6% of the gestures
recognised as immobility). The best recognition rates were obtained for head immobility (92.6%).
Interestingly, also for the immobility we have obtained the highest false positive recognitions.

Table 3. The confusion matrix showing inter-gesture recognition errors for the SVM classifier with a
3rd degree polynomial and C = 1.0 (the classifier trained on parametrised IMU signals).

Recognised:
Pitch

Recognised:
Roll

Recognised:
Yaw

Recognised:
Immobility

True: Pitch 92.0% 1.1% 1.4% 5.5% 100%
True: Roll 1.1% 91.7% 2.6% 4.6% 100%
True: Yaw 3.5% 1.8% 91.3% 3.4% 100%

True: Immobility 1.2% 2.8% 3.4% 92.6% 100%

The sensitivity, specificity and F1 scores of the head gesture recognition rates are presented in
Table 4. Note that the F1 score is defined as a harmonic average of the sensitivity and positive predictive
value. It is a good measure of overall classifier performance.

Table 4. Statistical measures showing detection results of head gestures for the SVM classifier with a
3rd degree polynomial and C = 1.0 (the classifier trained on parametrized IMU signals).

Pitch Roll Yaw Immobility

Sensitivity 92% 92% 91% 93%
Specificity 98% 98% 97% 96%
F1-score 92% 93% 92% 92%

Note that F1-score, sensitivity and specificity rates are similar for different gestures, however,
the specificity rates assume the highest values.

For the SVM classifier trained on IMU signal samples (Table 5), the distribution of errors was
different. For this case, the immobility was frequently and falsely recognized as yaw or as pitch (4.3%
and 3.9% error rates respectively).

Table 5. The confusion matrix showing inter-gesture recognition errors for the SVM classifier with an
RBF kernel and C = 10.0 (the classifier trained on IMU signal samples).

Recognized:
Pitch

Recognized:
Roll

Recognized:
Yaw

Recognized:
Immobility

True: Pitch 95.3% 0.3% 0.5% 3.9% 100%
True: Roll 0.3% 96.1% 1.8% 1.8% 100%
True: Yaw 0.6% 1.3% 93.8% 4.3% 100%

True: Immobility 0.5% 0.2% 0.5% 98.8% 100%

Note here that both the sensitivity and specificity rates in Table 6 (classifiers trained on raw IMU
signals) outperform the corresponding rates in Table 4 (classifiers trained on parametrized IMU signals).
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Table 6. Statistical measures showing detection results of head gestures for the SVM classifier with a
3rd degree polynomial and C = 1.0 (the classifier trained on raw IMU signals).

Pitch Roll Yaw Immobility

Sensitivity 95% 96% 94% 99%
Specificity 99% 99% 99% 97%
F1-score 97% 97% 95% 96%

Overall, however, the gesture recognition rates were better for the SVM classifier trained on
IMU signal samples than the classifier trained on the parametrized IMU signals (compare the matrix
diagonals in Tables 3 and 5, and also sensitivities, specificities and F1-scores in Tables 4 and 6).

The training times of the classifiers were also evaluated. The computations were performed on an
Intel Core i5-7500, 16 GB RAM, Windows 10 64-bit PC. Scripts were written in Python in the Enthought
Canopy environment using the Sklearn module. The obtained calculation times required for training
the classifiers are presented in Table 7.

Table 7. Training times of the classifiers.

No. Classifier Parametrized IMU Signals Raw IMU Signals

1. Decision tree 12.6 s 18 s

2. Decision tree with a minimum of 5 samples
in the leaf 11.9 s 17 s

3. Random forest 9.2 s 52 s

4. Random forest with a minimum of 5
samples in the leaf 8.8 s 50 s

5. k-NN for k ∈ {1, 3, 5, 7, 9, 11, 13, 15, 17, 19} 0.6 s 2 s

6. SVM with an RBF kernel for
C ∈ {0.1, 1, 5, 10} 5 min, 17 s from 2 h, 27 min to 8 h,

42 min *

7. SVM with a 3rd degree polynomial kernel
for C ∈ {0.1, 1, 5, 10} 2 min, 12 s from 2 h, 46 min to 9 h,

57 min *

* training times depend on the values of the regularization parameter C.

Depending on the types of datasets (42-element or 6-element vectors), a different size of the
training datasets was used, hence the training times of the classifiers varied significantly. For the
42-element training vectors, the longest training time did not exceed 6 min. The training procedure was
the fastest for the k-NN classifier. On the other hand, it took several minutes to train the SVM classifier.

For the 6-element training vectors (and larger training datasets), the shortest training times were
obtained for the k-NN classifiers. Training of the decision trees (and random forests) took tens of
seconds while the longest training times were required for the SVM classifiers (a few hours).

Table 8 shows the time necessary to recognize a head gesture from a single vector by the
trained classifiers.

Table 8. Recognition times of a gesture for a single input data pattern.

No. Classifier Recognition of
Parametrized Signals

Recognition of Raw
IMU Signals

1. Decision tree ~1 ms ~1 ms

2. Decision tree with a minimum of 5 samples
in the leaf ~1 ms ~1 ms

3. Random forest ~10 ms ~6 ms

4. Random forest with a minimum of 5
samples in the leaf ~6 ms ~7 ms

5. k-NN for k ∈ {1, 3, 5, 7, 9, 11, 13, 15, 17, 19} ~5 ms ~2 ms

6. SVM with an RBF kernel for
C ∈ {0.1, 1, 5, 10} ~10 ms ~5–11 ms

7. SVM with a 3rd degree polynomial kernel
for C ∈ {0.1, 1, 5, 10} ~10 ms ~4–10 ms
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The computation times required for processing the data by the trained classifiers (for a PC with
Intel Core i5-7500 processor) varies from 1 ms for the decision tree classifier to 11 ms for the SVM
classifier with an RBF kernel. It should be noted, that for the parametrized approach, we must first
compute the statistical parameters; for the shortest time window consisting of 10 signal samples, we
need to wait for 0.1 s before we feed these parameters to the classifiers.

4. Discussion

Our primary motivation for the study was to build a hands-free interface for the visually impaired
that would facilitate controlling an electronic travel aid built in our project dedicated to help the visually
disabled in independent mobility and travel [26]. The main role of the DUO MLX device and the image
processing software is to recover a 3D structure of the environment from the captured stereovision
images. The sequences of depth images are then sonified and acoustically presented to the visually
impaired user. In [38], we have shown that such a non-visual presentation of the environment can help
the blind to detect obstacles and find safe walking paths in the surroundings. One of the complications
we encountered in the conducted trials is handling of the device by the blind. The use of an additional
remote control to manipulate the interface proved to be inconvenient and occupied the other hand of
the user who carried a white cane. An example scenario of how the interface might be used is the
following. The navigation system generates a series of audio-haptic signals to indicate obstacles or
inform about points of interest. Such a system features numerous settings like loudness, sensitivity
range, sonification, and haptic activation schemes. The blind user, while standing still, by a series
of head gestures, can move within the menu of the system and select the appropriate setting for the
encountered environment or a navigation task at hand. System settings are confirmed by synthetized
voice messages. It is important to note that a blind person carries a white cane which occupies one
hand and the proposed solution does not need to engage the other hand to control the device. Also,
after consulting the visually impaired, we plan another application of the interface. The device can
play the role of a remote control that can aid the visually impaired in the activities of daily living, e.g.,
it can be used to control radio/TV volume without a need to seek for the remote of such devices.

Compared with the study reported in [24], we obtained a comparable F1-score of 92% for the
parametrized IMU signals. It should be noted, however, that in [24] and in [17], individual gestures
were not distinguished, but rather whole body activities, e.g., walking, running, cycling, hence the
need for longer time data analysis windows: 5 s, 3 s and 1 s in [24] and 5 s and 12 s in [17]. In our case,
we recognize delicate head movements, thereby the shorter the time window, the better the motion
recognition. In [17,18], the IMU sensors were attached to the wrist, in [24] two to five sensors were
used and they were mounted in different parts of the body, while in [19], IMU was mounted on the
head like in our work. The advantage of our study is that 65 people participated in the experiments
and our database is more diverse than e.g., in [19] where only five people took part in the trials. None
of the works [17–19,24] compared the recognition results of body movements for data derived from
the parametrized signals and time domain samples of IMU signals. We also tested the recognition
rates from a large pool of different data classifiers, i.e., the decision trees and forests (and their cropped
versions), k-NN, and SVMs (with an RBF kernel and a 3rd degree polynomial kernel). Finally, we show
that better classification results can be obtained if the classifiers are trained on raw IMU signals rather
than on the parametrized signals.

We are aware of the limitations of our study. The participants of the trials were mainly young
people recruited from the students. Thus, an open question is on the usability of the system for elder
people. Secondly, the trial participants remained seated during data collection. This limitation, for
some system applications, should be released. Also, we should underline that our choice of IMU
signals parameters, e.g., statistical parameters, was arbitrary and one might hypothesize that a different
set of parameters might be composed that would even further improve the recognition performance of
the head gestures.
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Finally, the proposed system would need to be tested with target groups recruited from persons
with physical or sensory disabilities.

5. Conclusions

In the presented study, we have compared two approaches to the classification of head gestures,
i.e., training the classifiers on the parametrized signals, and training on direct signal samples recorded
from the IMU.

The obtained results of head gestures recognition allow to formulate the following conclusions:

1. Head movements (roll, yaw, and pitch) can be efficiently recognized on the basis of signal recordings
from an IMU that is positioned on the user’s forehead.

2. The data classifiers trained on IMU signal samples outperformed the classifiers that were trained
on a set of statistical parameters derived from the IMU signals. These performance differences
were confirmed by running statistical tests. The Friedman test revealed that the classifiers yield
statistically different results (p < 0.05). Also, the paired Wilcoxon signed-rank test has confirmed
statistically valid differences for most of the classifiers (no significant differences between the
random forest and the k-NN classifier for k = 19 was noted only). Our explanation about high
head gesture recognition performance from raw IMU signals is that the six signal channels carry
rich enough information for the classifiers to confidently recognize the head gestures. Also, we
conclude that the inherent measurement noise (that occurs randomly) is averaged out during the
training procedures of the classifiers.

3. The SVM classifier outperformed other classifiers in recognizing the head gestures, and if trained
on the IMU signal samples, it achieved a recognition accuracy above 95%.

4. The recognition rates of the head gestures for the person-independent test dataset, i.e., the data
taken from 12 persons whose recordings were not used in training the classifiers are comparable
to the recognition rates obtained for the data recorded from the individuals who have also
recorded the training data (see Figures 5 and 6). Interestingly, if the classifiers were trained on
raw IMU signal samples, their recognition performance was generally better for data recorded
from participants who did not train the classifiers.

5. The proposed method is suitable for on-line implementations. In Table 8, we show that the
computation times required for detection of a gesture (on a PC with Intel Core i5 processor) by
pre-trained classifiers do not exceed 11 ms.

We hypothesize that the presented head-gesture-controlled interface can find numerous
applications. Firstly, it can offer an alternative communication channel for people with serious
physical disabilities, e.g., individuals suffering from serious spinal injuries or stroke that result in
tetraplegia. We made a new public benchmark dataset consisting of the training data (from 53
participants) and testing data (from 65 participants). The signal database with description is available
for download at [29].

In further studies, on the basis of high head-gesture recognition performance, one could even
further improve the recognition accuracy by accumulating classifier recognitions with each arriving
IMU signal sample (i.e., with every 100 ms time interval) and achieve close to 100% recognition rates
for the entire gesture. Our motivation is to further test the interface in a mobile travel aid system [38]
and as a supporting interface in activities of daily living for the visually impaired, e.g., as a remote
control system for home appliances. We will also consider the usefulness of such an interface as a
potential rehabilitation aid for individuals with neck stiffness.
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