Concepts and Terminologies in 4D Printing
Abstract
:1. Introduction
2. Fundamental Concepts
3. Properties of 4D Printed Parts
3.1. Factors Influencing 4D Printing
3.2. Material Properties and Materials Associated with 4D Printing
3.3. Experimental Measurements Associated with 4D Printing
4. Future Work
Author Contributions
Funding
Conflicts of Interest
References
- ISO/ASTM. 52900: 2017 Additive Manufacturing—General Principles—Terminology; American Society for Testing and Materials (ASTM International): West Conshohocken, PA, USA, 2017. [Google Scholar]
- Roh, B.M.; Kumara, S.R.; Simpson, T.W.; Michaleris, P.; Witherell, P.; Assouroko, I. Ontology-based laser and thermal metamodels for metal-based additive Manufacturing. In Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Charlotte, NC, USA, 21–24 August 2016; ASME: New York, NY, USA, 2016. V01AT02A043: 8. [Google Scholar] [CrossRef] [Green Version]
- Sanfilippo, E.M.; Belkadi, F.; Bernard, A. Ontology-based knowledge representation for additive manufacturing. Comput. Ind. 2019, 109, 182–194. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.; Stucker, B. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Tibbits, S. The Emergence of “4D Printing”; TED Conference LLC: New York, NY, USA, 2013. [Google Scholar]
- Invernizzi, M.; Turri, S.; Levi, M.; Suriano, R. 4D Printed thermally activated self-healing and shape memory polycaprolactone-based polymers. Eur. Polym. J. 2018, 101, 169–176. [Google Scholar] [CrossRef]
- Leist, S.; Gao, D.; Chiou, R.; Zhou, J. Investigating the shape memory properties of 4D printed polylactic acid (PLA) and the concept of 4D printing onto nylon fabrics for the creation of smart textiles. Virtual Phys. Prototyp. 2017, 12, 290–300. [Google Scholar] [CrossRef]
- Momeni, F.; Mehdi, S.M.; Hassani, N.; Liu, X.; Ni, J. A review of 4D Printing. Mater. Des. 2017, 122, 42–79. [Google Scholar] [CrossRef]
- Whitesides, G.M.; Grzybowski, B. Self-Assembly at All Scales. Science 2002, 295, 2418–2421. [Google Scholar] [CrossRef] [Green Version]
- Nam, S.; Pei, E. A taxonomy of shape-changing behavior for 4D printed parts using shape-memory polymers. Prog. Addit. Manuf. 2019, 4, 167–184. [Google Scholar] [CrossRef] [Green Version]
- Teoh, J.E.M.; An, J.; Chua, C.K.; Lv, M.; Krishnasamy, V.; Liu, Y. Hierarchically self-morphing structure through 4D printing. Virtual Phys. Prototyp. 2017, 12, 61–68. [Google Scholar] [CrossRef]
- Monzon, M.D.; Paz, R.; Pei, E.; Ortega, F.; Suarez, L.A.; Ortega, Z.; Aleman, M.E.; Plucinski, T.; Clow, N. 4D printing: Processability and measurement of recovery force in shape memory polymers. Int. J. Adv. Manuf. Technol. 2016, 89, 1827–1836. [Google Scholar] [CrossRef] [Green Version]
- Hager, M.D.; Bode, S.; Weber, C.; Schubert, U.S. Shape memory polymers: Past, present and future developments. Prog. Polym. Sci. 2015, 49, 3–33. [Google Scholar] [CrossRef]
- Meng, H.; Li, J. A review of stimuli-responsive shape memory polymer composites. Polymer 2013, 54, 2199–2221. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Shang, J.; Wang, Z. Intelligent materials: A review of applications in 4D printing. Assem. Autom. 2017, 37, 170–185. [Google Scholar] [CrossRef]
- Lauff, C.; Simpson, T.W.; Frecker, M.; Ounaies, Z.; Ahmed, S.; von Lockette, P.; Strzelec, R.; Sheridan, R.; Lien, J.M. Differentiating bending from folding in origami engineering using active materials. In Proceedings of the 38th Mechanisms and Robotics Conference (Proceedings of the ASME Design Engineering Technical Conference; Volume 5B), Buffalo, NY, USA, 17–20 August 2014; American Society of Mechanical Engineers (ASME): New York, NY, USA, 2014. [Google Scholar]
- Jeong, H.Y.; An, S.C.; Seo, I.C.; Lee, E.; Ha, S.; Kim, N.; Jun, Y.C. 3D printing of twisting and rotational bistable structures with tuning elements. Sci. Rep. 2019, 9, 324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mir, M.; Ali, M.N.; Sami, J.; Ansari, U. Review of Mechanics and Applications of Auxetic Structures. Adv. Mater. Sci. Eng. 2014, 17. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.; An, J.; Chua, C. Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials. Sci. Direct 2017, 3, 663–674. [Google Scholar] [CrossRef]
- Thakur, S.; Hu, J. Polyurethane: A Shape Memory Polymer (SMP). Available online: https://www.intechopen.com/books/aspects-of-polyurethanes/polyurethane-a-shape-memory-polymer-smp (accessed on 1 April 2020). [CrossRef] [Green Version]
- Choong, Y.Y.C.; Maleksaeedi, S.; Eng, H.; Wei, J.; Su, P.-C. 4D printing of high performance shape memory polymer using stereolithography. Mater. Des. 2017, 126, 219–225. [Google Scholar] [CrossRef]
- Xu, J.; Song, J. Thermal Responsive Shape Memory Polymers for Biomedical Applications. In Biomedical Engineering—Frontiers and Challenges; Reza, F.-R., Ed.; InTechOpen: London, UK, 2011; ISBN 978-953-307-309-5. Available online: http://www.intechopen.com/articles/show/title/thermal-responsive-shape-memory-polymers-for-biomedical-applications (accessed on 1 April 2020).
- Wu, W.; Ye, W.; Wu, Z.; Gen, G.P.; Wang, Y.; Zhao, J. Influence of Layer Thickness, Raster Angle, Deformation Temperature and Recovery Temperature on the Shape-Memory Effect of 3D-Printed Polylactic Acid Samples. Materials 2017, 10, 970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Z.; Yuan, C.; Peng, X.; Wang, T.; Qi, H.J.; Dunn, M.L. Direct 4D printing via active composite materials. Sci. Adv. 2017, 3. [Google Scholar] [CrossRef] [Green Version]
- Bodaghi, M.; Damanpack, A.R.; Liao, W.H. Adaptive metamaterials by functionally graded 4D printing. Mater. Des. 2017, 135, 26–36. [Google Scholar] [CrossRef]
- Huang, W.M.; Ding, Z.; Wang, C.C.; Wei, J.; Zhao, Y.; Purnawali, H. Shape Memory Materials. Mater. Today 2010, 13, 54–61. [Google Scholar] [CrossRef]
- Zhou, J.; Sheiko, S.S. Reversible shape-shifting in polymeric materials. J. Polym. Sci. B Polym. Phys. 2016, 54, 1365–1380. [Google Scholar] [CrossRef] [Green Version]
- Khoo, Z.X.; Teoh, J.E.M.; Liu, Y.; Chua, C.K.; Yang, S.; An, J.; Leong, K.F.; Yeong, W.Y. 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual Phys. Prototyp. 2015, 10, 103–122. [Google Scholar] [CrossRef]
- Zadpoor, A.A. Mechanical meta-materials. Mater. Horiz. 2016, 3, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Boorugu, M.; Dopp, A.; Ren, J.; Martin, R.; Han, D.; Choi, W.; Lee, H. 4D printing reconfigurable, deployable and mechanically tunable metamaterials. Mater. Horiz. 2019, 6, 1244–1250. [Google Scholar] [CrossRef]
- Bodaghi, M.; Liao, W.H. 4D printed tunable mechanical metamaterials with shape memory operations. Smart Mater. Struct. 2019, 28, 045019. [Google Scholar] [CrossRef] [Green Version]
- Oxman, N.; Keating, S.; Tsai, E. Functionally Graded Rapid Prototyping; Mediated Matter Group, MIT Media Lab: Cambridge, MA, USA, 2011. [Google Scholar]
- Wu, J.J.; Huang, L.M.; Zhao, Q.; Xie, T. 4D Printing: History and Recent Progress. Chin. J. Polym. Sci. 2018, 36, 563–575. [Google Scholar] [CrossRef]
- Restrepo, D.; Mankame, N.D.; Zavattieri, P.D. Programmable materials based on periodic cellular solids. Part I: Experiments. Int. J. Solids Struct. 2016, 100-101, 485–504. [Google Scholar] [CrossRef]
- Loh, G.H.; Pei, E.; Harrison, D.; Monzón, M.D. An overview of functionally graded additive manufacturing. Addit. Manuf. 2018, 23, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Pei, E.; Loh, G.H. Technological considerations for 4D printing: An overview. Prog. Addit. Manuf. 2018, 3, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Sun, J.; Ling, Q.; Zhou, Q. Synthesis of macroporous thermosensitive hydrogels: A novel method of controlling pore size. Langmuir 2009, 25, 3249–3254. [Google Scholar] [CrossRef]
- Lee, A.Y.; An, J.; Chua, C.K.; Zhang, Y. Preliminary Investigation of the Reversible 4D Printing of a Dual-Layer Component. Engineering 2019, 5, 1159–1170. [Google Scholar] [CrossRef]
- Akbari, S.; Sakhaei, A.H.; Kowsari, K.; Yang, B.; Serjouei, A.; Yuanfang, Z.; Ge, Q. Enhanced multimaterial 4D printing with active hinges. Smart Mater. Struct. 2018, 27. [Google Scholar] [CrossRef]
- Brinson, L.C.; Bekker, A.; Hwang, S. Deformation of shape memory alloys due to thermo-induced transformation. J. Intell. Mater. Syst. Struct. 1996, 7, 97–107. [Google Scholar] [CrossRef]
- Auricchio, F.; Scalet, G.; Urbano, M. A numerical/experimental study of nitinol actuator springs. J. Mater. Eng. Perform. 2014, 23, 2420–2428. [Google Scholar] [CrossRef]
- Coelho, M.; Zigelbaum, J. Shape-changing interfaces. Pers. Ubiquitous Comput. 2010. [Google Scholar] [CrossRef]
- Van Humbeeck, J. Shape memory alloys: A material and a technology. Adv. Eng. Mater. 2001, 3, 837–850. [Google Scholar] [CrossRef]
- Meier, H.; Haberland, C.; Frenzel, J.; Zarnetta, R. Selective Laser Melting of NiTi shape memory components. In Proceedings of the Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal, 6–10 October 2009. [Google Scholar]
- Dadbakhsh, S.; Kruth, J.-P.; Schrooten, J.; Luyten, J.; Van Humbeeck, J. Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts. Adv. Eng. Mater. 2014, 16, 1140–1146. [Google Scholar] [CrossRef]
- Gustmann, T.; Neves, A.; Kühn, U.; Gargarella, P.; Kiminami, C.S.; Bolfarini, C.; Eckert, J.; Pauly, S. Influence of processing parameters on the fabrication of a Cu-Al-Ni-Mn shape-memory alloy by selective laser melting. Addit. Manuf. 2016, 11, 23–31. [Google Scholar] [CrossRef]
- Lendlein, A.; Kelch, S. Shape-memory polymers. Angew. Chemie-Int. Ed. 2002, 41, 2034–2057, ISSN 1433-7851. [Google Scholar] [CrossRef]
- Wang, B.; Facchetti, A. Mechanically Flexible Conductors for Stretchable and Wearable E-Skin and E-Textile Devices. Adv. Mater. 2019, 31, e1901408. [Google Scholar] [CrossRef]
- Mi, H.Y.; Salick, M.R.; Jing, X.; Jacques, B.R.; Crone, W.C.; Peng, X.F.; Turng, L.S. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Mater. Sci. Eng. 2013, 33, 4767–4776. [Google Scholar] [CrossRef] [Green Version]
- Leist, S.; Zhou, J. Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials. Virtual Phys. Prototyp. 2016, 11, 249–262. [Google Scholar] [CrossRef]
- Chen, T.; Mueller, J.; Shea, K. Integrated Design and Simulation of Tunable, Multi-State Structures Fabricated Monolithically with Multi-Material 3D Printing. Sci. Rep. 2017, 7, 45671. [Google Scholar] [CrossRef] [PubMed]
Stage | Start | Programming Step | Temporary Shape | Shape Recovery Step | End | ||
---|---|---|---|---|---|---|---|
Process | Printed Shape | Subject to Stimuli, e.g., Heating | Removal from Stimuli, e.g., Cooling | Deformed Shape achieved | Subject to Stimuli, e.g., Heating | Removal from Stimuli, e.g., Cooling | Return to original shape (Printed Shape) |
Phenomena | - | Shape change effect | Shape memory effect | - | |||
Activity | - | Interaction mechanism | Loading | Shape change behaviour/Shape-shifting behaviour | - | ||
Material and Associations | Shape memory material | Glass transition temperature; Shape deformation temperature | - | Temporary shape fixing temperature | Shape recovery temperature | - | |
Experimental Measurement | - | - | Shape fixity: Shape fixity ratio | - | - | Shape recovery: Shape recovery ratio; Shape recovery time | Repeatability; Degradation |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, E.; Loh, G.H.; Nam, S. Concepts and Terminologies in 4D Printing. Appl. Sci. 2020, 10, 4443. https://doi.org/10.3390/app10134443
Pei E, Loh GH, Nam S. Concepts and Terminologies in 4D Printing. Applied Sciences. 2020; 10(13):4443. https://doi.org/10.3390/app10134443
Chicago/Turabian StylePei, Eujin, Giselle Hsiang Loh, and Seokwoo Nam. 2020. "Concepts and Terminologies in 4D Printing" Applied Sciences 10, no. 13: 4443. https://doi.org/10.3390/app10134443
APA StylePei, E., Loh, G. H., & Nam, S. (2020). Concepts and Terminologies in 4D Printing. Applied Sciences, 10(13), 4443. https://doi.org/10.3390/app10134443