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Abstract: The present study aims to implement the software ANSYS AQWA to discuss the
hydrodynamic analysis of the DeepCwind semi-submersible floating platform in waves based on the
potential flow theory by considering the second-order wave exciting force. In this study, the linearized
potential-flow hydrodynamic radiation and diffraction problems in the frequency domain were firstly
solved by adopting the three-dimensional panel method. Subsequently, the hydrodynamic coefficients
and wave loading data were transformed to time domain forms by the Cummins time domain
equation as a system loading input. Furthermore, the quadratic transfer function (QTF) matrices with
different frequencies and directions deduced based on the near field integration over the mean wetted
hull surface were adopted for the calculation of slow-drift forces. In order to represent the damping
in a real system for modeling potential flow without Morison’s elements, an additional quadratic
damping matrix was added to capture the viscous drag. Eventually, both of the dynamic mooring
model based on the lump-mass (LM) approach and the quasi-static mooring model based on the
multi-segmented, quasi-static (MSQS) approach are introduced to discuss the mooring effect on the
platform hydrodynamics. The effect of wave heading angles on the platform motion is considered as
an influential parameter as well.

Keywords: second-order wave exciting force; dynamic mooring model; quasi-static mooring model;
slow-drift force; viscous drag

1. Introduction

Floating offshore wind turbines (FOWTs) have become more important in the global market in
recent years due to the increasing demand for wind power. Compared to onshore wind turbines,
there are many advantages of FOWTs, including lower noise and higher wind speeds [1]. However,
the installation of FOWTs is more difficult because of the cost of construction and the necessity of
a more developed offshore wind farm technology [2]. Furthermore, floating wind turbines cannot
suffer critical and sudden wave loads, which may cause capsizing. In addition to buoyancy, wind floats
also utilize several mooring lines for stabilization. Butterfield et al. [3] mentioned that the classification
system used to achieve static stability divides all platforms into three general categories: ballast
stabilized, mooring lines stabilized, and buoyancy stabilized. For semi-submersibles, buoyancy is the
dominant factor of stability by taking advantage of the weighted water plane area for righting moment,
which means mooring lines are the minor factor of stability [4].

Although mooring lines are not the principal factor of stability for platforms, the restoring
force provided by mooring lines cannot be ignored. Borg et al. [5] indicated that the analysis of
restoring forces due to mooring lines can be calculated using force-displacement-velocity (FDV)
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or quasi-static methods. In this method, the quasi-static mooring model involves an analytical
derivation of the mooring line tensions. The mooring force consists of the pre-tension force and the
linearized mooring force [6]. The pre-tension force is measured using excess buoyancy when the
platform is un-displaced. The linearized mooring force can be initially analyzed by the restoring
matrix. Nevertheless, the linearized mooring force is not realistic in nature because the mooring systems
in most cases are nonlinear. Thomsen et al. [7] indicated that the tension calculated by the quasi-static
mooring model could be overestimated in the operational sea condition, but would be underestimated
in the severe sea condition. To improve accuracy, there is an expansion of the quasi-static model called
the multi-segmented, quasi-static (MSQS) model. Masciola et al. [8] clarified that MSQS allows one
to model the nonlinear stiffness matrix and static forces of practical mooring systems with arbitrary
connection geometries and profiles. Combining several individual catenary cables, the MSQS model
has established the foundation for dynamic mooring analysis.

The dynamic mooring model uses discretization along the cable length and an assembly of the
mass and internal forces, which is called the lumped mass method (LMM) [9]. The mooring lines are
modeled as a chain of Morison-type elements. Each cable element considers tension force, shear force,
and the bending moment. Because the hydrodynamic forces on each cable element are time-variant,
the dynamic mooring model is more accurate than the quasi-static mooring model theoretically.
In addition, the seabed in the dynamic model is comprised of nonlinear springs and dampers for
minimizing discontinuities and energy losses due to the discretization.

According to our previous research [10], the modular simulation system is well developed and can
be used to estimate hydrodynamic forces for different types of floating offshore wind turbines with the
quasi-static mooring lines in waves. Furthermore, this study attempts to represent the hydrodynamic
coefficients and the motion responses of the semi-submersible using a numerical simulation based on
the linear potential flow theory and the assumption of the 2nd order wave exciting force. Compared to
the dynamic mooring system, the motion responses of a platform moored using quasi-static cables
are discussed in detail. The simulation results will be compared with published data for verifying
accuracy as well.

2. Mathematical Model

2.1. Structure of Semi-Submersibles

This study applies the semi-submersible floating offshore wind system in the Offshore Code
Comparison Collaboration Continuation (OC4) project [11] to numerical simulation. The floating
platform is composed of two parts, i.e., three pontoons and one main column attached to the tower,
and each part is connected by several cross braces. Furthermore, there are three mooring lines connecting
to the base columns for stabilizing the floating platform. The design and three-view drawing of the
semi-submersible floating offshore wind system are shown in Figure 1a,b.

2.2. Coordinate System

The earth-fixed coordinate system O0-X0Y0Z0, shown in Figure 2, has its origin in the mean
free surface, i.e., Z0 = 0, with the Z0-axis pointing vertically upwards, and the X0-axis denotes wave
incidence; ω is denoted as wave angular frequency; wave incident angle θ = 0◦ represents wave
propagation in the positive X0 direction; h is defined as the water depth. The body-fixed coordinate
system is able to define the free surface boundary condition. The position of the origin is fixed at the
center of gravity (COG) and changes along with transition or rotation of the floating body.
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2.3. Potential Flow Theory

2.3.1. Linear Potential Flow Theory

Linear potential flow theory is used to solve the radiation and diffraction problems. It is assumed
that the water around the floating structure is a Newtonian fluid, which is irrotational, incompressible,
and inviscid. Since the potential velocity φ satisfies the boundary conditions and Laplace equation, the
total velocity potential can be written as:

φ(x, y, z, t) = φI(x, y, z, t) + φD(x, y, z, t) +
6∑

j=1

ζ jφR j(x, y, z, t) (1)

where φI(x, y, z, t) is the incident wave potential; φD(x, y, z, t) is the diffraction wave potential;
φR j(x, y, z, t) is the radiation wave potential; ζ j represents motion displacement; and j = 1, 2, . . . , 6
represents surge, sway, heave, roll, pitch and yaw, respectively.
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The incident wave potential φI(x, y, z, t) can be expressed as:

φI(x, y, z, t) =
−iga
ωo

ek0zei(k0xcosθ+k0 ysinθ−ω0t) (2)

where i is the imaginary unit; a is the incident wave amplitude; g is gravity; k0 is the wave number;
and θ is the angle of wave incidence.

The diffraction wave potential φD(x, y, z, t) can be expressed as:

φD(x, y, z, t) = eik0x cosθ−ω0t
∫

C
Q(η, ζ)G(y, z, η, ζ; k0)dC (3)

where the Green function G is the two-dimensional pulsating source potential of intensity at the point
(η, ζ) in the lower half of the y−z plane; and C indicates that the integral is to be taken along the
hull-section contour below the calm water surface.

The first order exciting force F(1) in i-th mode can be derived from the following equation by
adopting the incident and diffraction potentials:

F(1) = −iρwω
x

s
[φI(x, y, z, t) + φD(x, y, z, t)] · ni(x, y, z, t)dS (4)

where ρw is seawater density; S is the wetted body surface of the floating body; and ni is the i-th mode
normal vector on the wetted body surface.

The i-th mode radiation force ζ jφR can be derived from the following equation by adopting the
radiation potentials:

FR
i ζ j = iρwω

x

s

6∑
j=1

ζ jφRj·nidS =
6∑

j=1

(
ω2µi j + iωνi j

)
ζ j, i = 1, 2, . . . , 6 (5)

µi j = −ρwω
x

s
φRj·nidS (6)

νi j = −ρwω
x

s
φRj · nidS (7)

where µi j is the added mass coefficient; and νi j is the damping coefficient.

2.3.2. Second-Order Wave Excitation Force

In order to predict second-order (2nd) wave exciting forces, the equations of velocity potential,
wave elevation, and the position of a floater can be expanded as follows:

φ = εφ(1) + ε2φ(2) + O
(
ε3

)
, where ε→ 0 (8)

ζ = ζ(0) + εζ(1) + ε2ζ(2) + O
(
ε3

)
, where ε→ 0 (9)

→

X =
→

X
(0)

+ ε
→

X
(1)

+ ε2
→

X
(2)

+ O
(
ε3

)
, where ε→ 0 (10)

where φ is the velocity potential; ζ is the wave elevation;
→

X is the position of the floater; the superscript
(0) represents the static values; and the superscripts (1) and (2) represent the 1st and the 2nd order
variations with respect to the perturbation parameter ε.

The estimation of the 2nd wave exciting force is based on the perturbation method [12]. The 2nd
wave exciting force and moment can be expressed as:
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→

F
(2)

= −
1
2ρwg

∮
WL

ζr
(1)
·ζr

(1)→ndl

+ 1
2ρw

s

S0

[
∇φ(1)

·∇φ(1)
]
→
ndS + ρw

s

S0

[
→

X
(1)
·∇

∂φ(1)

∂t

]
→
ndS +

→
α
(1)
×
→

F
(1)

+ρw
s

S0

∂φ(2)

∂t
→
ndS

(11)

→

M
(2)

= −
1
2ρwg

∮
WL

ζr
(1)
·ζr

(1)
(
→
x ×

→
n
)
dl

+ 1
2ρw

s

S0

[
∇φ(1)

·∇φ(1)
](
→
x ×

→
n
)
dS + ρw

s

S0

[
→

X
(1)
·∇

∂φ(1)

∂t

](
→
x ×

→
n
)
dS

+
→
α
(1)
×
→

M
(1)

+ ρw
s

S0

∂φ(2)

∂t

(
→
x ×

→
n
)
dS

(12)

where ζr
(1)

(
= ζ(1) −X(1)

3 WL

)
is the relative wave elevation along the mean undisturbed water line;

ζ(1) is the wave elevation; X(1)
3 WL is the vertical distance of the point below the free surface; WL represents

the undisturbed water line;
→
α
(1)

is the 1st order rotational motion of the center of gravity in the fixed
reference axes; S0 is the mean wetted surface; dS and dl denote the surface element and the length

element of the waterline;
→
n is the normal vector of a length element dl;

→

F
(1)

and
→

M
(1)

are the total 1st

order fluid force and moment; and
→
α
(1)

is the 1st order rotational motion vector.
In order to simplify the 2nd order wave exciting force, the quadratic transfer function (QTF) was

applied in the hydrodynamic force analysis. Considering a pair of the regular incident waves with(
a jm, ω jm, xm, α jm

)
and (akn, ωkn, xn, αkn), the interaction of two waves results in the 2nd order wave

exciting force due to the difference or the sum frequency. The 2nd order wave exciting force with QTF
matrices in the time domain can be expressed as:

→

F
(2)

=
Nd∑

m=1

Nd∑
n=1

Nm∑
j=1

Nn∑
k=1

a jmakn{
→

P
+

jkmn cos
[(
ω jm +ωkn

)
t−

(
α jm + αkn

)]
+
→

Q
+

jkmn sin
[(
ω jm +ωkn

)
t−

(
α jm + αkn

)]
+
→

P
−

jkmn cos
[(
ω jm −ωkn

)
t−

(
α jm − αkn

)]
+
→

Q
−

jkmn sin
[(
ω jm −ωkn

)
t−

(
α jm − αkn

)]
}

(13)

where (
→

P
+

jkmn,
→

Q
+

jkmn) and (
→

P
−

jkmn,
→

Q
−

jkmn) represent in-phase and out-of-phase components of sum and

difference frequency forces/moments.
→

P
+′

jkmn, Q+′

jkmn, and
→

P
−
′

jkmn are symmetric against a pair of waves

with
(
a jm,ω jm,χ jm,α jm

)
and (akm,ωkm,χkm,αkm). On the other hand,

→

Q
−
′

jkmn is skew-symmetric against
this pair of waves. Nd is the number of wave directions; and Nm and Nn are the numbers of wave
components in the m-th and the n-th wave directions.

For the purpose of establishing a more simplified equation, the sum and difference frequency
components are defined as below:

→

P
+′

jkmn =
1
2

(
→

P
+

jkmn +
→

P
+

kjmn

)
=
→

P
+′

kjmn (14)

Q+′

jkmn =
1
2

(
→

Q
+

jkmn +
→

Q
+

kjmn

)
=
→

Q
+′

kjmn (15)
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→

P
−
′

jkmn =
1
2

(
→

P
−

jkmn +
→

P
−

kjmn

)
=
→

P
−
′

kjmn (16)

→

Q
−
′

jkmn =
1
2

(
→

Q
−

jkmn −
→

Q
−

kjmn

)
= Q−

′

kjmn (17)

Applying the above definitions, Equation (13) can be rewritten as below:

→

F
(2)

=
Nd∑

m=1

Nd∑
n=1

Nm∑
j=1

Nn∑
k=1

a jmakn{
→

P
+′

jkmn cos
[(
ω jm +ωkn

)
t−

(
α jm + αkn

)]
+
→

Q
+′

jkmn sin
[(
ω jm +ωkn

)
t−

(
α jm + αkn

)]
+
→

P
−
′

jkmn cos
[(
ω jm −ωkn

)
t−

(
α jm − αkn

)]
+
→

Q
−
′

jkmn sin
[(
ω jm −ωkn

)
t−

(
α jm − αkn

)]
}

(18)

2.4. Mooring System Modelling

2.4.1. Quasi-Static Mooring Model

The quasi-static mooring model shown in Figure 3a applies the multi-segmented, quasi-static
(MSQS) approach [8] to obtain the mooring force. Each mooring force consists of two parts, including
the pre-tension and linearized mooring force. The total mooring force is the sum of each mooring force.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 26 

ܳାᇲ = 12 ൫ ሬܳԦା + ሬܳԦା ൯ = ሬܳԦାᇲ  (15) 

ሬܲԦିᇲ = 12 ൫ ሬܲԦି + ሬܲԦି ൯ = ሬܲԦିᇲ  (16) 

ሬܳԦିᇲ = 12 ൫ ሬܳԦି − ሬܳԦି ൯ = ܳିᇲ  (17) 

Applying the above definitions, Equation (13) can be rewritten as below: 

Ԧ(ଶ)ܨ =   ܽܽ൛ ሬܲԦାᇲ cosൣ൫ ߱ + ߱൯ݐ − ൫ߙ + ൯൧ேߙ
ୀଵ

ே
ୀଵ

ே
ୀଵ

ே
ୀଵ + ሬܳԦାᇲ sinൣ൫ ߱ + ߱൯ݐ − ൫ߙ + +൯൧ߙ ሬܲԦିᇲ cosൣ൫ ߱ − ߱൯ݐ − ൫ߙ − +൯൧ߙ ሬܳԦିᇲ sinൣ൫ ߱ − ߱൯ݐ − ൫ߙ −  ൯൧ൟ (18)ߙ

2.4. Mooring System Modelling 

2.4.1. Quasi-Static Mooring Model 

The quasi-static mooring model shown in Figure 3a applies the multi-segmented, quasi-static 
(MSQS) approach [8] to obtain the mooring force. Each mooring force consists of two parts, 
including the pre-tension and linearized mooring force. The total mooring force is the sum of each 
mooring force. 

 

(a) (b) 

Figure 3. Description of the quasi-static mooring model: (a) the schematic diagram of quasi-static 
model; (b) the catenary solution of each quasi-static mooring line. LB means the length of the 
un-stretched mooring cable on the seabed; β is the slope of seabed; and ܵ is the un-stretched 
length of a catenary segment from its top right end (ܺଶ, ܼଶ). 
Figure 3b shows the catenary solution of each quasi-static mooring line. Hasselmann et al. [13] 

derived the solution of the catenary equation for a single line. The motion equation of each catenary 
section can be expressed as follows: 

Figure 3. Description of the quasi-static mooring model: (a) the schematic diagram of quasi-static model;
(b) the catenary solution of each quasi-static mooring line. LB means the length of the un-stretched
mooring cable on the seabed; β is the slope of seabed; and S is the un-stretched length of a catenary
segment from its top right end (X2, Z2).

Figure 3b shows the catenary solution of each quasi-static mooring line. Hasselmann et al. [13]
derived the solution of the catenary equation for a single line. The motion equation of each catenary
section can be expressed as follows:

H2 = AE

√( T2

AE
+ 1

)2
−

2wZ2

AE
−AE (19)

X2 =
H2

w
sinh−1

(wL
H2

)
+

H2L
AE

(20)
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V2 = wL (21)

T2 =
√

H22 + V22 (22)

where L is the un-stretched suspend length from the origin to the point (X2, Z2); w is the submerged
weight per unit length; T1 and T2 represent the tension force; V1 and V2 denote the vertical component
of the tension force; H1 and H2 mean the horizontal component of the tension force; and AE is the
stiffness per unit length.

In addition, the stretched length of the suspended catenary mooring line can be expressed as:

L′ = L +
1

2wAE

{
wL

√
H2 + (wL)2 + H2ln

[
wL +

√
H2 + (wL)2

]
−H2ln|H|

}
(23)

Given that the un-stretched length of a catenary segment from its top right end (X2, Z2) is S,
S is shorter than the theoretical un-stretched suspended length S. When the tension force at the top
right end is known, the position of the bottom left end of this segment can be written as:

X1 =
H
w

ln
V2 + T2

V1 + T1
+

HS
AE

(24)

Y1 =
V2 + V1

T2 + T1
S +

V2 + V1

2AE
S (25)

The horizontal and vertical components of the tension forces at the left-hand end are

H1 = H (26)

V1 = V2 −wS (27)

T1 =
√

H2
1 + T2

1 (28)

In addition, the stretched length of the catenary segment is defined as:

S′ = S +
1

2wAE

(
V2T2 −V1T1 + H2ln

V2 + T2

V1 + T1

)
(29)

Finally, the mooring force FM obtained from the quasi-static mooring model is simply
represented as:

FM = T2 − T1 (30)

2.4.2. Dynamic Mooring Model

In the dynamic mooring model, the lumped-mass method [9] is used to calculate the dynamic
simulation of the interconnected cables, the weight and the buoyancy. In this method, as shown in
Figure 4a, the mooring cable is separated into N equally-sized line segments connecting N + 1 node
points. The index i starts from the anchoring node at the bottom, in which the value of the anchoring
node is given as zero. The index value of the line segment between nodes 0 and 1 is 1/2, and the node
at the top of the fairlead node is N.

In the right-handed inertial reference coordinate system, the z-axis is measured in a positive
upward direction from the water plane. The position of each node i is defined by the position vector ri,
containing the x, y and z coordinates of the node position. Each mooring line segment i + 1

2 has the
same properties of un-stretched length L, volume-equivalent diameter d, Young’s modulus E, and the
inertial damping coefficient Cint. The dynamic mooring model combines internal stiffness, damping
force, weight, buoyancy, hydrodynamic forces from Morison equation, and contact force from the
seabed, as illustrated in Figure 4b. The internal stiffness and damping force of the line segment i + 1/2
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are expressed as Ti+(1/2) and Ci+(1/2), respectively. Meanwhile, the weight of the line segment lumped
at each node i is denoted as Wi, whereas Bi is the net buoyancy at node i.
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In the lumped-mass (LM) method, the mass of the mooring cable is discretized into point masses at
each node by assigning each node half the combined mass of the two adjacent line segments. The 3× 3
mass matrix for node i can be represented by

mi =
π
4

d2LρI (31)

where ρ is the density of the mooring cable; I is the identity matrix.
The added-mass matrix, which is included in the mass matrix, for node i is expressed as

ai = api + aqi = ρ
π
4

d2L
[
Can

(
I − q̂iq̂i

T
)
+ Cat

(
q̂iq̂i

T
)]

(32)

where api and aqi are the corresponding transverse and tangential added-mass matrices, respectively.
Can (=0.865) and Cat (=0.269) are added-mass coefficients in the transverse and tangential
directions [9,14]. q̂i is defined as the tangent direction at each node and can be approximated as
the direction of a line passing between the two adjacent node points by

q̂i =
ri+1 − ri−1

‖ri+1 − ri−1‖
(33)

where ri is the position vector at node i.
Finally, the motion equation of the mooring cable for each node i is

FM =
N∑

i=1
(mi + ai)

..
ri

=
N∑

i=1

[
Ti+(1/2) − Ti−(1/2) + Ci+(1/2) −Ci−(1/2) + Wi + Bi + Dpi + Dqi

] (34)

where Dpi and Dqi are drag forces in the transverse and tangential directions, respectively.
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2.5. Six-DOF Motion Equations

Substituting the 1st and the 2nd order wave exciting forces as well as other external forces into
6-DOF motion equations, the Cummins time-domain equation [15] can be written as below:

{m + A∞}
..
ζ(t) = F(1)(t) + F(2)(t) + FM(t) − c

.
ζ(t) − B|

.
ζ(t)|

.
ζ(t) −Kζ(t)

−

∫ t
0 h(t− τ)

..
ζ(τ)dτ

(35)

where F(1)(t) is the 1st order wave excitation force/moment; F(2)(t) is the 2nd order wave excitation
force/moment; FM(t) is the mooring force; c is the linear damping matrix including the linear radiation
damping effects; B is the quadratic damping matrix including the equivalent linear damping values to
compensate for the viscous and eddy drag effects; K is the total stiffness matrix including the hydrostatic
term as well as the stiffness from mooring lines; m is the structural mass; A∞ is the added mass matrix
at the infinite frequency; h(t) is impulse response function; ζ(t), and

..
ζ(t) represent the displacement,

velocity and acceleration time-series vectors in translational or rotational motions, respectively.
Since the 6-DOF motion responses were calculated in the time domain, the 4th Order Runge–Kutta

method was used for numerical simulation [10]. The total time length of each numerical simulation
was set to be 8000 s with the time step of 0.1 s.

2.6. Meshing

For solving the hydrodynamic coefficients, the diffraction elements located below the still water
level were considered in the simulation. The maximum element size was 1.5 m, and the mesh
discretization of the semi-submersible FOWT and wetted meshes is shown in Figure 5a,b, respectively.
The detail of mesh settings is presented in Table 1. Subsequently, the grid-independence test will be
conducted in Section 4.1.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 26 

Substituting the 1st and the 2nd order wave exciting forces as well as other external forces into 
6-DOF motion equations, the Cummins time-domain equation [15] can be written as below: ሼ݉ + ஶሽζሷܣ (ݐ) = (ݐ)(ଵ)ܨ + (ݐ)(ଶ)ܨ + (ݐ)ெܨ − ܿζሶ (ݐ) − หζሶܤ หζሶ(ݐ) (ݐ) − −(ݐ)ζܭ න ݐ)݄ − ߬)ζሷ (߬)݀߬௧

  (35) 

where ܨ(ଵ)(ݐ)  is the 1st order wave excitation force/moment; ܨ(ଶ)(ݐ)  is the 2nd order wave 
excitation force/moment; ܨெ(ݐ) is the mooring force; ܿ is the linear damping matrix including the 
linear radiation damping effects; ܤ is the quadratic damping matrix including the equivalent 
linear damping values to compensate for the viscous and eddy drag effects; ܭ is the total stiffness 
matrix including the hydrostatic term as well as the stiffness from mooring lines; ݉  is the 
structural mass; ܣஶ is the added mass matrix at the infinite frequency; ݄(ݐ) is impulse response 
function; ζ(t) , ζሶ (t)  and ζሷ (t)  represent the displacement, velocity and acceleration time-series 
vectors in translational or rotational motions, respectively. 

Since the 6-DOF motion responses were calculated in the time domain, the 4th Order Runge–
Kutta method was used for numerical simulation [10]. The total time length of each numerical 
simulation was set to be 8000 s with the time step of 0.1 s. 

2.6. Meshing 

For solving the hydrodynamic coefficients, the diffraction elements located below the still 
water level were considered in the simulation. The maximum element size was 1.5 m, and the mesh 
discretization of the semi-submersible FOWT and wetted meshes is shown in Figure 5a,b, 
respectively. The detail of mesh settings is presented in Table 1. Subsequently, the 
grid-independence test will be conducted in Section 4.1. 

  

(a) (b) 

Figure 5. The mesh discretization: (a) semi-submersible FOWT; and (b) semi-submersible platform 
below the free surface. 

Table 1. Detail of mesh settings 

Mesh Properties Value Unit 
Maximum Element Size 1.5 m 

Maximum Allowed Frequency 0.449 Hz 
Diffracting Nodes 9220 N/A 

Diffracting Elements 9227 N/A 

3. Mooring Line Properties 

To stabilize the floating platform, the mooring lines located at the top of the base columns 
prevent the platform from capsizing and keep the position in the waves. The mooring layout is 
introduced in Figure 6, and the mooring line properties are presented in Table 2. 
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below the free surface.

Table 1. Detail of mesh settings

Mesh Properties Value Unit

Maximum Element Size 1.5 m
Maximum Allowed Frequency 0.449 Hz

Diffracting Nodes 9220 N/A
Diffracting Elements 9227 N/A
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3. Mooring Line Properties

To stabilize the floating platform, the mooring lines located at the top of the base columns prevent
the platform from capsizing and keep the position in the waves. The mooring layout is introduced in
Figure 6, and the mooring line properties are presented in Table 2.Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 26 
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Table 2. Mooring line properties [11].

Mooring Line Properties Value Unit

Number of mooring lines 3 N/A
Angle between adjacent lines θM 120 degree

Depth to anchors below SWL 200 m
Depth to fairleads below SWL 14 m

Radius to anchors from platform centerline RA 837.6 m
Radius to fairleads from platform centerline RF 40.868 m

Unstretched mooring line length S 835.5 m
Mooring line diameter De 0.0766 m

Equivalent mooring line mass density ρ 113.35 kg/m
Equivalent mooring line extensional stiffness K 753.6 MN

4. Results and Discussion

4.1. Analysis of Hydrodynamic Coefficients

The surface of the DeepCwind semi-submersible FOWT is divided into several meshes, which are
composed of non-diffracting and diffracting elements. For obtaining the hydrodynamic coefficients,
the semi-submersible is under 0-degree waves, and the radiation force on diffracting elements is
precisely calculated. With Equation (5), the hydrodynamic coefficients in six modes are thus obtained.
The interaction between waves and the semi-submersible FOWT is illustrated in Figure 7.

The added-mass and damping coefficients with five panel numbers was compared to the WAMIT
data obtained from University of Ulsan (UOU) [16] in the surge, heave and pitch modes, as illustrated
in Figures 8 and 9. In the UOU in-house code, the hydrodynamic coefficients, including added
mass, radiation damping and wave exciting forces, of the DeepCwind semi-submersible FOWT
were calculated by using a diffraction/radiation solver in the frequency domain. It is noted that the
surge-surge elements of the added-mass and damping coefficients, µ11 and ν11, are identical to the



Appl. Sci. 2020, 10, 4267 11 of 26

sway-sway elements, µ22 and ν22 due to the symmetry of the DeepCwind semi-submersible FOWT.
Furthermore, the roll-roll elements, µ44 and ν44, are also identical to the pitch-pitch elements, µ55 and ν55.
Thus, identical results were assembled in the same plots.

According to the grid-independence test, the difference ratios of 9117 panels and 20,545 panels
are less than 1%. Therefore, 9117 panels is enough for the simulation. Additionally, it is obvious in
Figures 8 and 9 that the numerical results in both surge and heave modes are close to the WAMIT
data, and the peak frequency of these two hydrodynamic coefficients are perfectly met. However,
the peak frequencies in the pitch mode slightly deviate from the WAMIT data, which is similar to the
findings [17]. The discrepancies between the WAMIT data [16] and our simulation results may be due
to the geometric description methods. For WAMIT analysis, a higher-order representation geometric
description file, in which the velocity potential on the body surface was represented using B-splines,
for the DeepCwind semisubmersible FOWT was created. For our simulation, the un-structured panel
grids on most parts of the wetted hull were generated, whereas the structured grids were only distributed
on the columns. Even though there are some differences between the numerical results and the WAMIT
data, the trends of the hydrodynamic coefficients are similar. The comparison demonstrates that the
current 3D panel method is an acceptable calculation for generating the hydrodynamic coefficients
required by subsequent time-domain analysis.
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4.2. Wave Spectrum

For the hydrodynamic loads, the time-domain wave excitation for the computation was
implemented using a white-noise wave spectrum [18], as illustrated in Figure 10. In the subsequent
simulation, each computation was carried out for a time duration of 8000 s with a time step size of 0.1 s.
In this study, the response amplitude operator (RAO) was defined as the ratio of the cross-spectral
density of the surface elevation (input) and the corresponding system response (output) to the
auto-spectral density of the surface elevation, and can be expressed as:

RAO = G(ω) =
Sxy(ω)

Sxx(ω)
(36)

where G(ω) indicates the frequency response function (FRF) or the RAO; Sxx(ω) and Sxy(ω) are the
auto-spectral and cross-spectral densities in the frequency domain.
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The post-processing of these computations in the time domain was repeated for different load
cases and degrees of freedom. Since the wave energy exists in 0.05 to 0.25 Hz, the RAOs were only
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discussed in this frequency region, which was meaningful for investigating the motion response in
irregular waves and for code-to-code comparison.

4.3. Load Case

In order to compare the motion responses of DeepCwind semi-submersible FOWT achieved
by our model with the results of UOU in-house codes, seven load cases were conducted including
different model settings, i.e., potential flow theory, quadratic damping, mooring model, and wave
heading angles. Table 3 summarizes all load cases that would be discussed in the following sections.
These simulations were executed in the absence of wind force, and with the rotor locked.

Table 3. The description of load cases.

Case Name Model Description Wave Heading

UOU 1st Order + QD + QS 0◦

LC1 1st Order + QS 0◦

LC2 1st Order + QD + QS 0◦

LC3 1st Order + QD + QS + QTF 0◦

LC4 1st Order + QD + Dyn + QTF 0◦

LC5 1st Order + QD + Dyn + QTF 30◦

LC6 1st Order + QD + Dyn + QTF 60◦

LC7 1st Order + QD + Dyn + QTF 90◦

1st Order: first order potential flow theory; QTF: quadratic transfer function; QS: quasi-static mooring model;
Dyn: dynamic mooring model.

The numerical data compared in this study were obtained by employing the code FAST
(Fatigue, Aerodynamics, Structures, and Turbulence) [6,19,20] developed by NREL and the UOU
in-house codes [16,21]. The hydrodynamic coefficients, including added mass, radiation damping
and wave exciting forces, of the DeepCwind semi-submersible FOWT are obtained by using
a diffraction/radiation solver in the frequency domain. Subsequently, the obtained hydrodynamic
and wave loading data from the UOU in-house codes are fed into FAST as a platform loading output.
Both of the hydrostatic and quadratic damping forces can be calculated in the UOU in-house codes.
In addition, UOU’s mooring quasi-static code uses the 4th order Runge–Kutta method to solve
quasi-static equations of two dimensions of a mooring line.

In our simulation, the linearized potential-flow hydrodynamic radiation and diffraction
problems in the frequency domain were first solved by using the three-dimensional panel method.
The hydrodynamic coefficients and wave loading data were then transformed to time domain forms
by the Cummins time domain equation as a system loading input. In addition, the quadratic transfer
function (QTF) matrices with different frequencies and directions are deduced based on the near field
integration over the mean wetted hull surface. In order to discuss the influences of mooring forces
on the FOWT system, both of the quasi-static mooring model and the dynamic mooring model were
considered in this study.

4.4. The Effect of Quadratic Damping

The hydrodynamic viscous damping plays a dominant role in the total hydrodynamic damping
force for the DeepCwind semi-submersible FOWT. However, additional damping, namely quadratic
damping, is required to accurately represent the damping in a real system for modeling potential flow
without hydrodynamic viscous damping elements. Therefore, the quadratic damping matrix B [22] in
Equation (35) can be used to represent potential flow theory that captures the effects of this viscous
damping. The elements in Table 4 indicate the required quadratic viscous drag coefficient needed to
match the simulation Morison viscous drag coefficients.
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Table 4. Elements of quadratic damping matrix.

Mode Surge Sway Heave Roll Pitch Yaw

Bi 1.25E6 0.95E6 3.88E6 3.35E10 3.35E10 1.15E10
(Unit) (Ns2/m2) (Ns2/m2) (Ns2/m2) (Nms2/rad2) (Nms2/rad2) (Nms2/rad2)

Bi denotes the i-th mode of the quadratic damping value.

Figure 11a–c present the RAOs in the surge, heave and pitch modes by comparing our simulation
results of LC1 and LC2 with the UOU data in [23]. In the surge mode, there is little difference between
our simulation results and the UOU data. On the other hand, it appears that the quadratic damping
has a tiny effect on the surge RAO of the DeepCwind semi-submersible FOWT. In terms of the
resonance peak in the heave mode, the quadratic damping has a considerable contribution to the
heave RAO. It is clearly found that the heave RAO obtained from LC2 agrees well with the UOU data.
However, the UOU’s simulation estimates lower pitch motion than the result of LC2 and LC1. Generally,
our simulation result of LC2 is in good agreement with the UOU data.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 26 

contribution to the heave RAO. It is clearly found that the heave RAO obtained from LC2 agrees 
well with the UOU data. However, the UOU’s simulation estimates lower pitch motion than the 
result of LC2 and LC1. Generally, our simulation result of LC2 is in good agreement with the UOU 
data. 

Table 4. Elements of quadratic damping matrix. 

Mode Surge Sway Heave Roll Pitch Yaw ܤ 1.25E6 0.95E6 3.88E6 3.35E10 3.35E10 1.15E10 
(Unit) (Ns2/m2) (Ns2/m2) (Ns2/m2) (Nms2/rad2) (Nms2/rad2) (Nms2/rad2) ܤ denotes the i-th mode of the quadratic damping value. 

 
(a) 

 
(b) 

Figure 11. Cont.



Appl. Sci. 2020, 10, 4267 17 of 26Appl. Sci. 2019, 9, x FOR PEER REVIEW 17 of 26 

 
(c) 

Figure 11. The effect of quadratic damping on (a) the surge, (b) the heave, and (c) the pitch modes, 
respectively. 

4.5. The Effect of the Second-Order Wave Exciting Force 

Since the 2nd order wave exciting force, namely the QTF, may have great influence on the 
platform motion and the mooring line tension [24], the 2nd order potential flow theories were used 
for calculating linear and nonlinear wave effects. The resonances of 2nd order wave exciting forces 
at the difference frequencies, i.e., the slow-drift wave forces, usually occur in the surge, sway and 
yaw modes; whereas the ones at the sum frequencies can only excite the heave, pitch and roll 
modes of the tension leg platform (TLP). 

Figure 12a–f present the 6-DOF motion responses of the DeepCwind semi-submersible FOWT 
in the frequency domain by comparing LC3 with LC2. It is obvious that the sum-frequency force 
components have insignificant effects on the 6-DOF motion responses and then can be ignored. On 
the other hand, the slow-drift wave forces are found to have great contributions to the horizontal 
motion responses in the surge, sway, and yaw modes, but have little influence on the vertical 
motion responses in the heave, roll and pitch modes. 

 
(a) 

Figure 11. The effect of quadratic damping on (a) the surge, (b) the heave, and (c) the pitch
modes, respectively.

4.5. The Effect of the Second-Order Wave Exciting Force

Since the 2nd order wave exciting force, namely the QTF, may have great influence on the platform
motion and the mooring line tension [24], the 2nd order potential flow theories were used for calculating
linear and nonlinear wave effects. The resonances of 2nd order wave exciting forces at the difference
frequencies, i.e., the slow-drift wave forces, usually occur in the surge, sway and yaw modes; whereas
the ones at the sum frequencies can only excite the heave, pitch and roll modes of the tension leg
platform (TLP).

Figure 12a–f present the 6-DOF motion responses of the DeepCwind semi-submersible FOWT
in the frequency domain by comparing LC3 with LC2. It is obvious that the sum-frequency force
components have insignificant effects on the 6-DOF motion responses and then can be ignored. On the
other hand, the slow-drift wave forces are found to have great contributions to the horizontal motion
responses in the surge, sway, and yaw modes, but have little influence on the vertical motion responses
in the heave, roll and pitch modes.
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4.6. The Effect of Mooring Model

The quasi-static mooring model based on the MSQS approach is an efficient and simple approach
for integrating into FOWT simulation. However, the major disadvantage is that the computation of the
MSQS approach ignores the effects of hydrodynamic forces and inertial forces on the mooring cables,
which are highly correlated with the platform motion and are therefore important for estimating the
mooring forces. The main feature of the dynamic mooring model based on the LM approach can be
used to discretize the behaviors of mooring cables. For comparison, the platform hydrodynamic forces,
including the 2nd order wave exciting force and the quadratic viscous drag, would be coupled with
both of the quasi-static and the dynamic mooring models.

Figure 13a–f present the 6-DOF motion responses of the DeepCwind semi-submersible FOWT in
the frequency domain by comparing LC4 with LC3. As can be seen, there are small discrepancies of
6-DOF motion responses between the quasi-static model and the dynamic mooring model. However,
portions of fairlead tension responses in Figure 14a–c indicate that the MSQS approach predicts reduced
tensions compared to the LM approach. Masciola et al. [24] suggested that the platform motions
were affected by the mooring dynamics only in harsh sea states but the mooring dynamics played
a significant role in predicting the mooring loads in any sea condition. Our simulation results of the
DeepCwind semi-submersible FOWT are evidently in good agreement with their findings.
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4.7. The Effect of Wave Heading Angle

Figure 15a–f exhibit the 6-DOF motion responses of the DeepCwind semi-submersible FOWT in
the frequency domain at different wave heading angles for cases LC4–7. Due to the geometry symmetry
of the DeepCwind semi-submersible FOWT, the heave motions appear to have the same magnitudes
among all cases of varying wave heading angles. In contrast to the sway motion, it is evident that
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the surge motion has the reduced amplitude response with the increase of the wave heading angle.
Meanwhile, it is seen that the slow-drift force in the sway mode at 90◦ is more dominant than that in the
surge mode at 0◦. For the rotational modes, both of the roll and yaw motions have large responses with
the increase of the wave heading angle in contrast to the results of the pitch motion. When the wave
heading angle is changed, the surge, sway and yaw motions are more easily subject to the slow-drift
forces than the other three motions.
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5. Conclusions

The hydrodynamic simulation of the DeepCwind semi-submersible FOWT discretized by the
3D panel method was discussed by considering the effects of the QTF and the quadratic damping
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coupled with two different kinds of mooring models for varying wave heading angles. According to
the simulation results, there are some concluding remarks that can be described as follows:

1. By mean of the grid-independence test, the simulation results of hydrodynamic coefficients for
the semi-submersible FOWT are generally in good agreement with the ones by the WAMIT.

2. In addition to agreeing well with the UOU data, it is found that the quadratic damping has the
most considerable contribution to the computation of the heave RAO compared with the surge
and the pitch RAOs.

3. According to the analysis of the slow-drift wave forces, the QTFs are found to have great
contributions to the horizontal motion responses in the surge, the sway, and the yaw modes,
but have little influence on the vertical motion responses in the heave, the roll and the pitch modes.

4. Regarding the mooring effect, the 6-DOF motion responses in the frequency domain indicate that
the estimation of the MSQS approach is close to the result of the LM approach. Nevertheless,
the LM approach predicts more evident tension responses than the MSQS approach.

5. The variation of the wave heading angles has a tiny influence on the heave motion, whereas it is
highly correlated with the slow-drift forces in the surge, the sway, and the yaw modes.

6. In a future study, the damage cases of a broken mooring line and the flooding of a single column
will be considered to investigate system behaviors in extreme sea states.
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