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Abstract: Artificial intelligence has impacted education in recent years. Datafication of education has
allowed developing automated methods to detect patterns in extensive collections of educational
data to estimate unknown information and behavior about the students. This research has focused
on finding accurate predictive models to identify at-risk students. This challenge may reduce the
students’ risk of failure or disengage by decreasing the time lag between identification and the real
at-risk state. The contribution of this paper is threefold. First, an in-depth analysis of a predictive
model to detect at-risk students is performed. This model has been tested using data available in
an institutional data mart where curated data from six semesters are available, and a method to
obtain the best classifier and training set is proposed. Second, a method to determine a threshold for
evaluating the quality of the predictive model is established. Third, an early warning system has
been developed and tested in a real educational setting being accurate and useful for its purpose to
detect at-risk students in online higher education. The stakeholders (i.e., students and teachers) can
analyze the information through different dashboards, and teachers can also send early feedback
as an intervention mechanism to mitigate at-risk situations. The system has been evaluated on two
undergraduate courses where results shown a high accuracy to correctly detect at-risk students.

Keywords: early warning system; artificial intelligence; predictive models; personalized feedback;
online learning

1. Introduction

The use of technology in education is getting more and more intensive day by day, and it is
becoming a necessity for effective and permanent learning to be updated. Technology has been utilized
and continues to be used in many areas such as students’ access to course materials, administrators’
follow-up management processes, teachers’ course control, and activities in education. Particularly
in the field of Artificial Intelligence (AI), the technology has moved effectively in education to a
different dimension with a significant leap [1]. It is well-known that students benefit not only in
material access, but also in monitoring their processes, evaluating their learning, and monitoring their
performance, through intelligent tutoring systems (ITS). One of these ITS is developed in the LIS
(Learning Intelligent System) project [2], which aims to assist students in their educational processes.
LIS is a system formed within the Universitat Oberta de Catalunya (UOC) to develop an adaptive
system to be globally applicable at the custom Learning Management System (LMS) implemented
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at UOC to help students to succeed in their learning process. The project intends to provide help
to the student in terms of automatic feedback in assessment activities, recommendations in terms
of learning paths, self-regulation or learning resources, and gamification techniques to improve the
students’ engagement.

The first stage of this project focuses on the development of an Early Warning System (EWS)
to detect at-risk students by using data from the past and present and to warn the student and his
or her teacher about the situation. Also, the system provides semi-automatic feedback as an early
intervention mechanism in order to amend possible conditions of failure. A proof of concept of the
EWS was proposed in [3], where sound results in terms of a predictive model and the application of
the EWS in a higher education course were presented. Such experiment was used as a pillar to build
a functional and enhanced version of the EWS at the UOC where the learning process is held by a
custom LMS.

This paper aims at presenting a new system with several contributions. The first contribution is a
predictive model denoted as Gradual At-Risk (GAR) model. Such a model is based only on students’
grades and predicts the likelihood to fail a course. A deep analysis of the model is performed in the
whole set of courses at the university by using the data available in a data mart provided by our
institution. Compared to [3], we propose a method to obtain the best classifier and training set for
each course and semester. This method was proposed after observing that new data do not always
contribute to improving the accuracy and, therefore, sometimes should be discarded.

The second one is a method to determine a threshold to consider the trained GAR model of a
course as a high- or low-quality model. The GAR model, when used in a real educational setting, will
provide to the student feedback based on her/his risk level. Therefore, a teacher cannot afford to send a
wrong message or recommendation to the student. This threshold is used for the EWS to adapt the
type of message sent to the student.

The third contribution is the application of the EWS in a real educational setting in two courses.
The GAR model is used to provide meaningful information to the students and teachers in terms of
dashboards and feedback. In this paper, we analyze the accuracy of identifying at-risk students in
such a real learning scenario and the impact on the final performance of the courses. We consider
also relevant this last contribution, since it proves the application of the AI in the educational field.
These contributions are drawn as a consequence of answering the next research questions underpinning
this study:

RQ1. How accurate is the predictive model in the whole institution after six semesters of
available data?

RQ2. Which is the accuracy limit for the predictive model to consider a low-quality model to
adapt the intervention measures in the EWS?

RQ3. How accurate is the EWS in identifying at-risk students in a real educational setting?
The paper is organized as follows. Section 2 summarizes related work and Section 3 focuses on

the methods and context of the institution where the research took place. Section 4 analyzes the process
to obtain the best classification algorithm and training set for the GAR model, and Section 5 presents
two of the main dashboards provided by the EWS as well as the implemented feedback intervention
mechanism. The experimental results on two case studies are described in Section 6, while Section 7
discusses the results. Finally, the conclusions and future work are summarized in Section 8.

2. Related Work

2.1. Predictive Models

As described in different systematic reviews [4,5], many models can be applied to education.
Students’ performance [6], students’ dropout within an individual course [7,8], program retention [9],
recommender systems in terms of activities [10], learning resources, [11] and next courses to be
enrolled [12,13] are some examples of the application of those models.
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Independently of the desired outcome, models have used many different types of data in order to
perform the predictions. Different variables (or features) have been explored ranging from demographic
data [14] (e.g., age, gender, ethnic origin, marital status, among others), self-reported questionnaires [15,16],
continuous assessment results [17,18], user-generated content [19] to LMS data [20,21].

Numerous classification algorithms have been analyzed through the proposed predictive
models. Decision Tree (DT) [22], Naive Bayes (NB) [23], Support Vector Machine (SVM) [24],
Logistic Regression [25–27], Hierarchical Mixed models [17,28], K-Nearest Neighbors (KNN) [26],
Neural Network models [29], or Bayesian Additive Regressive Trees [30] are some examples of the
employed techniques.

As previously mentioned, we focus on identifying at-risk students by checking the likelihood to
fail a course following the claims of other researchers [24,25,31] to create specific course predictive
models. A simple model based on grades of the continuous assessment activities (named GAR model)
is used instead of using a complex model. Activities performed by students throughout their learning
process are indicators of the performance they will reach in the future. Although we use this simple
model, we have comparable results with other predictive models to detect at-risk students.

Table 1 illustrates a comparison of the predictive GAR model with other related works where
more complex models were proposed. The table shows for each comparison, the intervention point in
the semester timeline (Semester Intervention Point), the compared accuracy metric (Accuracy Metric),
the value of the metric in the referenced work (Value Metric Ref.), the LOESS regression of the GAR
model at the intervention point in the complete set of courses at our university (LOESS Regr. GAR whole
institution), and the percentages of courses with a metric value larger than the metric of the referenced
work (Perc. Courses Metric GAR > Metric Ref.). Authors in [23] obtained an F1,5 (F-score) of 62.00% with
Naive Bayes at 40% of the semester timeline; meanwhile, our model reaches a LOESS regression value
of 78.55% on average in the whole courses at our university at the same point of the semester timeline.
When courses are evaluated individually, we found that more than 70% of the courses have an F1,5

larger than 62.00% at this point of the semester. Authors in [25] reached a TNR (True Negative Rate) of
75.40% at the end of the course meanwhile the GAR model reaches a LOESS regression value of 97.56%,
and more than 99% of the courses have a TNR larger than 75.40%. Authors in [30] computed the MAE
(Mean Absolute Error) at 40% of the semester timeline. They reached a MAE value of 0.07, whereas the
GAR model has a LOESS value of 0.08, and more than 64% of the courses have a MAE smaller than
0.07 at this point of the semester. The approach presented in [32] reached a TPR (True Positive Rate)
of 81.00% at the 40% of the semester timeline while our model obtained a LOESS regression value of
80.46% but more than 40% of the courses have a TPR larger than 81.00% at this point of the semester.
On the approach presented in [33], where SMOTE was used in order to balance classes, the AUC (Area
Under The Curve) ROC (Receiver Operating Characteristics) curve was used to evaluate the model.
The best model reached a ROC value near to 91.00% at 60% of the semester timeline. The GAR model
without SMOTE has a LOESS value near to 93.00% and more than 59% of the courses have a ROC
value larger than 91.00% at this point of the semester.

Table 1. Comparison GAR Model with other related work.

Reference Semester
Intervention Point

Accuracy
Metric

Value Metric
Ref.

LOESS Regr. GAR
Whole Institution

Perc. Courses Metric
GAR >Metric Ref.

Marbouti et al. [23] 40% F1,5 62.00% 78.55% 70%
Macfadyen et al. [25] 100% TNR 75.40% 97.56% 99%

Howard et al. [30] 40% MAE 0.07 0.08 64%
Akçapınar et al. [32] 40% TPR 81.00% 80.46% 40%
Buschetto et al. [33] 60% AUC 91.00% 93.00% 59%

F1,5: F-score, TNR: True Negative Rate, MAE: Mean Absolute Error, TPR: True Positive Rate, AUC: Area Under
the Curve.
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2.2. Early Warning Systems

An EWS is a tool used to monitor students’ progress. It identifies students at-risk of either
failing or dropping out of a course or program [23]. It helps students to be on track and aid in their
self-directed learning journey [34]. Also, it can help to reach the necessary information about student
engagement and performance to facilitate personalized timely interventions [28].

Based on the predictive models mentioned in the previous section, some examples of EWS
are students’ dropout detection on face-to-face environments [35], students’ dropout on online
settings [36–38], or early identification of at-risk students, which may allow some type of intervention
to increase retention and success rate [16,25,26,39].

Many of the previously described approaches propose an EWS, but the EWS is just sketched
from a conceptual point of view. Therefore, few full-fledged developments can be found. The most
referenced one is the Course Signals at Purdue University [17] where different dashboards are available
at the student’s and teacher’s point of view. Moreover, the system triggers a visual warning alert
using a Green-Amber-Red semaphore. Other systems can be found where information is available in
dashboards for teachers [31,40,41] and students [42].

Personalized feedback [17] is one possible intervention mechanism for these kind of approaches.
Other intervention mechanisms can be applied, such as pedagogical recommendations [43],
mentoring [44], or academic support environment [45], with a significant impact on performance,
dropout, and retention. Feeding students depending on his or her situation will affect students’
perception and will impact his or her way of learning and self-regulation. If personalized feedback can
be one of the possible intervention mechanisms, nudges can complement it in a very constructive way.
Nudges according to the definition provided in [46] (p. 2) are “interventions that preserve freedom
of choice that nonetheless influence people’s decisions”. Nudges have their origin in behavioral
economics, which studies the effects of psychological knowledge about human behavior to enhance
decision-making processes. In education [47], nudges intend to obtain a higher educational attainment
(e.g., improvement of grades, to increase course completion rates and earned credits, or to increase
course engagement and participation), and they have been used in primary, secondary, and higher
education, including Massive Open Online Courses (MOOC), and involving different stakeholders
(parents, students, and teachers). The information provided by nudges includes remainders, deadlines,
goal setting, advice, etc. How the information included in nudges is stated can also increase social
belonging and motivation.

The EWS we propose is able to provide personalized feedback. First, students receive predictions
from the first activity about the minimum grade they should obtain in the activity to succeed in the
course prior to the submission deadline date. Thus, the student is knowledgeable about the effort he
or she should apply in the activity to have a chance to pass the course. This prediction is updated
after each graded activity and a new prediction is generated for the next one. This type of prediction
differs from other approaches where the models can only be used after a certain number of activities,
denoted as the best point of intervention when enough data have been gathered to have an accurate
model. Second, the teacher can complement these predictions with constructive feedback from the
very beginning of the course, including recommendations to revert (or even prevent) at-risk situations.

3. Methods and Context

3.1. University Description: Educational and Assessment Model

The UOC from its origins (1995) was conceived as a purely online university that used the
Information and Communication Technologies (ICT) intensively for both the teaching-learning
process and management. This implies that most of the interactions between students, teachers, and
administrative staff occur within the UOC’s own LMS, generating a massive amount of data. Its
educational model is centered on the students and the competences they should acquire across their
courses. The assessment model is based on continuous assessment and personal feedback is given to
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students after obtaining a mark when delivering assessment activities. Thus, any student enrolled
is having a personalized learning process by means of quantitative, but also qualitative feedback.
Although the student profile is aged up to the regular ones with family and full job employed, they
devote time to learn in order to get a better position in their job or to enhance their knowledge with
another bachelor’s degree. Students at UOC are really competence oriented, but usually, they lack
daily time for all personal and professional tasks. This student background and their profiles became a
cornerstone to developing the EWS to guide them in a personal way when being assessed and when
receiving personal feedback.

The assessment process within a course is based on a continuous assessment model combined with
summative assessment at the end of the semester. Therefore, there are different assessment activities
during the semester and a face-to-face final examination at the end of the course. The final mark is
computed based on a predefined formula for each course where each assessment activity has a different
weight depending on the significance of the assessment activity contents within the course. The UOC
grading system is based on qualitative scores on assessment activities. Each assessment activity is
graded with the following scale: A (very high), B (high), C+ (sufficient), C- (low), D (very low), where a
grade of C- and D means failing the assessment activity. In addition, another grade (N, non-submitted)
is used when a student does not submit the assessment activity. Also, UOC courses are identified
by codes, and students are randomly distributed in classrooms. Finally, the semesters are coded by
academic year and the number of the semester (i.e., 1 for fall and 2 for spring semester). For instance,
20172 identifies the 2018 spring semester of the academic period 2017/2018.

3.2. Data Source: The UOC Data Mart

The UOC provides their researchers and practitioners with data to promote a culture of data
evidence-based decision-making. This approach is materialized in a centralized learning analytics
database: the UOC data mart [48]. The UOC data mart collects and aggregates data that are transferred
from the different operational data sources using ETL (Extract-Transform-Load) processes, solving
problems as data fragmentation, duplication, and the use of different identifiers and non-standardized
vocabularies for describing the same real-world entities. During the ETL processes, sensitive data are
anonymized (personal data are obfuscated, and all internal identifiers are changed to a new one [49]).

UOC uses from its origins a custom LMS [50] that has been improved and upgraded several
times during the last 25 years (the current version is version 5.0) according to the new requirements of
learners, teachers, and available technology. Although the campus has a high interoperability to add
external tools (e.g., Wordpress, Moodle, MediaWiki, among others), mainly the learning process is
done in the custom classrooms. Operational data sources include data from the custom LMS and other
learning spaces (e.g., data about navigation, interaction, and communication), as well as data from
institutional warehouse systems (CRM, ERP, etc.), which include data about enrollment, accreditation,
assessment, and student curriculum, among others. As a result, the UOC data mart offers: (1) historical
data from previous semesters; (2) data generated during the current semester aggregated by day.
Currently, the UOC data mart stores curated data since the academic year 2016–2017.

3.3. Gradual At-Risk Model

A GAR model is built for each course, and it is composed of a set of predictive models defined as
submodels based only on a student’s grades during the assessment process. A course has a submodel
for each assessment activity, and each submodel uses the grades of the current and previous graded
assessment activities as features to produce the prediction. Note that, there is no submodel for the final
exam since there is nothing to produce a prediction from when the final score of the course can be
computed straightforwardly from the complete set of grades (i.e., the assessment activities and the
final exam) by using the final mark formula.

The prediction outcome for the submodels is to fail the course. This is a binary variable with two
possible values: pass or fail. We are interested in predicting whether a student has chances to fail the
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course, and we denote this casuistic as at-risk student. Although a global at-risk prediction taking into
account all enrolled courses is an interesting outcome, we focus individually on each course to give
simple messages and recommendations to the student on courses in which she or he is at-risk.

Example 1. Let us describe the GAR model for a course with four Assessment Activities (AA). In such a case,
the GAR model contains four submodels:

PrAA1(Fail?) = (GradeAA1)
PrAA2(Fail?) = (GradeAA1, GradeAA2)
PrAA3(Fail?) = (GradeAA1, GradeAA2, GradeAA3)
PrAA4(Fail?) = (GradeAA1, GradeAA2, GradeAA3, GradeAA4)

where PrAAn(Fail?) denotes the name of the submodel to predict whether the student will fail the course after the
assessment activity AAn. Each submodel PrAAn(Fail?) uses the grades (GradeAA1, GradeAA2, . . . , GradeAAn),
that is, the grades from the first activity until the activity AAn. Each submodel can be evaluated based on
different accuracy metrics. We use four metrics [23]:

TNR = TN
TN+FP ACC = TP+TN

TP+FP+TN+FN

TPR = TP
TP+FN F1,5 =

(1+1,52)TP
(1+1,52)TP+1,52FN+FP

(1)

where TP denotes the number of at-risk students correctly identified, TN the number of non-at-risk students
correctly identified, FP the number of at-risk students not correctly identified, and FN the number of non-at-risk
students not correctly identified. These four metrics are used for evaluating the global accuracy of the model
(ACC), the accuracy when detecting at-risk students (true positive rate—TPR), the accuracy when distinguishing
non-at-risk students (true negative rate—TNR) and a harmonic mean of the true positive value (precision) and
the TPR (recall) that weights correct at-risk identification (F score - F1,5). Note that, the area under the ROC
curve (AUC) is not considered on this study [51].

3.4. Next Activity At-Risk Simulation

The GAR model only provides information about whether the student has the chance to fail the
course based on the last graded assessment activities. This model can be used to give information to
the student about the likelihood to fail, but it is not very useful when the teacher wants to provide
early and personalized feedback concerning the next assessment activities. We define the Next Activity
At-risk (NAAR) simulation as the simulation to determine the minimum grade that the student has to
obtain in the next assessment activity to have a chance to pass the course.

This prediction is performed by using the submodel of the assessment activity we want to predict.
The NAAR simulation uses the grades of the previous activities already graded and simulates all
possible grades for the activity we want to predict for identifying when the prediction changes from
failing to pass.

Example 2. Let us take the submodel PrAA1(Fail?) of Example 1. In order to know the minimum grade, six
simulations are performed based on the possible grades the student can obtain in AA1. Each simulation will
produce an output based on the chances to fail the course. An output example is shown next based on the first
assessment activity of the Computer Fundamentals course that will be analyzed in Section 6.

PrAA1(Fail?) = (N) → Fail? = Yes
PrAA1(Fail?) = (D) → Fail? = Yes
PrAA1(Fail?) = (C-) → Fail? = Yes
PrAA1(Fail?) = (C+) → Fail? = Yes
PrAA1(Fail?) = (B) → Fail? = No
PrAA1(Fail?) = (A) → Fail? = No

where we can observe that students have a high probability of passing the course when they get a B or an A
grade on the first assessment activity. This means that most of the students pass when they obtain these grades.
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However, it is possible to pass the course with a lower mark, but less frequently. Note that, this is for the
first assessment activity where there are no previous activities. On further activities, the grades of previous
activities are taken into account and the prediction is better personalized for each student based on his or her
previous grades.

3.5. Datasets

Table 2 describes the datasets used for each semester. As we can observe, the number of registries
for training increases each semester that are counted from the 2016 fall semester (20161). This number
depends on the number of enrolled students. The number of offered courses also differs on each
semester and depends on the opened and extinguished academic programs in the semester taken as
testing semester, and a minimum number of ten enrollments per course to open the course stated by
the university.

Table 2. Description of the dataset.

20171 20172 20181 20182

Number of courses 889 830 968 979
Min–Max activities / course 3–14 3–11 3–11 3–11

Semesters for training (from–to) 20161–20162 20161–20171 20161–20172 20161–20181
Registries training set 260153 362368 474957 585936
Semester for testing 20171 20172 20181 20182

Registries test set 102215 112589 110979 138746

3.6. Generation and Evaluation of the Predictive Model

The GAR model is built by using Python and the machine learning Scikit-Learn library [52], while
the statistical analysis has been performed by the analytical tool R [53]. The GAR model for a given
course is trained based on the historical data of previous semesters from the 2016 fall semester (i.e.,
20161), and the test is performed on the data of the last historical available semester from the UOC
data mart (that is hosted in Amazon S3). For example, for semester 20171, the models are trained with
data from semesters 20161 and 20162 to test it on the semester 20171. During the validation test, four
algorithms are tested: NB, DT, KNN, SVM.

In order to evaluate the classification algorithms, the GAR model is built for each course of
the institution based on the number of assessment activities (see Example 1 in Section 3.3). Each
course has a different number of assessment activities and some courses have a final exam. In such
cases, the submodel for the final exam is not generated since the final grade can be straightforwardly
computed from all grades of the assessment activities and the final exam, and no prediction is needed.
Then, the training and test are performed for each course and submodel. In order to analyze the results
globally for the whole institution, the value of each metric described in Section 3.3 is ordered and
uniformly distributed among the semester timeline based on the submission date of the respective
assessment activity associated with the submodel. For instance, for a course with four assessment
activities, the prediction of the first assessment activity is set to the position at 20%, the second at 40%,
the third at 60%, and the fourth at 80% of the semester timeline. Note that, this distribution changes
on courses with a different number of activities. This distribution helps to identify at each stage of
the timeline the average quality of the GAR model based on the submitted assessment activities at
that time for the whole institution. Finally, in order to evaluate the different classification algorithms,
the LOESS regression [54] is used. Although a linear regression would show a pretty linear perception
of the increment of the accuracy, this would not represent the correct relationship between metrics and
timeline. The LOESS regression shows a better approximation due to the large number of values.

The NB was selected in [3] as the best classification algorithm to be used in the institution based on
the performance observed on the four metrics. Precisely, the selection was mainly done by the results of
the TPR and F1,5 since these metrics tend to indicate the algorithm that mostly detects at-risk students.
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Currently, we have more data in the data mart, and further analysis can be done on how it is
evolving the GAR model among the semesters. Specifically, three more semesters can be analyzed
(i.e., until 2019 spring semester). We can answer the research questions RQ1 and RQ2 by (1) analyzing
how the NB performance evolves during these three semesters; (2) proposing a method to obtain
the best classification algorithm and training set for each assessment activity and course; and, finally,
(3) determining a method to deduce a threshold to consider the GAR model of a course as a high- or
low-quality model.

During the semester, trained models are used by means of an operation that is run on the daily
information available at the UOC data mart. A cron-like Python script downloads the data from the
UOC data mart and checks whether students have been graded for any assessment activity proposed
in the course. When this happens, the corresponding NAAR simulation is executed by getting the
respective trained GAR model. All these functionalities (e.g., train, test, statistical analysis, and daily
predictions) among others are embedded into the EWS. The full description of the technical architecture
and capabilities of the EWS can be found in [55].

3.7. Case Studies in Real Educational Settings

The GAR model and the EWS that hosts it have been tested through pilots in two real learning
scenarios, as will be presented in Section 6, because LIS project follows a mixed research methodology
that combines an action research methodology with a design and creation approach. This mixed
research methodology as well as the outputs it produces are depicted in Figure 1.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 29 

The NB was selected in [3] as the best classification algorithm to be used in the institution based 
on the performance observed on the four metrics. Precisely, the selection was mainly done by the 
results of the TPR and F1,5 since these metrics tend to indicate the algorithm that mostly detects at-
risk students. 

Currently, we have more data in the data mart, and further analysis can be done on how it is 
evolving the GAR model among the semesters. Specifically, three more semesters can be analyzed 
(i.e., until 2019 spring semester). We can answer the research questions RQ1 and RQ2 by 1) analyzing 
how the NB performance evolves during these three semesters; 2) proposing a method to obtain the 
best classification algorithm and training set for each assessment activity and course; and, finally, 3) 
determining a method to deduce a threshold to consider the GAR model of a course as a high- or 
low-quality model.  

During the semester, trained models are used by means of an operation that is run on the daily 
information available at the UOC data mart. A cron-like Python script downloads the data from the 
UOC data mart and checks whether students have been graded for any assessment activity proposed 
in the course. When this happens, the corresponding NAAR simulation is executed by getting the 
respective trained GAR model. All these functionalities (e.g. train, test, statistical analysis, and daily 
predictions) among others are embedded into the EWS. The full description of the technical 
architecture and capabilities of the EWS can be found in [55]. 

3.7. Case Studies in Real Educational Settings 

The GAR model and the EWS that hosts it have been tested through pilots in two real learning 
scenarios, as will be presented in Section 6, because LIS project follows a mixed research methodology 
that combines an action research methodology with a design and creation approach. This mixed 
research methodology as well as the outputs it produces are depicted in Figure 1. 

 

Figure 1. Research methodology. 

Action research methodology allows to investigate and improve own practices, guided by the 
next principles [56]: concentration on practical issues, an iterative cycle plan-act-reflect, an emphasis 
on change, collaboration with practitioners, multiple data generation methods, and finally, action 
outcomes plus research outcomes and research.  

The design and creation approach is especially suited when developing new Information 
Technology (IT) artifacts. It is a problem-solving approach that uses an iterative process involving 
five steps [57]: Awareness (the recognition of a problem where actors identify areas for further work 
looking at findings in other disciplines); Suggestion (a creative leap from curiosity about the problem 
offering very tentative ideas of how the problem might be addressed); Development (where the idea 
is implemented, depending on the kind of the proposed IT artifact); Evaluation (examines the 

Figure 1. Research methodology.

Action research methodology allows to investigate and improve own practices, guided by the
next principles [56]: concentration on practical issues, an iterative cycle plan-act-reflect, an emphasis
on change, collaboration with practitioners, multiple data generation methods, and finally, action
outcomes plus research outcomes and research.

The design and creation approach is especially suited when developing new Information
Technology (IT) artifacts. It is a problem-solving approach that uses an iterative process involving
five steps [57]: Awareness (the recognition of a problem where actors identify areas for further work
looking at findings in other disciplines); Suggestion (a creative leap from curiosity about the problem
offering very tentative ideas of how the problem might be addressed); Development (where the idea is
implemented, depending on the kind of the proposed IT artifact); Evaluation (examines the developed
IT artifact and looks for an evaluation of its worth and deviations from expectations); and Conclusion
(where the results of the design process are consolidated and the gained knowledge is identified).
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First, the problem to solve (learners’ at-risk identification) is detected and shared by teachers and
educational institutions. Secondly, a solution (the EWS) is suggested. Thirdly, the EWS is implemented
and proved in different real learning scenarios following the iterative cycle of plan-act-reflect. This cycle
is done through pilots conducted across courses during several academic semesters by cycles. At the
end of each cycle, an evaluation process is done. This will probably cause changes and improvements
in the EWS, and the initiation of a new cycle until a final artifact is available and ready to be used in
educational institutions.

4. Algorithms and Training Dataset Selection for the GAR Model

4.1. Naive Bayes Evaluation

In order to evaluate the NB algorithm, we used the datasets described in Section 3.5 and the
evaluation process described in Section 3.6 for the four semesters from the 2017 fall semester (20171) to
the 2019 spring semester (20182). The results processed with R-based scripts are shown in Figure 2 and
Table A1 in Appendix A for the four metrics ACC, TNR, TPR, and F-score 1,5 with a LOESS regression.
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In general, we can observe that adding more training data helps to improve all the metrics with
respect to the baseline 20171. However, the last two semesters (i.e., 20181 and 20182) do not impact on
getting better TPR results, i.e., correctly detect at-risk students. This is due to mostly the students at
UOC tending to pass the courses. The average performance rate in the institution was 78.90% in the
2018/2019 academic year [58]. Thus, more data help to identify new situations when students are not
at-risk, and new data have a low impact on detecting new at-risk students.
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4.2. Algorithm and Training Set Selection

As mentioned previously, we observed that the metrics do not always improve over semesters for
specific courses, even though more training data are available. Different factors may impact on these
results: 1) The behavior of students in some semesters may add noise to the model that produces worse
results; or 2) some academic change such as new resources or changes in the difficulty or the design
of the assessment activities may impact the grades of a specific semester. In order to deal with these
issues, we propose a method to select the best training set and classification algorithm for each course
and activity. This selection can be reduced to an optimization problem with the objective function L to
be maximized

L (STR, M) = TPR
(
DSTR,C,A, DSTE,C,A, M

)
+ TNR

(
DSTR,C,A, DSTE,C,A, M

)
(2)

where STR is the semester to explore as training set, STE is the semester to perform the validation test,
M is the classification algorithm used to perform the training, and DS,C,A is a slice from the whole
dataset D based on the semester S, course C and activity A. After different tests, we found that the
best choice is to maximize the sum of the TPR and TNR. This function tends to select classifiers and
training sets that achieve good results in both metrics, while maximizing one of the metrics tends to
penalize the discarded one.

The method has been split into two algorithms. The first algorithm selects the best classification
algorithm, while the second one selects the best training set for each assessment activity of each
course. The selection of the best algorithm (see Algorithm 1) searches for the best algorithm based
on four available classification algorithms: NB, DT, KNN, and SVM. The process is quite simple but
computationally expensive since four training processes are run for each course and assessment activity.
However, there is a substantial benefit since each activity (i.e., each submodel for the GAR model
associated with the course) has the best-selected algorithm.

Algorithm 1. Pseudocode of Best_Classification_Algorithm.

Input: STR: Semester training dataset, STE: Semester test dataset
Output: BCL: Best Classification Algorithm per course and activity
Steps:

Initialize(BCL)
For each course C ε STE do

For each activity A ε C do
MCL← Select best classifier M ε {NB, KNN, DT, SVM} based on opt. function L(STR, M)

(Equation (2))
BCL(C, A, STR)← {STR, MCL}

Return BCL

The second process is presented in Algorithm 2. In this case, the process goes further, and it
explores for the submodel of the activity the surrounding submodels in terms of previous activities
within the same course, and the same submodel within the same course in the previous semesters.
We observed that sometimes an activity is not mandatory, or it has a low impact on the final grade of the
course, or a semester adds noise to the model, and such a semester produces a lower accurate submodel.
For example, it is commonly observed in our institution that the behavior of the students is different
depending on the spring or fall semester. Thus, in such cases, we suggest selecting the best-known
training set within the same course in previous activities or in the same activity among previous
semesters. Note that the computational cost is even higher than the former since the evaluation test
should be redone with the training set of the selected semester and the test set of last available semester.
We are aware that this process will be unfeasible when the number of semesters increases. Thus,
a window of training semesters should be defined in the future.
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Algorithm 2. Pseudocode of Best_Classification_and_Training_Set.

Input: STE: Semester test dataset
Output: BCL: Best classification algorithm and training set per course and activity
Steps:

//Train and test all semesters with respect to STE
BCL ← ∅

For each semester S ε {20171, . . . , STE} do
BCL ← BCL ∪ Best_Classification_ Algorithm (S, STE)

//Compare on same semester
For each semester S ε {20171, . . . , STE} do

For each course C ε S do
For each pair (Ai, Aj) ε C st. i < j do

{S, MAi}← BCL(C, Ai, S)
{S, MAj}← BCL(C, Aj, S)
If L(S, MAi) > L(S, MAj) then BCL(C, Aj, S)← {S, MAi}

//Compare inter semester
For each course C ε STE do

For each activity A ε C do
For each pair (S, STE) st. S ε {20171, . . . , STE-1}

{S, MS} ← BCL(C, A, S)
{STE, MSTE}← BCL(C, A, STE)
If L(S, MS) > L(STE, MSTE) then BCL(C, A, STE)← {S, MS}

Return BCL

In order to analyze the performance of these two algorithms, the evaluation test has been performed
only in the last semester 20182 for the different metrics and taking as a baseline the NB classifier results.
The results are shown in Figure 3 and Table A2 in Appendix A. The best algorithm selection slightly
improves the different metrics since the best selection is only performed within the explored algorithms
on an activity. In the case of the TPR, the LOESS regression compared to the NB improves from the
range 44.60–86.04% to 47.88–88.43%. However, considerable improvement is obtained with the second
algorithm, where the LOESS regression increases until 58.79–93.60%. This result will help to define a
more significant threshold to consider a high-quality submodel, as we will see in the next section.

Although the last finding proves that the second process helps to identify the best classifier and
training set for each assessment activity, it is not clear which classifier has been mostly selected and
from which origin semester. Table 3 summarizes this information with interesting insights. The table
shows the percentage of classifiers and from which semester they have been selected. The process
mostly selected the DT with more than half of the trained submodels.

Table 3. Distribution of the classification algorithm selection for 2019 spring semester.

20171 20172 20181 20182 Total

Decision Tree 10.42% 9.27% 12.10% 19.19% 50.98%
K-Nearest Neighbors 2.47% 3.43% 4.80% 5.19% 15.89%

Naive Bayes 4.66% 5.72% 5.81% 9.73% 25.92%
Support Vector 1.43% 1.54% 1.66% 2.58% 7.21%

Total 18.97% 19.97% 24.37% 36.69% 100.00%
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The NB proposed in [3] is only selected the 25.92% of the total. Thus, we conclude that the NB is
not the most appropriate classifier to train the models when more data are available. Finally, we can
observe that the distribution among semesters is quite reasonable. The training dataset of the last
available semester is the most selected one (36.69%), but for some submodels, the dataset from previous
semesters with less training data helps to get more accurate models. Finally, we give an insight about
the computational cost of this operation in absolute numbers for semester 20182. The number of
training operations for each semester are 26,468 in 20182, 24,996 in 20181, 23,144 in 20172 and 24,184
in 20171. Note that, this number for a semester takes into account the training operation for the four
classifiers for all courses and activities.

4.3. Quality Threshold Identification

Some predictive models aimed at early identify at-risk students defined the best point of
intervention during the semester. This point is deduced from the experimental results [23] or is fixed
before the evaluation [59]. Our EWS performs interventions from the first assessment activity. Thus,
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the concept of intervention point has nonsense. In our system, the submodels (i.e., the training model
applied on each assessment activity) are classified based on high- or low-quality models based on
the TPR and TNR since the intervention measures are adapted based on the quality of the model.
For instance, an intervention action based on a likelihood to fail the course cannot be applied as-it-is
when the submodel has a low-quality TPR.

Similarly, a praise message based on a likelihood to pass cannot be applied when the submodel
has a low-quality TNR. In those cases, the interventions are adapted when the likelihood to fail or pass
cannot be assured (see Section 5 for further details). This classification is performed based on a quality
threshold that can be defined globally for the institution or individually for each course based on the
teacher’s experience.

In this section, we seek the quality threshold globally applicable to demonstrate that the GAR
model can be valid with a unique threshold for the whole institution and avoid particular cases. Also,
we want to analyze whether the method presented in Algorithm 2 to obtain the best algorithm classifier
and training set can improve this threshold with respect to [3] where the threshold selection was
performed by observation without any data analysis.

The quality threshold identification can be reduced to an optimization problem since the objective
is to maximize the threshold while the number of submodels considered high-quality do not worsen
significantly. However, this problem is unfeasible to be solved because there is no optimal solution.
Thus, we define a function to be maximized in order to approximate the problem

f (x) = x +

∑
i ∈ T ωi

∑
j∈Si

j
∣∣∣ TPR( j) >x∑

i∈T ωi
(3)

where x is the threshold value, T ∈ {0%, 5%, 10%, . . . , 95%, 100%} positions of the semester timeline,
wi is a weight that can be assigned to the position i of the semester timeline, and Si is the set of all the
submodels that the submission deadline is in the position i. In summary, the function seeks to sum the
threshold value with the weighted average of the number of submodels that their TPR is above the
threshold for each position of the semester timeline. We defined a weighted average due to it might
being interesting to give more relevancy to some positions of the semester. Note that, we assume in our
optimization problem all positions with the same weight (i.e., wi = 1). Moreover, the TPR is used since
we are interested to particularly maximize the threshold over submodels for detecting at-risk students.

After solving the optimization problem for the 2019 spring semester with an R-based script,
the result is illustrated in Figure 4a where f(x) summands are plotted in the axis. As we can observe,
both summands generate a curve of Pareto Points with the optimum on the threshold 75% (i.e.,
the function f(x) maximized on the threshold 75%). Thus, we define high-quality submodels as all
submodels with a TPR higher than 75%.

In order to further compare with [3], we computed the percentage of explored courses where the
TPR and TNR are higher than thresholds 70% and 75% (see Figure 4b). Note that, we removed the
multiple plots for the TNR because there was only an average increment of 1–3% over each threshold.
For the 2019 spring semester, even increasing the threshold to 75%, we obtain better coverage of
high-quality submodels compared to the 2017 fall semester, where the threshold was set to 70%.
The coverage is quite similar for the TNR at 25% from 70.07% of the courses to 69.80% but there is
a considerable increment at 50% from 89.31% to 97.12%. Although only 26.71% of the courses will
have a TPR higher than 75% at 25% of the semester timeline (it was 24.01% on 2017 fall semester),
this value increases considerably to 74.58% at the 50% of the semester timeline (it was 65.95% in 2017
fall semester).
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5. The Early Warning System: Dashboards and Feedback Intervention Mechanism

The EWS provides data visualization features to teachers and students by means of dashboards.
Those features are complemented with a feedback intervention mechanism. The full description of the
technical architecture and capabilities of the EWS can be found in [55].

Students and teachers have different dashboards and permissions. Students have a simple
dashboard to see the prediction to succeed in the enrolled courses. The prediction is based on the
NAAR simulation, and a Green-Amber-Red semaphore (similar to [17]) that warns the students about
their warning classification level. A semaphore in green represents that the student is non-at-risk,
while a semaphore with a red signal indicates a high likelihood to fail. For an assessment activity,
the student gets first the prediction of the minimum grade that she or he should obtain to have a high
likelihood to pass the course. This prediction is received while the student is working in the assessment
activity (see Figure 5a). When the assessment activity is submitted and assessed, the grade (see the
triangles above and below the C- grade in the bar corresponding to the first assessment activity in
Figure 5b) and the warning level are updated in the student dashboard, and the prediction for the next
assessment activity (the second assessment activity in the case of Figure 5b) is computed and plotted in
the dashboard as a new bar.
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Teachers have a different dashboard to see the performance of the students and help them in case
of trouble. Figure 6 shows a tabular dashboard where all the students of a course are shown. As we
can observe, only students who have consented to participate in the study (by signing a consent form)
can be reviewed. For those who accepted, the teacher can easily check the progress of the predictions
and warning levels. The readability is quite clear based on the same Green-Amber-Red semaphore
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used for the students. Teachers have a new color classification (the black color) to detect potential
students’ dropout (i.e., students that do not submit their assessment activities).Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 29 
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The EWS is able to provide feedback messages as an early intervention mechanism. Feedback
messages contain recommendations, and also nudge students, especially those being at-risk [60].
The intervention mechanism is implemented by means of a feedback messaging system that aims to
enhance teachers’ actions over students depending on their status, thus providing a better understanding
about their own learning process. From the teacher’s point of view, the system forces them to provide
early and personalized feedback to students when delivering each assessment activity. From the
students’ point of view, the EWS is providing them the teacher feedback, but also a probabilistic
percentage of their success. It is also providing students with richer and valuable information: what
they have to do in order to improve their learning process and obtain a better grade and pass the course.
They are also simultaneously nudged to better perform the next activity (the importance of the activity
on the upcoming activities is provided, as well as the provision of additional learning resources) and
the importance for better planning. In summary and according to [47], the information provided in the
feedback messages contains nudges that fall in the categories of goal setting, informational nudges,
assistance, and reminders.

Figure 7 summarizes in a decision tree the rationale behind the EWS concerning the students’
warning level when an assessment activity is graded, which in turn, impacts the feedback message to
be sent. When graded, a feedback message is triggered to each student for notifying his or her warning
level (predictive statement), as well as the feedback for the next assessment activities. The system
distinguishes different situations depending on the warning level, and the feedback message is adapted
depending on the specific situation. Green (G) means that the student is not at-risk when the TNR is
greater than the minimum threshold of 75% established in Section 4.3 (i.e., the model is considered a
high-quality model). In such a case the student receives a comforting message in order to congratulate
him or her. Yellow (or amber) means that the student is not considered at-risk, but he or she can be in
the near future. The feedback message alerts the student about his or her chances to pass and gives
some recommendations to progress successfully in the course. In addition, the feedback message
also contains explanations about the accuracy of the prediction because, in some cases, the prediction
(may pass or may fail) is under the quality threshold. Therefore, information about the TNR and TPR
constitutes one of the differences among the three different types of yellow messages (Y1, Y2, and
Y3) that are sent in this case. The distinction of different situations in yellow messages constitutes
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an enhancement regarding the work presented in [3], where no such distinction existed. This is
especially relevant in the case of students that, in spite of passing the assessment activity, the grade
obtained is under the grade suggested by the predictive model (message Y2). Red and black represent
that the student is at serious risk of failing or dropping out (at-risk student). When the student has
submitted and failed the assessment activity, (R) is the most critical situation, although the effort
of submitting the activity is positively valued by the teachers. In this case, the feedback message
contains recommendations to get out of this situation. Also, the message suggests the student contact
his or her teacher in order to talk about the difficulties the student is experiencing in the course.
Potentially, this can derive in a more individual support. The case when the student has not submitted
the last or the last two assessment activities (B1 and B2) is dealt separately from the previous case,
representing a potential dropout student. The feedback message asks for the reasons for not submitting
the activities and reminds the student of his or her options to pass the course (information about
mandatory assessment activities and the final exam). Unfortunately, and depending on the timeline of
the semester, the student can receive a feedback message confirming him or her that has hopelessly
failed the course. In such a case, the student receives advice to avoid this situation the next time he or
she enrolls in the course, and the proposal of tasks the student can perform before a new semester starts.
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From an educational point of view, the EWS is a powerful tool to reduce dropout and increase
students’ engagement. It is providing a constructive answer for not disappointing students. In the
case of students that are not properly following the course, the system is pointing out how they can
improve by showing them new opportunities and even the mandatory assessment activities remaining
to successfully pass the course. Finally, students that have not submitted their assessment activities
can provide very useful information to the teacher, not only to build better feedback messages for the
next edition of the course but also to introduce enhancements in the next course editions (new learning
resources, better course design, etc.).

6. Case Studies: Computer Fundamentals and Databases

The EWS has been tested in two case studies to answer the research question RQ3. The EWS
aims to detect but also support at-risk students, which basically means, to help them to continue their
learning process by providing accurate and valuable feedback for not failing or dropping out.

Specifically, the EWS has been introduced in Computer Fundamentals and Databases courses. Both
courses are online courses offered in the Computer Science bachelor’s degree and in Telecommunication
bachelor’s degree at UOC. While Computer Fundamentals is a first-semester course, Databases is
offered in the fourth one. Thus, students’ knowledge and expertise are quite different when performing
each one. Both courses are 6 ECTS and their assessment model is based on continuous assessment



Appl. Sci. 2020, 10, 4427 18 of 28

(several assessment activities are proposed along the semester, some of them are practical activities
that imply the development of artifacts) and a final face-to-face exam at the end of the semester.

In Computer Fundamentals (a first-year course), students are devoted to learning the main
principles for designing digital circuits and the basis of the computer architecture. In Databases,
students are devoted to learning what databases are (and the specialized software that manages them),
and how to create and manipulate relational databases using the SQL language (both interactive and
embedded SQL). For the Databases course, previous knowledge is required (in programming and
logic), so this is the reason to be in the fourth semester. The Computer Fundamentals course has a high
number of students enrolled each semester (between 500–600 students) and becomes the first contact
with the custom LMS. The Databases course has over 300 students each semester, but students already
know very well the UOC educational model as well as how the LMS works. So, they are not as new in
Databases as they are in Computer Fundamentals. Thus, both courses are excellent ones to evaluate the
EWS and analyze whether at-risk students can be correctly identified and help them through the early
feedback system. The system has been tested in both courses during one semester. Previously, a proof
of concept was also tested as it can be seen in [3], but now a new version of the EWS is tested with
new features and enhancements suggested by teachers and students when collecting their perception,
as explained in [60]. As mentioned in Section 3.7, this process has been done following the design
and creation research method that uses an iterative model to better develop IT artifacts to solve real
problems. This new version of the EWS is the second iteration.

The EWS was tested during the first semester of the academic course 2019/2020 (i.e., 20191
semester). A total of 313 students from Computer Fundamentals (CF) gave their consent to test the
system, and a total of 71 students from Databases (DB) gave it too. To sum up, 384 students were
testing it. In both courses, and after teachers graded each assessment activity, the EWS was triggering
predictions to students, as well as personalized feedback messages, which depended on the warning
level classification of the students presented in Section 5. According to the numbers of students
taking part in the pilot, and the number of assessment activities performed, the system triggered 1607
predictions (CF: 1252; DB: 355). Feedback messages attached to each prediction and assessment activity
were previously designed and analyzed by teachers, with the aim of motivating students for further
assessment activities. Feedback messages tended to be as personalized as the system allowed, and
they included some nudges to support the students learning process according to their grades.

The quantitative analysis provided below compares both courses involved in the case studies,
according to the following criteria: assessment model and performance of GAR model, the performance
of the system for correctly classifying students according to their warning level and the statistical
significance on the final mark distribution as a consequence of the use of the EWS.

6.1. Performance of GAR Model

CF course has four assessment activities starting during the semester timeline at 0% (AA1),
25% (AA2), 50% (AA3) and 75% (AA4) approximately. The formula to compute the final mark (FM) is:

FM = MAX(10% GradeAA1 + 10% GradeAA2 + 10% GradeAA3 + 35% GradeAA4 + 35% GradeEXAM,
50% GradeAA4 + 50% GradeEXAM)

(4)

where GradeAAn is the grade of the assessment activity AAn and GradeEXAM is the grade of the final
exam. The AA4 (which is a practical assessment activity) and the EXAM are mandatory, and they have
a significant impact on the final score. Note that, the course can be even passed without performing
the three first activities. However, the teachers know by experience that it is difficult to pass the course
without the first three activities where fundamental topics are learnt. Thus, most of the students pass
the course by completing the four activities.

In the case of DB course, five assessment activities are delivered during the semester timeline
at 0% (AA1), 20% (AA2), 40% (AA3), 60% (AA4), and 80% (AA5), approximately. AA2, AA3, and
AA5 are practical activities that deal with SQL concepts (basic SQL statements, triggers, and stored
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procedures, and JDBC, respectively). The final mark (FM) in the DB course is computed as follows.
First, a global mark for the practical assessment activities (GradeP) is computed. In case the student
delivers AA2, AA3, and AA5, the two best grades are selected, and GradeP is computed as the average
of both grades. Otherwise, the average of the two submitted practical activities is the global mark for
the practical assessment activities. Secondly, the final mark for the course (FM) is:

FM = MAX(32.5% GradeEXAM + 32.5% GradeP + 21% GradeAA1 + 14% GradeAA2,
50% GradeEXAM + 50% GradeP)

(5)

Students must perform at least two of three practical activities (AA2, AA3, and AA5) and the final
exam (EXAM) in order to pass the course. Although AA1 and AA2 are optional, most of the students
pass the course by completing these optional activities too, similarly to CF.

Table 4 shows the performance of the GAR model for both courses. For each submodel, TP, FP,
TN, FN, and the accuracy metrics ACC, TNR, TPR, and F1,5 are summarized. The table also shows
the best algorithm (Algorithm) and the last semester for the training set (Semester) that was used to
train each submodel (as detailed in Section 4.2). Although, in the case of CF the first submodel (which
corresponds to the AA1) is considered a low-quality model for detecting non-at-risk students (i.e., TNR
smaller than the threshold of 75%), the quality is good for the rest. In the case of DB, the accuracy
is very good from the very beginning of the course in the detection of the students that are likely to
pass the course (TNR begins at 89.53%). That means that the grade for AA1 is a very good indicator to
predict success in DB. However, the submodel still does not predict correctly students that may fail
the course (TPR is 68.18%). This fact is very different in the CF course, where the students at-risk are
detected from the AA1 (TPR 82.83%).

Table 4. Performance of the GAR model.

COMPUTER FUNDAMENTALS

TP FP TN FN ACC(%) TNR(%) TPR(%) F1,5(%) Algorithm Semester

PrAA1 164 42 92 34 77.11 68.66 82.83 81.81 Decision Tree 20171
PrAA2 171 10 121 44 84.39 92.37 79.53 83.60 Decision Tree 20182
PrAA3 327 22 185 27 91.27 89.37 92.37 92.78 Support Vector 20172
PrAA4 187 3 131 11 95.78 97.76 94.44 95.63 K-Nearest Neighbors 20171

DATABASES

TP FP TN FN ACC(%) TNR(%) TPR(%) F1,5(%) Algorithm Semester

PrAA1 30 9 77 14 82.31 89.53 68.18 70.65 K-Nearest Neighbors 20182
PrAA2 31 5 81 13 86.15 94.19 75.45 74.63 K-Nearest Neighbors 20182
PrAA3 38 4 82 6 92.31 95.35 86.36 87.59 Support Vector 20182
PrAA4 37 3 83 7 92.31 96.51 84.09 86.51 Naive Bayes 20182
PrAA5 39 2 84 5 94.62 97.67 88.64 90.54 K-Nearest Neighbors 20182

6.2. Performance of the Warning Level Classification

Regarding the accuracy of the warning level classification, the results for each assessment activity
are shown in Table 5 for both courses. On the one hand, the table shows the number of students
assigned to each classification level (No.) and the final performance of the students for each warning
level (Fail, Pass). The set of messages to be sent according to the warning level classification (WL)
has been previously discussed in Section 5 (see Figure 7). The final performance for each case gives
insights about the correct assignation of the students.

As it can be observed, in the case of CF and for the AA1, students were mostly assigned to the
yellow warning level. This was due to the low-quality of the submodel, and it is consistent with the
results previously discussed (see Table 5). In subsequent assessment activities, all the colors were used.
It is worth noting that the accuracy improved, and students assigned to the yellow color were those
students that passed the assessment activity, but with a grade lower than the grade suggested by the
prediction. The green color was correctly assigned for 74.5% of the students, and the red and black
(non-submitted) to 93.5% and 100%, respectively on AA2. Similar results were observed in the AA3 and
the AA4. Some students assigned to red color in the AA2 moved to black in the upcoming assessment
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activities because they did not submit previous activities, causing course dropout. The yellow color
only served as medium risk level at first assessment activities, whereas students were progressively
moved to the respective correct risk level on the final ones.

Table 5. Performance of the warning level where WL are the different warning levels defined in Figure 7,
No. is the number of students identified in that risk, Fail is the percentage of students identified in that
risk that failed the course and Pass is the percentage of students in that risk that passed the course.

COMPUTER FUNDAMENTALS

WL

AA1 AA2 AA3 AA4

No. Fail
(%)

Pass
(%) No. Fail

(%)
Pass
(%) No. Fail

(%)
Pass
(%) No. Fail

(%)
Pass
(%)

G – – – 200 25.5 74.5 194 19.6 80.4 188 15.4 84.6
Y1 221 33.0 67.0 – – – – – – – – –
Y2 52 78.8 21.1 33 63.6 36.4 9 66.7 33.3 9 66.7 33.3
Y3 – – – – – – – – – – – –
R 32 87.5 12.5 31 93.5 6.4 13 92.3 7.69 14 92.9 7.1
B 8 100 – 43 100 – 49 93.9 6.12 18 100 –

B2 0 – – 6 100 – 48 100 – 84 100 –

DATABASES

WL

AA1 AA2 AA3 AA4 AA5

No. Fail
(%)

Pass
(%) No. Fail

(%)
Pass
(%) No. Fail

(%)
Pass
(%) No. Fail

(%)
Pass
(%) No. Fail

(%)
Pass
(%)

G 55 21.8 78.2 49 10.2 89.8 47 6.3 93.6 46 6.5 93.5 54 13.0 87.04
Y1 – – – – – – – – – – – – – – –
Y2 – – – 2 100 – 2 50.0 50.0 4 50.0 50.0 – – –
Y3 9 66.6 33.3 – – – – – – – – – – – –
R – – – 15 73.3 26.7 5 80.0 20.0 1 100 – 1 – 100
B 7 71.4 28.6 3 100 – 13 84.6 15.3 5 60.0 40.0 – – –

B2 – – – 2 100 – 4 100 – 15 93.3 6.7 16 100 –

Concerning the DB course, and on the contrary of CF, some students were assigned to the green
color in AA1. This is consistent with the fact that the grade obtained in AA1 was a good indicator for
predicting course success. A percentage of 78.2 of the students were correctly informed about their
chances of success, and this ratio increased significantly in the upcoming assessment activities up to
89.8 and 93.6% in AA2 and AA3, respectively. This is consistent with the fact that AA2, AA3, and
AA5 were (at least two of them) mandatory activities, and students prioritize the submission of AA2
and AA3 in order to accomplish this requirement as soon as possible in the course timeline. In fact,
most of the students assigned to the green color delivered AA2, AA3, and AA5. Similar to CF, yellow
color warned students that their performance was under the prediction in all the assessment activities.
Students assigned to the red color appear in AA2 (first potentially mandatory assessment activity),
and 73.3% were correctly identified at-risk, and this ratio increased until 80.0% in AA3. Clearer than
in the case of CF, students assigned to red color in AA2 moved to black color in the subsequent
assessment activities.

We also checked whether there is statistical significance on the final mark distribution comparing
the semester where the case studies were run concerning the previous semester (20182, i.e., 2019
spring semester). The objective is to see whether the EWS has impacted the performance of the
courses. We used the unpaired two-sample Wilcoxon test due to the non-normal distribution of the
final mark [61]. Here, we assume as the null hypothesis that the marks are worse or equal than in the
previous semester. Note that, the dropout students are not taken into account. For CF, the p-value <

0.04 and, thus, we can reject the null hypothesis, the median of the final mark increases from 7.8 to
7.9, and the dropout decreases from 51% to 31% on the students who signed the consent. The results
regarding retention and scoring are slightly better, but we cannot claim that they are only inferred
from the utilization of the EWS, since difficulty on the activities may be different, and the percentages
were computed based on students who signed. Those students are generally more engaged, and they
tend to participate in pilots (i.e., self-selection bias).

Related to DB, the p-value < 0.02 and we can also reject the null hypothesis, the median of the
final mark increases from 7 to 7.6, and the dropout decreases from 26 to 17%. A similar claim to CF
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can be done. However, the difference is significantly better. This course does not have the variability
in terms of marks that a first-year course has. The students have already done several courses in an
online learning setting. Therefore, they know better how to self-regulate to pass the course compared
to new students of a first-year course that do not have this prior experience.

7. Discussion

In this section, we discuss the contributions proposed in this paper and we conclude the answers
to the research questions. Related to RQ1 and RQ2, we provided a method to select the best algorithm
classifier and training set for each assessment activity and course in order to always get one of the best
submodels. The results presented in Section 4.2 prove a high accuracy of the GAR predictive model
when it is analyzed in the whole institution.

Focusing on RQ1 (How accurate is the predictive model in the whole institution after four
semesters of available data?), the GAR model has improved significantly compared to the results
presented in [3], by increasing the size of the datasets and selecting the best algorithm and training set.
As an example, the LOESS regression of the TPR improved on the NB of the 2017 fall semester from
38.96–77.69% until 58.79–93.60% of the optimal selection in the 2019 spring semester. The GAR model
has comparable results to more complex models that take into account other features such as CGPA,
enrolled semesters, attempted times, as stated in Section 2.1.

There are still many courses where it is challenging to detect at-risk students in the first half of the
semester since there is a low number of failing students. Although resampling methods for imbalance
classes [62,63] can be applied, we need to analyze thoroughly if this model is suitable for these courses
and maybe other models should be applied to guide the students. Also, the GAR model has a relevant
limitation. When the assessment process is changed regarding the number of assessment activities or
contents of the activities, the model is invalid for the course. Although other models presented in the
literature are also affected by the same limitation [17,18], we solved the problem with the best selection
process. In such cases, the method proposed in Section 4.2 tends to select the previous best-known
submodel (mostly the previous assessment activity) and such a trained submodel is applied. Even
having nearly ten percent of courses (around 100 courses in the 2019 fall semester) with such changes
in the assessment model, the results presented in such a section were unaffected. We observed that the
behavior of the students is quite similar when only one assessment activity is changed but it starts
to fail on major changes. In such limitations, we should consider new features as further research in
order to improve the global accuracy of the system.

Related to RQ2 (Which is the accuracy limit for the predictive model to consider a low-quality
model to adapt the intervention measures in the EWS?), we increased the intervention threshold to
75% without losing any high-accurate model in terms of TPR with a new method by transforming the
search to an optimization problem. Thus, the intervention mechanism can provide more focused early
feedback messages based on high accurate TPR and TNR.

Concerning RQ3 (How accurate is the EWS on identifying at-risk students in a real educational
setting?), two case studies have been analyzed in order to answer this research question. The EWS is
capable to correctly predict the likelihood to fail the course and the Green-Amber-Red risk classification
is capable of classifying the risk level correctly in both case studies, even though the courses have
different assessment models and the behavior and experience of the students are significantly different.
In terms of performance and dropout, there is a slight improvement. However, we cannot assure that
it is only based on the EWS utilization.

Related to the early feedback intervention mechanism, the EWS uses feedback messages
nudging [46], intervention [64], and counseling [42]. The classification of seven different conditions
provides a high personalization. In a fully online setting, early feedback is one of the most appropriate
mechanisms in terms of scalability. Also, we found that the feedback sent to the students based on their
progress to their email accounts are highly appreciated by the students. These results are consistent
with those exposed in [47]. This feedback was part of the intervention mechanism discussed in [60].
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Furthermore, some students that were in at-risk situation decided to contact the teacher after receiving
this early feedback in order to get additional educational support (i.e., 40 students in Computer
Fundamentals and 12 students in Databases during all the semester).

In terms of the results of the case studies, there are some threats to validity to consider. In terms
of internal validity, self-selection bias and mortality may affect the quantitative analysis. Students
gave their consent to be included in the pilot since this is required in our institution by the Research
Ethical Committee [65]. Thus, engaged students tend to participate in such pilots, and performance
computed on those students tends to be higher compared to the average of the course. However, it is
worth noting that the teachers received replies to the early feedback on dropout students and nobody
complained about the system, they congratulated the initiative and even some of them apologized for
dropping out of the course and not reaching the course objectives.

8. Conclusions and Future Work

AI will be fundamental in the coming years for supporting education and develop new educational
systems for supporting online learning. The ongoing pandemic pointed out the deficiencies that
we currently have in education (on-site but also online) [66] and the need to improve our learning
processes and environments. Tools like those presented in this paper, but also others based on automatic
recommendation [67], are some examples of systems that could enhance the way the learning processes
are currently done and leverage the work of the teachers on learning contexts with a large number
of students.

In this paper, we have presented an EWS from the conceptualization of the predictive model to the
complete design of the training and test system and a case study on a real setting. The predictive model
has a high accuracy within individual courses, but it has still some deficiencies for identifying at-risk
on the first assessment activities. As future piece of work, we are planning to extend the experiments in
two directions. On the one hand, the bottleneck mentioned on selecting the most appropriate training
set and classifier should be fixed. This process will be prohibitive in the next semesters due to the
large exploration and a smarter method should be developed. Inserting a clustering process to detect
regions of data with relevant information, applying SMOTE on courses with imbalanced data, or a vote
ensemble approach could be different strategies to apply to improve quality and runtime. On the other
hand, adding information about the profile of the students can help to better classify students based on
their behavior at the institution. This new information can improve the accuracy of the predictions or
even detecting students with different needs (i.e., newbie students, repeater students, etc.).

Related to the EWS, we are ready to further analyze the students’ behavior within courses in
the sense that optimal learning paths can be discovered and proposed to students to improve their
learning experience. Also, we plan to start analyzing the students’ behavior outside courses in order to
check the successful set of enrollment courses within the same semester and discourage the enrollment
of conflictive sets. In the end, the aim of the system will be the same: to help students to succeed in
their learning process.
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Appendix A

Table A1. LOESS Regression of the Naive Bayes in the complete set of courses in the different datasets.

Semester
Timeline

ACC TNR TPR F1.5

20171 20172 2081 20182 20171 20172 2081 20182 20171 20172 2081 20182 20171 20172 2081 20182

10% 75.98 78.51 80.43 80.59 90.15 89.14 90.62 91.39 38.97 47.03 43.59 44.14 39.90 47.44 45.03 46.54
15% 77.42 80.19 81.79 82.58 91.24 89.14 90.59 92.02 44.21 52.44 48.28 49.14 44.99 52.12 48.75 51.03
20% 78.78 81.72 83.09 84.33 92.08 89.25 90.66 92.54 49.04 57.42 52.83 53.93 49.65 56.52 52.52 55.37
25% 80.02 83.07 84.31 85.82 92.70 89.39 90.81 92.94 53.43 61.98 57.23 58.51 53.84 60.60 56.30 59.51
30% 81.13 84.27 85.45 87.12 93.14 89.57 91.03 93.26 57.39 66.11 61.40 62.79 57.57 64.32 59.97 63.39
35% 82.11 85.27 86.46 88.15 93.31 89.78 91.30 93.43 60.91 69.74 65.37 66.85 60.82 67.68 63.59 67.07
40% 83.06 86.22 87.45 89.00 93.47 90.21 91.71 93.62 63.98 72.88 69.03 70.49 63.68 70.70 67.07 70.42
45% 83.57 87.11 88.54 89.81 93.68 90.62 92.26 93.93 66.39 75.87 72.51 73.73 65.89 73.42 70.42 73.39
50% 84.12 87.83 89.49 90.64 93.89 90.85 92.75 94.31 68.50 78.31 75.37 76.35 67.81 75.51 73.17 75.78
55% 84.86 88.55 90.14 91.30 94.15 91.31 93.13 94.66 70.32 79.93 77.23 78.25 69.54 77.13 75.00 77.57
60% 85.54 89.21 90.68 91.89 94.42 91.77 93.50 95.00 71.85 81.22 78.66 79.80 71.01 78.47 76.42 79.07
65% 86.00 89.85 91.31 92.49 94.71 92.13 93.94 95.36 73.13 82.59 80.07 81.33 72.28 79.77 77.86 80.57
70% 86.42 90.47 91.91 93.04 94.99 92.51 94.38 95.73 74.21 83.74 81.21 82.64 73.39 80.92 79.11 81.91
75% 86.93 91.04 92.39 93.52 95.18 92.96 94.75 96.07 75.24 84.64 82.16 83.74 74.44 81.97 80.28 83.16
80% 87.46 91.54 92.76 93.92 95.30 93.43 95.06 96.40 76.15 85.29 82.90 84.66 75.36 82.90 81.33 84.31
85% 88.05 91.99 93.05 94.26 95.34 93.94 95.31 96.70 76.97 85.73 83.49 85.44 76.17 83.75 82.34 85.40
90% 88.71 92.40 93.26 94.53 95.29 94.52 95.51 96.98 77.70 85.95 83.91 86.05 76.89 84.51 83.30 86.43
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Table A2. LOESS Regression of the Naive Bayes and methods to select the best algorithm classifier and training set in Semester 20182.

Semester
Timeline

ACC TNR TPR F1.5

NaiveBayes Best Alg. Best A. TS NaiveBayes Best Alg. Best A. TS NaiveBayes Best Alg. Best A. TS NaiveBayes Best Alg. Best A. TS

10% 80.59 80.70 84.20 91.39 90.02 91.71 44.14 47.88 58.79 46.54 49.19 59.75
15% 82.58 82.88 85.64 92.02 91.14 92.17 49.14 52.45 62.39 51.03 53.64 62.68
20% 84.33 84.81 87.00 92.54 92.12 92.65 53.93 56.87 66.04 55.37 57.96 65.76
25% 85.82 86.52 88.30 92.94 92.95 93.15 58.51 61.12 69.70 59.51 62.11 68.96
30% 87.12 88.01 89.52 93.26 93.65 93.64 62.79 65.15 73.41 63.39 66.02 72.25
35% 88.15 89.25 90.65 93.43 94.18 94.13 66.85 68.99 76.98 67.07 69.75 75.50
40% 89.00 90.29 91.72 93.62 94.65 94.70 70.49 72.52 80.52 70.42 73.18 78.94
45% 89.81 91.23 92.68 93.93 95.09 95.22 73.73 75.82 83.73 73.39 76.31 82.06
50% 90.64 92.04 93.54 94.31 95.40 95.57 76.35 78.58 86.45 75.78 78.77 84.59
55% 91.30 92.62 94.16 94.66 95.63 95.81 78.25 80.71 88.52 77.57 80.67 86.34
60% 91.89 93.10 94.65 95.00 95.82 95.97 79.80 82.52 90.14 79.07 82.26 87.60
65% 92.49 93.62 95.14 95.36 96.05 96.22 81.33 84.25 91.59 80.57 83.82 88.91
70% 93.04 94.09 95.54 95.73 96.29 96.46 82.64 85.72 92.72 81.91 85.18 90.06
75% 93.52 94.49 95.84 96.07 96.56 96.67 83.74 86.84 93.49 83.16 86.35 90.98
80% 93.92 94.83 96.02 96.40 96.85 96.84 84.66 87.66 93.91 84.31 87.33 91.66
85% 94.26 95.12 96.09 96.70 97.17 96.95 85.44 88.20 93.94 85.40 88.17 92.12
90% 94.53 95.34 96.03 96.98 97.51 97.03 86.05 88.44 93.60 86.43 88.85 92.35
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