Investigating Applicability of Evaporative Cooling Systems for Thermal Comfort of Poultry Birds in Pakistan
Abstract
:1. Introduction
2. Thermal Comfort for Poultry Birds
3. Materials and Methods
3.1. Evaporative Cooling (EC) Systems
3.1.1. Direct EC (DEC) System
3.1.2. Indirect EC (IEC) System
3.1.3. Maisotsenko-Cycle EC (MEC) System
3.2. Research Methodology
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Mahmood, M.H.; Sultan, M.; Miyazaki, T.; Koyama, S.; Maisotsenko, V.S. Overview of the Maisotsenko cycle—A way towards dew point evaporative cooling. Renew. Sustain. Energy Rev. 2016, 66, 537–555. [Google Scholar] [CrossRef]
- Sultan, M.; El-Sharkawy, I.I.; Miyazaki, T.; Saha, B.B.; Koyama, S. An overview of solid desiccant dehumidification and air conditioning systems. Renew. Sustain. Energy Rev. 2015, 46, 16–29. [Google Scholar] [CrossRef]
- Sultan, M.; Miyazaki, T. Energy-Efficient Air-Conditioning Systems for Nonhuman Applications. In Refrigeration; Ekren, O., Ed.; InTech Open: London, UK, 2017; Volume 9, pp. 97–117. [Google Scholar] [CrossRef] [Green Version]
- Sultan, M.; Miyazaki, T.; Koyama, S.; Khan, Z.M. Performance evaluation of hydrophilic organic polymer sorbents for desiccant air-conditioning applications. Adsorpt. Sci. Technol. 2017, 36, 311–326. [Google Scholar] [CrossRef] [Green Version]
- Hanif, S.; Sultan, M.; Miyazaki, T. Effect of relative humidity on thermal conductivity of zeolite-based adsorbents: Theory and experiments. Appl. Therm. Eng. 2019, 150, 11–18. [Google Scholar] [CrossRef]
- Timmons, M.B.; Gates, R. Temperature Dependent Efficacy of Evaporative Cooling for Broilers. Appl. Eng. Agric. 1989, 5, 215–224. [Google Scholar] [CrossRef]
- Pakistan Statistical Yearbook. Available online: http://www.pbs.gov.pk/content/pakistan-statistical-year-book-2017 (accessed on 1 June 2020).
- Xin, H.; Berry, I.L.; Tabler, G.T.; Barton, T.L. Temperature and Humidity Profiles of Broiler Houses with Experimental Conventional and Tunnel Ventilation Systems. Appl. Eng. Agric. 1994, 10, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Raza, H.M.U. Investigation of Evaporative Cooling Based Low-Cost Air-Conditioning Technologies for Pakistan. Master’s Thesis, Agricultural Engineering, Bahauddin Zakariya University, Multan, Pakistan, 2018. [Google Scholar]
- Kashif, M.; Sultan, M.; Khan, Z.M. Alternative Air-Conditioning Options for Developing Countries. Eur. J. Eng. Res. Sci. 2017, 2, 76–79. [Google Scholar] [CrossRef] [Green Version]
- Usman, M.; Niaz, H.; Sultan, M.; Miyazaki, T.; Feng, Y.; Usman, M.; Shahzad, M.W.; Niaz, Y.; Waqas, M.M.; Ali, I. Study on Desiccant and Evaporative Cooling Systems for Livestock Thermal Comfort: Theory and Experiments. Energies 2020, 13, 2675. [Google Scholar] [CrossRef]
- Camargo, J.R.; Ebinuma, C.D.; Silveira, J.L. Experimental performance of a direct evaporative cooler operating during summer in a Brazilian city. Int. J. Refrig. 2005, 28, 1124–1132. [Google Scholar] [CrossRef]
- Dizaji, H.S.; Hu, E.; Chen, L.; Pourhedayat, S. Development and validation of an analytical model for perforated (multi-stage) regenerative M-cycle air cooler. Appl. Energy 2018, 228, 2176–2194. [Google Scholar] [CrossRef]
- Khalid, O.; Ali, M.; Sheikh, N.A.; Ali, H.M.; Shehryar, M. Experimental analysis of an improved Maisotsenko cycle design under low velocity conditions. Appl. Therm. Eng. 2016, 95, 288–295. [Google Scholar] [CrossRef]
- Al Horr, Y.; Tashtoush, B.; Chilengwe, N.; Musthafa, M.; Alhorr, Y.; Bourhan, T.; Nelson, C.; Mohamed, M. Operational mode optimization of indirect evaporative cooling in hot climates. Case Stud. Therm. Eng. 2020, 18, 100574. [Google Scholar] [CrossRef]
- Arun, B.; Mariappan, V.; Maisotsenko, V. Experimental study on combined low temperature regeneration of liquid desiccant and evaporative cooling by ultrasonic atomization. Int. J. Refrig. 2020, 112, 100–109. [Google Scholar] [CrossRef]
- Noor, S.; Ashraf, H.; Sultan, M.; Khan, Z.M. Evaporative Cooling Options for Building Air-Conditioning: A Comprehensive Study for Climatic Conditions of Multan (Pakistan). Energies 2020, 13, 3061. [Google Scholar] [CrossRef]
- Sultan, M.; Miyazaki, T.; Koyama, S. Optimization of adsorption isotherm types for desiccant air-conditioning applications. Renew. Energy 2018, 121, 441–450. [Google Scholar] [CrossRef]
- Miyazaki, T.; Akisawa, A.; Nikai, I. The cooling performance of a building integrated evaporative cooling system driven by solar energy. Energy Build. 2011, 43, 2211–2218. [Google Scholar] [CrossRef]
- Dong, H.-W.; Jeong, J.-W. Energy benefits of organic Rankine cycle in a liquid desiccant and evaporative cooling-assisted air conditioning system. Renew. Energy 2020, 147, 2358–2373. [Google Scholar] [CrossRef]
- Heat Stress in Poultry—Solving the Problem. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/69373/pb10543-heat-stress-050330.pdf (accessed on 1 June 2020).
- Yanagi, T., Jr.; Xin, H.; Gates, R. A research facility for studying poultry responses to heat stress and its relief. Appl. Eng. Agric. 2002, 18, 255. [Google Scholar] [CrossRef]
- Moreng, R.E.; Shaffner, C.S. Lethal Internal Temperatures for the Chicken, from Fertile Egg to Mature Bird. Poult. Sci. 1951, 30, 255–266. [Google Scholar] [CrossRef]
- Cassuce, D.C.; Ferreira-Tinôco, I.D.F.; Baeta, F.C.; Zolnier, S.; Cecon, P.R.; Vieira, M.D.F.A. Thermal comfort temperature update for broiler chickens up to 21 days of age. Eng. Agríc. 2013, 33, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Cândido, M.; Tinôco, I.D.F.F.; Pinto, F.D.A.D.C.; Santos, N.T.; Roberti, R.P. Determination of thermal comfort zone for early-stage broilers. Eng. Agríc. 2016, 36, 760–767. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, S.T.; Maia, A.S.C.; Gebremedhin, K.G.; Nascimento, C.C. Metabolic heat production and evaporation of poultry. Poult. Sci. 2017, 96, 2691–2698. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Xin, H. Temperature-humidityvelocity-index for market size broilers, Nevada, USA. In Proceedings of the ASAE Annual International Meeting; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2003; p. 34037. [Google Scholar] [CrossRef]
- Li, X.; Hoff, S.; Bundy, D.; Harmon, J.; Xin, H.; Zhu, J. Biofilter-a malodor control technology for livestock industry. J. Environ. Sci. Heal. Part A Environ. Sci. Eng. Toxicol. 1996, 31, 2275–2285. [Google Scholar] [CrossRef]
- Yahav, S.; Straschnow, A.; Luger, D.; Shinder, D.; Tanny, J.; Cohen, S. Ventilation, sensible heat loss, broiler energy, and water balance under harsh environmental conditions. Poult. Sci. 2004, 83, 253–258. [Google Scholar] [CrossRef]
- Xuan, Y.; Xiao, F.; Niu, X.; Huang, X.; Wang, S. Research, and application of evaporative cooling in China: A review (I)—Research. Renew. Sustain. Energy Rev. 2012, 16, 3535–3546. [Google Scholar] [CrossRef]
- Mehere, S.V.; Mudafale, K.P.; Prayagi, S.V. Review of direct evaporative cooling system with its applications. Int. J. Eng. Res. Gen. Sci. 2014, 2, 995–999. [Google Scholar]
- Cuce, P.M.; Riffat, S. A state of the art review of evaporative cooling systems for building applications. Renew. Sustain. Energy Rev. 2016, 54, 1240–1249. [Google Scholar] [CrossRef]
- Mahmood, M.H.; Sultan, M.; Miyazaki, T. Significance of Temperature and Humidity Control for Agricultural Products Storage: Overview of Conventional and Advanced Options. Int. J. Food Eng. 2019, 15, 15. [Google Scholar] [CrossRef]
- Matsui, K.; Thu, K.; Miyazaki, T. A hybrid power cycle using an inverted Brayton cycle with an indirect evaporative device for waste-heat recovery. Appl. Therm. Eng. 2020, 170, 115029. [Google Scholar] [CrossRef]
- Anisimov, S.; Pandelidis, D. Theoretical study of the basic cycles for indirect evaporative air cooling. Int. J. Heat Mass Transf. 2015, 84, 974–989. [Google Scholar] [CrossRef]
- Sultan, M.; Niaz, H.; Miyazaki, T. Investigation of Desiccant and Evaporative Cooling Systems for Animal Air-Conditioning. In Low-Temperature Technologies; IntechOpen: London, UK, 2020; pp. 21–37. [Google Scholar] [CrossRef] [Green Version]
- Ambiente e Agua—An Interdisciplinary Journal of Applied Science. Ambient. Agua Interdiscip. J. Appl. Sci. 2020. [CrossRef]
- Anisimov, S.; Pandelidis, D.; Maisotsenko, V. Numerical study of heat and mass transfer process in the Maisotsenko cycle for indirect evaporative air cooling. Heat Transf. Eng. 2016, 37, 1–40. [Google Scholar] [CrossRef]
- Pandelidis, D.; Anisimov, S.; Worek, W.M. Comparison study of the counter-flow regenerative evaporative heat exchangers with numerical methods. Appl. Therm. Eng. 2015, 84, 211–224. [Google Scholar] [CrossRef]
- Bellemo, L.; Elmegaard, B.; Reinholdt, L.O.; Kærn, M.R. Modeling of a regenerative indirect evaporative cooler for a desiccant cooling system. In Proceedings of the 4th IIR Conference on Thermophysical Properties and Transfer Processes of Refrigerants, Delft, The Netherlands, 17–19 June 2013. [Google Scholar]
- Rogdakis, E.D.; Koronaki, I.; Tertipis, D.N. Experimental and computational evaluation of a Maisotsenko evaporative cooler at Greek climate. Energy Build. 2014, 70, 497–506. [Google Scholar] [CrossRef]
- Lin, J.; Wang, R.; Li, C.; Wang, S.; Long, J.; Chua, K.J. Towards a thermodynamically favorable dew point evaporative cooler via optimization. Energy Convers. Manag. 2020, 203, 112224. [Google Scholar] [CrossRef]
- Pedersen, S.; Thomsen, M.G. Heat and Moisture Production of Broilers kept on Straw Bedding. J. Agric. Eng. Res. 2000, 75, 177–187. [Google Scholar] [CrossRef]
- Silva, M.P.; Baêta, F.C.; Ferreira-Tinôco, I.D.F.; Zolnier, S.; Ribeiro, A. Evaluation of a simplified model for estimating energy balance in broilers production housing. Rev. Brasil. Eng. Agríc. Ambient. 2007, 11, 532–536. [Google Scholar] [CrossRef]
- Chepete, H.J.; Xin, H. Heat and Moisture Production of Poultry and Their Housing Systems—A Literature Review. In Proceedings of the Livestock Environment VI, Proceedings of the 6th International Symposium 2001; American Society of Agricultural and Biological Engineers (ASABE): Saint Joseph, MI, USA, 2013; p. 319. [Google Scholar]
- Gates, R.S.; Xin, H. Comparative analysis of measurement techniques of feeding behavior of individual poultry. In Proceedings of the 2001 ASAE Annual Meeting; American Society of Agricultural and Biological Engineers: Saint Joseph, MI, USA, 1998; p. 1. [Google Scholar]
- Purswell, J.L.; Dozier, W.A., III; Olanrewaju, H.A.; Davis, J.D.; Xin, H.; Gates, R.S. Effect of temperature-humidity index on live performance in broiler chickens grown from 49 to 63 days of age. In Proceedings of the 2012 IX International Livestock Environment Symposium (ILES IX); American Society of Agricultural and Biological Engineers: Saint Joseph, MI, USA, 2012; p. 3. [Google Scholar]
- Bruno, F. On-site experimental testing of a novel dew points evaporative cooler. Energy Build. 2011, 43, 3475–3483. [Google Scholar] [CrossRef]
- Doğramacı, P.A.; Aydın, D. Comparative experimental investigation of novel organic materials for direct evaporative cooling applications in hot-dry climate. J. Build. Eng. 2020, 30, 101240. [Google Scholar] [CrossRef]
- Tao, X.; Xin, H. Acute synergistic effects of air temperature, humidity, and velocity on homeostasis of market–size broilers. Trans. ASAE 2003, 46, 491. [Google Scholar] [CrossRef]
Months | Ambient Conditions | DEC | IEC | MEC |
---|---|---|---|---|
January | ✓ | ✓ | ✓ | ✓ |
February | ✓ | ✓ | ✓ | ✓ |
March | ✓ | ✓ | ✓ | ✓ |
April | ✗ | ✓ | ✓ | ✓ |
May | ✗ | ✓ | ✗ | ✓ |
June | ✗ | ✗ | ✗ | ✗ |
July | ✗ | ✗ | ✗ | ✗ |
August | ✗ | ✗ | ✗ | ✓ |
September | ✗ | ✓ | ✗ | ✓ |
October | ✗ | ✓ | ✓ | ✓ |
November | ✓ | ✓ | ✓ | ✓ |
December | ✓ | ✓ | ✓ | ✓ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raza, H.M.U.; Ashraf, H.; Shahzad, K.; Sultan, M.; Miyazaki, T.; Usman, M.; Shamshiri, R.R.; Zhou, Y.; Ahmad, R. Investigating Applicability of Evaporative Cooling Systems for Thermal Comfort of Poultry Birds in Pakistan. Appl. Sci. 2020, 10, 4445. https://doi.org/10.3390/app10134445
Raza HMU, Ashraf H, Shahzad K, Sultan M, Miyazaki T, Usman M, Shamshiri RR, Zhou Y, Ahmad R. Investigating Applicability of Evaporative Cooling Systems for Thermal Comfort of Poultry Birds in Pakistan. Applied Sciences. 2020; 10(13):4445. https://doi.org/10.3390/app10134445
Chicago/Turabian StyleRaza, Hafiz M. U., Hadeed Ashraf, Khawar Shahzad, Muhammad Sultan, Takahiko Miyazaki, Muhammad Usman, Redmond R. Shamshiri, Yuguang Zhou, and Riaz Ahmad. 2020. "Investigating Applicability of Evaporative Cooling Systems for Thermal Comfort of Poultry Birds in Pakistan" Applied Sciences 10, no. 13: 4445. https://doi.org/10.3390/app10134445
APA StyleRaza, H. M. U., Ashraf, H., Shahzad, K., Sultan, M., Miyazaki, T., Usman, M., Shamshiri, R. R., Zhou, Y., & Ahmad, R. (2020). Investigating Applicability of Evaporative Cooling Systems for Thermal Comfort of Poultry Birds in Pakistan. Applied Sciences, 10(13), 4445. https://doi.org/10.3390/app10134445