Temperature and Pressure Dependence of the Infrared Spectrum of 1-Ethyl-3-Methylimidazolium Trifluoromethanesulfonate Ionic Liquid
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Absorbance as a Function of Temperature
3.2. Absorbance as a Function of Pressure
3.3. Computational Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singh, S.K.; Savoy, A.W. Ionic liquids synthesis and applications: An overview. J. Mol. Liq. 2020, 297, 112038. [Google Scholar] [CrossRef]
- Kumar, A. A Review on Ionic Liquids as Novel Absorbents for SO2 Removal. In Environmental Processes and Management; Singh, R., Shukla, P., Singh, P., Eds.; Water Science and Technology Library, Springer: Berlin, Germany, 2020; Volume 91, pp. 285–307. [Google Scholar]
- Hejazifar, M.; Lanaridi, O.; Bica-Schröder, K. Ionic liquid based microemulsions: A review. J. Mol. Liq. 2020, 303, 112264. [Google Scholar] [CrossRef]
- Ramos, M.; Jiménez, A.; Garrigós, M.C. IL-based advanced techniques for the extraction of value-added compounds from natural sources and food by-products. TrAC Trend. Anal. Chem. 2019, 119, 115616. [Google Scholar] [CrossRef]
- Marcinkowska, R.; Konieczna, K.; Marcinkowski, L.; Namieśnik, J.; Kloskowski, A. Application of ionic liquids in microextraction techniques: Current trends and future perspectives. TrAC Trend. Anal. Chem. 2019, 119, 115614. [Google Scholar] [CrossRef]
- Zandu, S.K.; Chopra, H.; Singh, I. Ionic Liquids for Therapeutic and Drug Delivery Applications. Curr. Drug Res. Rev. 2020, 12, 26–41. [Google Scholar] [CrossRef]
- Gupta, N.; Liang, Y.N.; Hu, X. Thermally responsive ionic liquids and polymeric ionic liquids: Emerging trends and possibilities. Curr. Opin. Chem. Eng. 2019, 25, 43–50. [Google Scholar] [CrossRef]
- Usuki, T.; Yoshizawa-Fujita, M. Extraction and Isolation of Natural Organic Compounds from Plant Leaves Using Ionic Liquids. Adv. Biochem. Eng. Biotechnol. 2019, 168, 227–240. [Google Scholar]
- Yang, G.; Song, Y.; Wang, Q.; Zhang, L.; Deng, L. Review of ionic liquids containing, polymer/inorganic hybrid electrolytes for lithium metal batteries. Mater. Des. 2020, 190, 108563. [Google Scholar] [CrossRef]
- Navarra, M.A. Ionic Liquids as Safe Electrolyte Components for Li-Metal and Li-Ion Batteries. MRS Bull. 2013, 38, 548–553. [Google Scholar] [CrossRef]
- Palumbo, O.; Trequattrini, F.; Appetecchi, G.B.; Paolone, A. The influence of the alkyl chain length on the microscopic configurations of the anion in the crystalline phases of PYR1A-TFSI. J. Phys. Chem. C 2017, 121, 11129–11135. [Google Scholar] [CrossRef]
- Paschoal, V.H.; Faria, L.F.O.; Ribeiro, M.C.C. Vibrational spectroscopy of ionic liquids. Chem. Rev. 2017, 117, 7053–7112. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Takekiyo, T.; Imai, Y.; Abe, H. Pressure-induced spectral changes of room-temperature ionic liquid, N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethylsulfonyl)imide, [DEME][TFSI]. J. Phys. Chem. C 2012, 116, 2097–2101. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Abe, H.; Imai, Y.; Takekiyo, T.; Hamaya, N. Decompression-induced crystal polymorphism in a room-temperature ionic liquid, N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate. J. Phys. Chem. B 2013, 117, 3264–3269. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Yuan, C.; Li, H.; Zhu, P.; Su, L.; Yang, K.; Wu, J.; Yang, G.; Liu, J. Successive disorder to disorder phase transitions in ionic liquid under high pressure. J. Mol. Struc. 2016, 1106, 70–75. [Google Scholar] [CrossRef]
- Faria, L.F.O.; Lima, T.A.; Ribeiro, M.C.C. Phase transitions of the tonic liquid [C2C1im][NTf2] under high pressure: A synchrotron X-ray diffraction and Raman microscopy study. Cryst. Growth Des. 2017, 17, 5384–5392. [Google Scholar] [CrossRef]
- Chen, F.; You, T.; Yuan, Y.; Pei, C.; Ren, X.; Huang, Y.; Yu, Z.; Li, X.; Zheng, H.; Pan, Y.; et al. Pressure-induced structural transitions of a room temperature ionic liquid—1-ethyl-3- methylimidazolium chloride. J. Chem. Phys. 2017, 146, 094502. [Google Scholar] [CrossRef]
- Abe, H.; Kishimura, H.; Takaku, M.; Watanabe, M.; Hamaya, N. Low-temperature and high-pressurephases of a room-temperature ionic liquidand polyiodides: 1-methyl-3-propylimidazolium iodide. Faraday Discuss. 2018, 206, 49–60. [Google Scholar] [CrossRef]
- Faria, L.F.O.; Nobrega, M.M.; Falsini, N.; Fanetti, S.; Temperini, M.L.A.; Bini, R.; Ribeiro, M.C.C. Structure and Reactivity of the Ionic Liquid 1-Allyl-3-methylimidazolium Iodide under High Pressure. J. Phys. Chem. B 2019, 123, 1822–1830. [Google Scholar] [CrossRef]
- Penna, T.C.; Ribeiro, M.C.C. Vibrational frequency shift of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids under high pressure. J. Mol. Liq. 2019, 278, 213–218. [Google Scholar] [CrossRef]
- Wu, J.; Cheng, X.; Wu, M.; Li, H.; Zhu, X.; Wang, Z.; Yuan, C.; Yang, K.; Su, L. Crystallization of ionic liquid [EMIM][NO3] under extreme conditions. J. Mol. Struc. 2019, 1189, 265–271. [Google Scholar] [CrossRef]
- Osti, N.C.; Haberl, B.; Jalarvo, N.; Boehler, R.; Molaison, J.J.; Goyette, R.J., Jr.; Mamontov, E. Dynamics of a room temperature ionic liquid under applied pressure. Chem. Phys. 2020, 530, 110628. [Google Scholar] [CrossRef]
- Capitani, F.; Gatto, S.; Postorino, P.; Palumbo, O.; Trequattrini, F.; Deutsch, M.; Brubach, J.-B.; Roy, P.; Paolone, A. The complex dance of the two conformers of bis(trifluoromethanesulfonyl)-imide as a function of pressure and temperature. J. Phys. Chem. B 2016, 120, 1312–1318. [Google Scholar] [CrossRef] [PubMed]
- Capitani, F.; Trequattrini, F.; Palumbo, O.; Paolone, A.; Postorino, P. Phase transitions of PYR14-TFSI as a function of pressure and temperature: The competition between smaller volume and lower energy conformer. J. Phys. Chem. B 2016, 120, 2921–2928. [Google Scholar] [CrossRef] [PubMed]
- Capitani, F.; Trequattrini, F.; Palumbo, O.; Roy, P.; Postorino, P.; Paolone, A. Pressurizing the mixtures of two ionic liquids: Crystallization vs. vetrification. J. Raman Spectr. 2017, 48, 1819–1827. [Google Scholar] [CrossRef]
- Faria, L.F.O.; Nobrega, M.M.; Temperini, M.L.A.; Bini, R.; Ribeiro, M.C.C. Triggering the chemical instability of an ionic liquid under high pressure. J. Phys. Chem. B 2016, 120, 9097–9102. [Google Scholar] [CrossRef]
- Capitani, F.; Höppner, M.; Malavasi, L.; Marini, C.; Artioli, G.A.; Hanfland, M.; Dore, P.; Boeri, L.; Postorino, P. Structural evolution of solid phenanthrene at high tressures. J. Phys. Chem. C 2016, 120, 14310–14316. [Google Scholar] [CrossRef]
- Izgorodina, E.I.; Seeger, Z.L.; Scarborough, D.L.A.; Tan, S.Y.S. Quantum Chemical Methods for the Prediction of Energetic, Physical, and Spectroscopic Properties of Ionic Liquids. Chem. Rev. 2017, 117, 6696–6754. [Google Scholar] [CrossRef]
- Dong, K.; Liu, X.; Dong, H.; Zhang, X.; Zhang, S. Multiscale studies on ionic liquids. Chem. Rev. 2017, 117, 6636–6695. [Google Scholar] [CrossRef]
- Herstedt, M.; Smirnov, M.; Johansson, P.; Chami, M.; Grondin, J.; Servant, L.; Lassègues, J.C. Spectroscopic characterization of the conformational states of the bis(trifluoromethanesulfonyl)imide Anion (TFSI−). J. Raman Spectrosc. 2005, 36, 762–770. [Google Scholar] [CrossRef]
- Fujii, K.; Seki, S.; Fukuda, S.; Kanzaki, R.; Takamuku, T.; Umebayashi, Y.; Ichiguro, S.-I. Anion conformation of low-viscosity room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl) imide. J. Phys. Chem. B 2007, 111, 12829–12833. [Google Scholar] [CrossRef]
- Umebayashi, Y.; Fujimori, T.; Sukizaki, T.; Asada, M.; Fujii, K.; Kanzaki, R.; Ishiguro, S.-I. Evidence of Conformational Equilibrium of 1-Ethyl-3-methylimidazolium in Its Ionic Liquid Salts: Raman Spectroscopic Study and Quantum Chemical Calculations. J. Phys. Chem. A 2005, 109, 8976–8982. [Google Scholar] [CrossRef]
- Haddad, B.; Paolone, A.; Villemin, D.; Taqiyeddine, M.; Belarbi, E.; Bresson, S.; Rahmouni, M.; Dhumal, N.R.; Kim, H.J.; Kiefer, J. Synthesis, conductivity, and vibrational spectroscopy of tetraphenylphosphonium bis(trifluoromethanesulfonyl)imide. J. Mol. Struc. 2017, 1146, 203–212. [Google Scholar] [CrossRef]
- Palumbo, O.; Vitucci, F.M.; Trequattrini, F.; Paolone, A. A study of the conformers of the N,N-diethyl-N-methyl-N-propylammonium ion by means of infrared spectroscopy and DFT calculations. Vib. Spec. 2015, 80, 11–16. [Google Scholar] [CrossRef]
- Singh, D.K.; Rathke, B.; Kiefer, J.; Materny, A. Molecular structure and interactions in the ionic liquid 1-ethyl-3- methylimidazolium trifluoromethanesulfonate. J. Phys. Chem. A 2016, 120, 6274–6286. [Google Scholar] [CrossRef]
- Panja, S.; Haddad, B.; Debdab, M.; Kiefer, J.; Chaker, Y.; Bresson, S.; Paolone, A. Cluster formation through hydrogen bond bridges across chloride anions in a hydroxyl-functionalized ionic liquid. ChemPhysChem 2019, 20, 936–940. [Google Scholar] [CrossRef] [PubMed]
- Fumino, K.; Fossog, V.; Wittler, K.; Hempelmann, R.; Ludwig, R. Dissecting anion-cation interaction energies in protic ionic liquids. Angew. Chem. Int. Ed. 2013, 52, 2368–2372. [Google Scholar] [CrossRef]
- Fumino, K.; Reichert, E.; Wittler, K.; Hempelmann, R.; Ludwig, R. Low-frequency vibrational modes of protic molten salts and ionic liquids: Detecting and quantifying hydrogen bonds. Angew. Chem. Int. Ed. 2012, 51, 6236–6240. [Google Scholar] [CrossRef]
- Fumino, K.; Fossog, V.; Stange, P.; Paschek, D.; Hempelmann, R.; Ludwig, R. Controlling the subtle energy balance in protic ionic liquids: Dispersion forces compete with hydrogen bonds. Angew. Chem. Int. Ed. 2015, 54, 2792–2795. [Google Scholar] [CrossRef]
- Niemann, T.; Zaitsau, D.H.; Strate, A.; Stange, P.; Ludwig, R. Controlling “like–likes–like” charge attraction in hydroxy-functionalized ionic liquids by polarizability of the cations, interaction strength of the anions and varying alkyl chain length. Phys. Chem. Chem. Phys. 2020, 22, 2763–2774. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Song, Y.; Liu, X.; Cheng, W.; Yao, X.; Zhang, S. Understanding structures and hydrogen bonds of ionic liquids at the electronic level. J. Phys. Chem. B 2012, 116, 1007–1017. [Google Scholar] [CrossRef]
- Liu, Z.; El Abedinab, S.Z.; Endres, F. Electrochemical and spectroscopic study of Zn(II)coordination and Zn electrodeposition in threeionic liquids with the trifluoromethylsulfonateanion, different imidazolium ions and theirmixtures with water. Phys. Chem. Chem. Phys. 2015, 17, 15945–15952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vygodskii, Y.S.; Mel’nik, O.A.; Lozinskaya, E.I.; Shaplov, A.S.; Malyshkina, I.A.; Gavrilova, N.D.; Lyssenko, K.A.; Antipin, M.Y.; Golovanov, D.G.; Korlyukov, A.A.; et al. The influence of ionic liquid’s nature on free radical polymerization of vinyl monomers and ionic conductivity of the obtained polymeric materials. Polym. Adv. Technol. 2007, 18, 50–63. [Google Scholar] [CrossRef]
- Ignat’ev, N.V.; Barthen, P.; Kucheryna, A.; Willner, H.; Sartori, P. A convenient synthesis of triflate anion ionic liquids and their properties. Molecules 2012, 17, 5319–5338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faye, M.; Bordessoule, M.; Kanouté, B.; Brubach, J.B.; Roy, P.; Manceron, L. Improved mid infrared detector for high spectral or spatial resolution and synchrotron radiation use. Rev. Sci. Instr. 2016, 87, 063119. [Google Scholar] [CrossRef] [PubMed]
- Celeste, A.; Borondics, F.; Capitani, F. Hydrostaticity of pressure-transmitting media for high pressure infrared spectroscopy. High Pres. Res. 2019, 39, 608–618. [Google Scholar] [CrossRef]
- Piermarini, G.J.; Block, S.; Barnett, J.D.; Forman, R.A. Calibration of the Pressure Dependence of the R1 Ruby Fluorescence Line to 195 Kbar. J. Appl. Phys. 1975, 46, 2774–2780. [Google Scholar] [CrossRef]
- Shao, Y.; Molnar, L.F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S.T.; Gilbert, A.T.B.; Slipchenko, L.V.; Levchenko, S.V.; O’Neill, D.P.; et al. Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys. 2006, 8, 3172–3191. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, O.; Cimini, A.; Trequattrini, F.; Brubach, J.-B.; Roy, P.; Paolone, A. The infrared spectra of protic ionic liquids: Performances of different computational models to predict hydrogen bonds and conformer evolution. Phys. Chem. Chem. Phys. 2020, 22, 7497–7506. [Google Scholar] [CrossRef]
- Kiefer, J.; Stuckenholz, M.; Rathke, B. Influence of the alkyl chain on the vibrational structure and interioni interactions in 1-alkyl-3-methylimidazolium trifluoromethanesulfonate liquids. J. Mol. Liq. 2018, 255, 413–418. [Google Scholar] [CrossRef]
- Choudhury, A.R.; Winterton, N.; Steiner, A.; Cooper, A.I.; Johnson, K.A. In situ crystallization of ionic liquids with melting points below −25 °C. CrystEngComm 2006, 8, 742–745. [Google Scholar] [CrossRef]
- Faria, L.F.O.; Ribeiro, M.C.C. Phase transitions of triflate-based ionic liquids under high pressure. J. Phys. Chem. B 2015, 119, 14315–14322. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, H.; Zhu, X.; Su, L.; Yang, K.; Yuan, C.; Yang, G.; Li, X. Structural and conformational properties of 1-decyl-3- methylimidazoliumtetrafluoroborate under high pressure. J. Mol. Struc. 2017, 1137, 610–614. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, Z.; Chen, L.; Huang, H.; Wu, J.; Huang, H.; Yang, K.; Wang, Y.; Su, L.; Yang, G. Kinetic Effect on Pressure-Induced Phase Transitions of Room Temperature Ionic Liquid, 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate. J. Phys. Chem. B 2015, 119, 14245–14251. [Google Scholar] [CrossRef] [PubMed]
- Burba, C.M.; Chang, H.-C. Temperature- and pressure-dependent infrared spectroscopy of 1-butyl-3-methylimidazolium trifluoromethanesulfonate: A dipolar coupling theory analysis. Spectr. Acta A Mol. Biomol. Spectr. 2018, 193, 338–343. [Google Scholar] [CrossRef]
- Su, L.; Li, M.; Zhu, X.; Wang, Z.; Chen, Z.; Li, F.; Zhou, Q.; Hong, S. In Situ Crystallization of Low-Melting Ionic Liquid [BMIM][PF6] under High Pressure up to 2 GPa. J. Phys. Chem. B 2013, 117, 12296–12302. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trequattrini, F.; Celeste, A.; Capitani, F.; Palumbo, O.; Cimini, A.; Paolone, A. Temperature and Pressure Dependence of the Infrared Spectrum of 1-Ethyl-3-Methylimidazolium Trifluoromethanesulfonate Ionic Liquid. Appl. Sci. 2020, 10, 4404. https://doi.org/10.3390/app10124404
Trequattrini F, Celeste A, Capitani F, Palumbo O, Cimini A, Paolone A. Temperature and Pressure Dependence of the Infrared Spectrum of 1-Ethyl-3-Methylimidazolium Trifluoromethanesulfonate Ionic Liquid. Applied Sciences. 2020; 10(12):4404. https://doi.org/10.3390/app10124404
Chicago/Turabian StyleTrequattrini, Francesco, Anna Celeste, Francesco Capitani, Oriele Palumbo, Adriano Cimini, and Annalisa Paolone. 2020. "Temperature and Pressure Dependence of the Infrared Spectrum of 1-Ethyl-3-Methylimidazolium Trifluoromethanesulfonate Ionic Liquid" Applied Sciences 10, no. 12: 4404. https://doi.org/10.3390/app10124404
APA StyleTrequattrini, F., Celeste, A., Capitani, F., Palumbo, O., Cimini, A., & Paolone, A. (2020). Temperature and Pressure Dependence of the Infrared Spectrum of 1-Ethyl-3-Methylimidazolium Trifluoromethanesulfonate Ionic Liquid. Applied Sciences, 10(12), 4404. https://doi.org/10.3390/app10124404