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Featured Application: The potential applications of scene text reading are ordering large pictures
and video databases by their literary substance, such as Bing Maps, Apple Maps, and Google Street
View, as well as supporting visual impaired people.

Abstract: Reading text and unified text detection and recognition from natural images are the most
challenging applications in computer vision and document analysis. Previously proposed end-to-end
scene text reading methods do not consider the frequency of input images at feature extraction,
which slows down the system, requires more memory, and recognizes text inaccurately. In this
paper, we proposed an octave convolution (OctConv) feature extractor and a time-restricted attention
encoder-decoder module for end-to-end scene text reading. The OctConv can extract features by
factorizing the input image based on their frequency. It is a direct replacement of convolutions,
orthogonal and complementary, for reducing redundancies and helps to boost the reading text through
low memory requirements at a faster speed. In the text reading process, features are first extracted
from the input image using Feature Pyramid Network (FPN) with OctConv Residual Network with
depth 50 (ResNet50). Then, a Region Proposal Network (RPN) is applied to predict the location of the
text area by using extracted features. Finally, a time-restricted attention encoder-decoder module
is applied after the Region of Interest (RoI) pooling is performed. A bilingual real and synthetic
scene text dataset is prepared for training and testing the proposed model. Additionally, well-known
datasets including ICDAR2013, ICDAR2015, and Total Text are used for fine-tuning and evaluating
its performance with previously proposed state-of-the-art methods. The proposed model shows
promising results on both regular and irregular or curved text detection and reading tasks.

Keywords: octave convolution; bilingual scene text reading; Ethiopic script; attention

1. Introduction

Currently, reading text from a natural image is one of the hottest research issues in computer
vision and document processing. It has many applications including ordering large pictures and video
databases by their literary substance, such as Bing Maps, Apple Maps, Google Street View, and so on.
Moreover, it allows for image mining, office automation, and support for the visually impaired. Thus,
scene text is highly important for thoughtful and uniform services throughout the world. However,
reading text from natural images poses several challenges, due to the use of different fonts (color, type,
and size) and texts being written on more than one script. Moreover, imperfect image condition causes
distorted text, and complex and inference backgrounds cause unpredictability. As a result, reading or
spotting texts from a natural image becomes a challenging task.

Previously, several considerable research outputs were presented for scene text detection [1–5] and
scene text recognition [6,7] independently, which led to a computational complexity and integration
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problem being used as a text-reading task. To improve these, an end-to-end scene text spotting method
was presented in references [8–10], but it still needs improvement in terms of recognition accuracy,
memory usage, and speed. For instance, in [11,12] a fully conventional network is applied for scene
text detection and recognition by considering the detection and recognition problems independently.
For scene text detection, a convolutional neural network (CNN) was applied to extract feature maps
from the input image, and then different decoders were used to decode and detect the text region
based on the extracted features [5,13,14].

Using the extracted sequences of features at the scene text detection phase, characters/words have
been predicted with sequence prediction models [15,16]. These types of approaches led to heavy time
cost and ignored the correlation in visual cues for images with a number of text regions, whereas both
operations had real integrations. In general, previously proposed scene text detection and recognition
approaches were problematic, especially when texts in the image are written in more than one script,
different text sizes and text shapes are irregular. Furthermore, most research focused on English
language and only a few presented other languages such as Arabic and Chinese. Except our previously
presented scene text recognition method [17], there is no research output for scene text reading as well
as scene text detection for Ethiopic script-based languages. Ethiopic script is used as a writing system
for more than 43 languages, including Amharic, Geez, and Tigrigna.

Amharic is the official language of Ethiopia and the second-largest Semitic language after Arabic [18].
On the other hand, English is used as a teaching medium in secondary schools and higher education. As a
result, English and Amharic languages are being used concurrently for different activities in most areas of
the country. Thus, designing independent applications of scene text detection and scene text recognition
requires multiple networks for solving individual sub-problems, which increases computational complexity
and causes accuracy and integrity problems. Additionally, developing detection and recognition as
independent sub-problems restrains the recognition of rotated and irregular texts. The characteristics
of individual characters for complex languages, for example, Amharic language, in the script, and the
availability of bilingual scripts in natural images make the scene text recognition methods to challenging
when used independently for detection and recognition. Text detection and text recognition are relevant
tasks in most operations and complement each other.

Recently, the proposed multilingual end-to-end scene text spotting system in [9,15,19] had a good
result for several languages except for Ethiopic script-based languages. However, in their proposed
method, they did not consider the frequency of features (high and low) and the effects of word length in
the recognition. In this paper, a bilingual end-to-end trainable scene text reading model is proposed by
extracting features from the input image based on their frequency and a time-restricted self-attention
encoder-decoder module for recognition. Between the feature-extraction and recognition layers, we use
a region proposal network, to detect the text area and predict the bounding boxes.

Figure 1 shows the architecture of the proposed system, which contains feature-extraction,
detection, and recognition layers. In the first layer of our proposed network, we use a feature pyramid
network (FPN) [20] with ResNet-50 to extract features. Inspired by reference [21], the ResNet-50 vanilla
convolutions are replaced by octave convolutions (OctConv), except for the first convolution layer.
The OctConv factorizes feature tensors based on their frequencies (high and low) which helps to
effectively enlarge the receptive field in the original pixel space and improve recognition performance.
Additionally, it optimizes the memory requirement by avoiding redundancy. As stated in [21], OctConv
improves object-recognition performance and shows a state-of-the-art result. In the second layer,
a region proposal network (RPN) is applied for predicting text/non-text regions and recognizing the
bounding boxes of the predicted text region from the input image using the extracted feature at the
first layer. Finally, by applying Region of Interest (RoI) pooling based on the predicted bounding
boxes to the extracted features, word prediction is performed using a time-restricted self-attention
encoder-decoder module. Our proposed bilingual text-reading model is originally presented to read
texts from the natural image in an end-to-end manner. The major contributions of the article are
summarized as follows:
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1. Following [22], we prepare large syntactically generated bilingual (English and Amharic) scene
text datasets. Additionally, we collect real datasets that have different shapes and written using
the two scripts.

2. Our proposed model extracts feature by factorizing based on their frequencies (low and high),
which helps to reduce both storage and computation costs. This also helps each layer gain a larger
receptive field to capture more contextual information.

3. The proposed system can detect and read texts from an image that has arbitrary shapes, containing
oriented, horizontal, and curved text.

4. The performance of the time-restricted attention encoder-decoder module is examined to predict
words based on the extracted and segmented features.

5. Using the prepared dataset and well-known datasets, we perform several experiments and our
model shows promising results.

The rest of the paper is organized as follows. Related works are presented in Section 2. In Section 3,
we discuss the proposed bilingual end-to-end scene text reading methodology. A short description
of the Ethiopic script and datasets that are used for training and evaluating the proposed model
is described in Section 4. The experimental set-up and results are discussed in Section 5. Finally,
a conclusion is drawn in Section 6.
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2. Related Work

Reading text from a natural image is currently an active field of investigation in computer vision
and document analysis. In this section, we introduce related works, including scene text detection,
scene text recognition, and text spotting (combining detection and recognition) techniques.

2.1. Scene Text Detection

Traditional and deep-learning machine-learning methods are used to detect texts from a natural
image. In [1,3,23–25], scene text detection methods have been presented to detect and bind text areas
from a natural image, but this approach has manual computation problems. Lee et al. [25] presented
sliding-window-based methods measured by shifting over the image and determining text proximity
based on local image highlights. In [26,27], a connected component analysis method was presented to
detect scene texts using Stroke Width Transform (SWT) and Maximum Stable Extreme Region (MSER),
respectively. However, these approaches are limited when it comes to detecting text regions from
distorted images.

Recently, deep-learning techniques improved several machine-learning problems, including scene
text detection and recognition problem. Tian et al. [1] presented a Connectionist Text Proposal Network
(CTPN), which uses a vertical anchor mechanism that jointly predicts location and text/no-text scores
of each fixed width. Shi et al. [14] introduced Segment Linking (SegLink), which is an oriented scene
text detection method that segments and then links the text to complete instances using a linkage
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prediction. Ma et al. [28] presented a novel rotation-based framework to detect arbitrarily oriented
texts found in natural images by proposing region proposal network (RPN) and rotation RoI pooling.
A deep direct regression-based method for detecting multi-oriented scene text has been presented
in [29]. Efficient and accuracy scene Text detector (EAST) [5] has been introduced to effectively detect
words or text lines using a single neural network.

2.2. Scene Text Recognition

In the text-reading phases of natural images, text recognition is the second phase after scene text
detection. This method can be implemented independently or after scene text detection phases. In the
scene text recognition phase, the cropped text regions are fed either from the scene text detection phase
or from the prepared input dataset, from which the sequences of labels are decoded. Previous attempts
were made by detecting individual characters and refining misclassified characters. Such methods
require training a strong character detector for accurately detecting and cropping each character out
from the original word. These types of methods are more difficult for Ethiopic scripts due to their
complexities. Apart from the character level methods, word recognition [12], sequence to label [30],
and sequence to sequence [31] methods have been presented. Liu et al. [32] and Shi et al. [15] presented
a spatial attention mechanism to transform a distorted text region from irregular input images into
canonical pose suitable recognition. However, both the detection and recognition task performance are
determined based on the extracted features. Previously proposed scene text detection and recognition
of deep learning-based and conventional machine learning feature extraction methods do not consider
the frequency of the input image. Following [21], in this paper, we propose an OctConv with ResNet-50
feature extractor, which extracts features by factorizing based on their frequencies.

2.3. Scene Text Spotting

Recently, several end-to-end scene text spotting methods have been introduced and have shown
a remarkable result compared to independent scene text detection and recognition approaches.
For instance, Li et al. [10] introduced an end-to-end text spotting technique from natural images using
RPN as a text detector and attention Long Short Term Memory (LSTM) as a text recognizer. Liao et al. [8]
presented an end-to-end scene text-reading method using Single Shot Detector (SSD) [33] and
convolutional recurrent neural network (CRNN) for scene text detection and recognition, respectively.
Liu et al. [34] introduced a unified network to detect and recognize multi-oriented scene texts from
natural images. Lunadren et al. [35] introduced an octave-based fully convolutional neural network
with fewer layers and parameters to precisely detect multilingual scene text. The most recently
proposed scene text-reading models are summarized in Table 1.

Table 1. Summary of recently proposed end-to-end scene text recognition models.

Method Model Detection Recognition Year

Liao et al. [11] TextBoxes SSD-based framework CRNN 2017
Bŭsta et al. [19] Deep TextSpotter Yolo v2 CTC 2017
Liu et al. [34] FOTS EAST with RoI Rotate CTC 2018
Liao et al. [8] TextBoxes++ SSD-based framework CRNN 2018

Liao et al. [9] Mask TextSpotter Mask R-CNN Character segmentation +
Spatial attention module 2019

Improving the feature extraction and recognition network will improve scene text detection,
recognition, and text spotting problems. In [21], an OctConv feature extraction method has been
proposed for object detection and improves its performance. Octave convolution addresses spatial
redundancy, which was not addressed in the previously proposed methods. The OctConv does
not change the connectivity between feature maps and it is different from inception multi-path
designs [36,37]. In our proposed bilingual text-reading method, we replace the ResNet-50 vanilla
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convolution with OctConv, which can operate quickly and produce accurate results in the extraction of
features. As stated in [38], the limitation of Connectionist Temporal Classification (CTC), attention
encoder-decoder, and hybrid (CTC and attention) method is improved using a time-restricted
self-attention method for an automatic speech recognition system. In our proposed method, we integrate
a time-restricted self-attention encoder-decoder module for recognition with feature extraction and
bounding box detection layers.

3. Methodology

In this section, the details of the proposed bilingual scene text-reading model are presented.
The architecture of the model, shown in Figure 1, is trained in an end-to-end manner that concurrently
detects and recognizes words from a natural image.

3.1. Overall View of the Architecture

Our proposed architecture follows the architecture presented in [9,21]. Our proposed architecture
has three functional components, feature-extraction layer, text/non-text detection layer, and recognition
layer. In the feature-extraction layer, features are extracted from input natural images and passed to the
next layer using an FPN [20] with ResNet-50 [39] by replacing the vanilla convolution with an octave
convolution. Then, using the extracted features on the 1st layer as an input, a region proposal network
(RPN) [40] predicts text/non-text area and bounding boxes of each text area. Finally, by applying RoI to
the outputs of the 2nd layer, text segmentation, and word prediction are done using the time-restricted
self-attention encoder-decoder module. Details of each layer are presented below.

3.2. Feature Extraction Layer

Feature extraction is one of the crucial steps in machine learning problems. In the deep learning
era, several automatic feature extraction methods have been proposed, including [40–43]. These feature
extraction methods were applied to several problem domains and produced good results. Recently,
Chen et al. [21], proposed an OctConv method that extracts features based on their frequencies. We use
Chen et al.’s feature extraction method to detect text/non-text regions. Naturally, texts found in
natural images have different properties (i.e., size, orientation, shapes, and color). These cause a
challenge in perfectly detecting the text/non-text region, which directly affects the performance of the
recognition task. To overcome this challenge, we build high-level semantic feature maps using FPN with
ResNet-50. Different from [9], in our proposed feature extraction layer, we replace vanilla convolutions
by OctConv. This factorizes the mixed-feature map tensor into high and low-frequency maps, where
the high-frequency feature map tensors encode with fine details, whereas the low-frequency feature
map tensors encode with global structures. Compared to vanilla convolution, OctConv reduces spatial
redundancy, memory cost, and computation cost.

For given spatial dimensions w and h with the number of feature maps c, the input feature tensor
of a convolution layer will be X ∈ Rc×h×w. In OctConv, the input vector X factorized along channel
dimensions into low feature map (XL) and high feature map (XH) frequencies. As stated in [21],
the factorization of high feature map and low feature map tensors are computed as follows:

XH = X(1−α)c×h×w (1)

XL = Xαc× h
2×

w
2 (2)

where the value of α ∈ [0, 1)
In the factorization process, fine details are obtained on high-frequency feature maps, whereas

differences in speed in spatial dimensions with respect to image location were obtained at low-frequency
feature map tensors. This process maps the features that are compacted and replace spatial repetitive
feature maps with different resolution maps. On these feature maps, an octave convolution is applied
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where the vanilla convolution does not work, due to different resolutions of high- and low-frequency
feature maps. The octave convolution enables efficient inter-frequency communication and effectively
operates on low- and high-frequency tensors. For the factorized high (XH) and low ( XL) feature tensors,
there is a corresponding output feature tensor YH and YL, respectively. To get each output feature tensor,
inter (YH→L, YL→H) and intra (YL→L, YH→H) frequency convolution update is performed. Each output
feature map at location (p, q) is computed using appropriate kernels (WL and WH), applying regular
convolution for intra-frequency update and removing the need of explicitly computing and sorting on
up/down sampling for inter-frequency communication as follows:

YH
p,q =

∑
i, j∈Nk

(
WH→H

i+ k−1
2 , j+ k−1

2

)T
XH

p+i,q+ j +
∑

i, j∈Nk

(
WL→H

i+ k−1
2 , j+ k−1

2

)T
XL
(

p
2+i),( q

2+ j)
(3)

YL
p,q =

∑
i, j∈Nk

(
WL→L

i+ k−1
2 , j+ k−1

2

)T
XL

p+i,q+ j +
∑

i, j∈Nk

(
WH→L

i+ k−1
2 , j+ k−1

2

)T
XH
(2∗p+0.5+i),(2∗p+0.5+ j) (4)

The recognition performance of the model is improved because OctConv can extract a larger
receptive field for low-frequency feature maps. Most commonly, text found in natural images has low
frequencies. Compared to vanilla convolution, OctConv convolves at a factor of 2 receptive fields.

3.3. Text Region Detection Layer

Using RPN and taking the extracted feature maps as an input, text/non-text regions are detected.
Following [9] and [20], we assign five anchors at different stages {P2, P3, P4, P5, P6} with the area of
anchors {322, 642, 1282, 2562, 5122}, respectively. Besides, to handle different text sizes {0.5, 1, 2} aspect
ratios are implemented at each stage. By doing this, text proposal features are generated. These features
are further extracted using RoI align [41], which preserves a more accurate location compared to RoI
pooling. Finally, the Fast Region (R)-CNN [41] generates precise bounding boxes for the texts found in
the input natural image. Using a soft-Non-maximal suppression (NMS) [42] technique, we select one
bounding box for those texts that have more than one bounding box.

3.4. Segmentation and Recognition Layer

After texts are detected at the detection layer, text segmentation and recognition of words are
performed. Text instance regions are segmented using four consecutive convolution layers with
3× 3 filters and deconvolution layers with 2× 2 filters and strides on the outputs of RoI align feature in
the previous layer, with predicted bounding boxes. Finally, the outputs of the segmented text instance
feature x = (x1, x2, . . . , xT) are fed for a time-restricted self-attention encoder-decoder module.

In [43], a time-restricted (attention window) self-attention encoder-decoder module is presented
for automatic speech recognition, which produces a state-of-the-art result by improving the limitations
of CTC (i.e., hard alignment problem and conditional independence constraints) and the attention
encoder-decoder module. Unlike [9], we use a time-restricted self-attention module using a bidirectional
Gated Recurrent Unit (GRU) as an encoder and a GRU as a decoder. Form the extracted and segmented
features, the bidirectional encoder computes the hidden feature vector ht as follows:

zt = σ(Wxzxt + Uhzht−1 + bz) (5)

rt = σ(Wxrxt + Uhrht−1 + br) (6)
′

ht = tanh(Wxhxt + Urh(rt ⊗ ht−1) + bh) (7)

ht = (1− zt) ⊗ ht−1 + zt ⊗

′

ht) (8)
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where zt, rt,
′

ht, and ht are update gate, reset gate, current memory, and final memory at the current
time step, respectively. W, U, and b are parameter matrices and vector; σ and tanh stand for sigmoid
and hyperbolic tangent function, respectively.

Using the embedding matrix Wemb the hidden vector ht is converted to embedding matrix bt as follows:

bt = Wembht, t = u− τ, . . . , u + τ (9)

By applying a linear projection on the embedded vector bt query (qt), values (vt), and keys (kt)
vectors are computed as follows:

qt = Qbt, t = u (10)

kt = Kbt, t = u− τ, . . . , u + τ (11)

vt = Vbt, t = u− τ, . . . , u + τ (12)

where Q, K, and V are query, key and value matrices, respectively.
Based on these results, attention weight au and attention result cu are derived as follows:

eut =
qT

u kt√
dk
′

(13)

aut =
exp(eut)∑u+τ

t′ = 1 exp (eut′)
′

(14)

cu =
u+τ∑

t = u−τ

autht (15)

To address the conditional independence assumption in CTC, an attention layer is placed before
the CTC projection layer phu and transforms it to a particular dimension representing the number of
CTC output labels. Then, the attention layer output that carries context information is served as the
input of CTC projection layer at the current time u.

phu = Wprojcu + b (16)

where Wproj and b are the weight matrix and bias of the CTC projection layer, respectively.
Finally, the projected output is optimized as follows:

LCTC = − log
∑

π∈B−1(y)

p(π|phu) (17)

where y denotes the output label sequence. A many-to-one mapping B is defined to determine the
correspondence between a set of paths and the output label sequences. The self-attention layer links
all positions with a constant number of operations that are performed in sequence.

4. Ethiopic Script and Dataset Collection

4.1. Ethiopic Script

Ethiopic script, which is derived from Geez, is one of the most ancient scripts in the world.
It is used as a writing system for more than 43 languages, including Amharic, Geez, and Tigrigna.
The script has largely been used by Geez and Amharic, which are the liturgical and official languages
of Ethiopia, respectively. Amharic language is the second Semitic language after Arabic. The script is
written down in a tabular format in which the first column denotes the base character and the other
columns are vowels derived from the base characters, made by slightly deforming or modifying the
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base characters. The script has a total of 466 characters, out of which 20 are digits, 9 are punctuation
marks, and the remaining 437 characters are parts of the alphabet. Developing a scene text recognition
system for Ethiopic script is challenging, due to the visually similar characters, especially between base
characters and the derived vowels, and the number of characters in the script. Furthermore, the lack of
training and testing datasets is another limitation in the development of a scene text reading system
for Ethiopic scripts. In this paper, we propose an end-to-end trainable bilingual scene text reading
model using FPN, RPN, and time-restricted self-attention CTC.

4.2. Dataset Collection

In any machine learning technique, a dataset plays an important role in training and obtaining
a better machine learning model. In particular, deep learning methods are more data-hungry than
traditional machine learning algorithms. However, preparing a large dataset was a challenging task
specifically for under-resourced languages. In this paper, we use a syntactically generated scene
text dataset, and real scene text dataset for training and testing the proposed model, respectively.
Following [12], a bilingual scene text dataset is prepared. A detailed description of synthetic dataset
generation and real scene text dataset preparation is provided in the following sections.

4.2.1. Synthetic Scene Text Dataset

To train the proposed model, we use a bilingual scene text dataset, which is generated by adding
a simple modification to the scene text dataset generation technique presented in [12]. The generated
scene text images are like real scene images. This technique is very important to get more training
data for those scripts that do not have prepared real scene text datasets. As far as we know, there
is no prepared real scene text dataset for Ethiopic script. Moreover, most texts found in natural
images are written in two languages (Amharic and English). Due to this, we prepare 500,000 bilingual
training datasets from 54,735 words (825,080 characters), which were collected from social, political,
and governmental websites that are written in Amharic and English. In the dataset generation process,
72 freely available Ethiopic Unicode fonts, different background images, font size, rotation along the
horizontal line, and skew and thickness parameters are tuned. The sample generated scene image and
statistics of the generated dataset are presented in Figure 2 and Table 2, respectively.
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4.2.2. Real Scene Text Dataset

In addition to the synthetic dataset, we collected 1200 benchmark bilingual real scene text images
using photo camera and image search on Google. The images were captured from local markets,
navigation and traffic signs, banners, billboards, and governmental offices. We also incorporated
several office logos, most of which were written both in Amharic and English with curved shapes.
In addition to our prepared dataset, we used the Synthetic [22] dataset to pre-train the proposed
model with our synthetic dataset. To refine the pre-trained model and compare its performance
with a state-of-the-art model, we used ICDAR2013 [44], ICDAR2015 [40], and Total-Text [45] datasets.
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The datasets, we used in the proposed model are summarized in Table 2. Additionally, sample images
from the collected datasets are depicted in Figure 3.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 14 
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Table 2. Statistics of datasets applied for training and testing the proposed model.

Dataset Language Total Images Training Testing Type

Ours
Real Bilingual 1200 600 600 Irregular

Synthetic Bilingual 500,000 500,000 - Regular
ICDAR2013 [44] English 462 229 233 Regular
ICDAR2015 [40] English 1500 1000 500 Regular

Synthetic [22] English 600,000 - - Regular
Total-Text [45] English 1555 1255 300 Irregular

5. Experiments and Discussions

The effectiveness of the proposed model was evaluated and compared with state-of-the-art
methods by pre-training the proposed model using our synthetically generated dataset and a Synthetic
dataset. Finally, the pre-trained model was refined by merging the above-mentioned datasets.

5.1. Implementation Details

The proposed model was first pre-trained using our synthetically generated bilingual dataset and
Synthetic [22], then fine-tuned using the union of other real-world datasets indicated in Section 4.2.2.
Due to the lack of real sample images in the fine-tuning stage, data augmentation and multi-scale
training were applied by randomly modifying brightness, hue, contrast, the angle of the image between
−30 and 30. Following [9], for multi-scale training, the shorter sides of the input images were randomly
resized to five scales (600, 800, 1000, 1200, 1400). We used Adam [46] (base learning rate = 0.0001,
β1 = 0.9, β2 = 0.999, weight decay = 0) as an optimizer. Following the result of [21], we set the value to
α = 0.25 which denotes the ratio of the low-frequency part.
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The experiment of the proposed bilingual scene text reading model is conducted on the Ubuntu
machine containing Intel Core i7-7700 (3.60 GHz) CPU with 64 GB RAM and GeForce GTX 1080 Ti
11176 MiB GPU. For the implementation, we use Python 3.7 and PyTorch1.2.

5.2. Experiment Results

Throughout our experimental analysis, we evaluated a single model trained in a multilingual
setup as explained in Section 3. To improve the performance of the model, we first pre-trained it
using Synthetic dataset [22] and our synthetically generated bilingual dataset which has a total of
430 characters. Then, we fine-tuned the pre-trained model by combining the above-mentioned real
scene text datasets. The text recognition results were reported in an unconstrained setup, that is,
without using any predefined lexicon (set of words).

The performance of the trained model was verified using our prepared testing dataset and
well-known ICDAR detests. As discussed in Section 4.2, the collected images in our dataset contain
horizontal, arbitrary, and curved texts. Both the detection and recognition results were promising
for horizontal, arbitrary, and curved text. The experiment evaluation for scene text detection on our
prepared real scene text dataset showed 88.3% Precision (P), 82.4% Recall (R), and 85.25% F1-score
(F). On the other hand, the end-to-end scene text-reading experiment showed 80.88% P, 49.01% R,
and 61.04% F. The scene text detection performance of the proposed method for English and Amharic
words do not differ much. However, in the end-to-end scene text reading task, 63.4% of errors occurred
in the recognition of Amharic words. From incorrectly recognized characters, some of them did not
have sufficient samples on the real and Synthetic datasets. Sample detection and recognition results
are depicted in Figure 4. Most of the detection errors in our proposed method occurred from false
detection of non-text areas of backgrounds.
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Figure 4. Sample detection and recognition result for our prepared dataset.

In addition to our testing dataset, we evaluated the performance of our proposed model using
ICDAR2013, ICDAR2015, and Total-Text testing datasets, which contain only English texts. The model
is fine-tuned for both English and Amharic languages as one model, not for each language. The results
of our proposed method and previously proposed methods are shown in Table 3. The experiment
showed that our proposed method had a better recognition result on ICDAR2013 and Total-Text
datasets. However, the scene text detection result of our proposed method was almost similar to
a recently proposed mask text spotter [9] method. We used their architecture and implementation
code with a little modification on the feature extraction layer and recognition layer. From the
MaskTextSpotter implementation, we modified the ResNet-50 feature extraction by octave based
ResNet-50 feature extraction and the text recognition part is modified by self-attention encoder-decoder
model. Whereas the preprocessing and RPN implementation is taken from MaskTextSpotter. In Table 4,
we compare the scene text detection result of our proposed method with previously proposed methods
using ICDAR2013, ICDAR2015, and Total-Text datasets.
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Table 3. F1-Score experimental results of the proposed unconstrained scene text reading system
compared with previous methods.

Method ICDAR2013 ICDAR2015 Total-Text

TextProposals+DicNet * [47] 68.54% 47.18% -
DeepTextSpotter * [19] 77.0% 47.0% -
FOTS * [34] 84.77% 65.33% -
TextBoxes * [8] 84.65% 51.9% -
E2E-MLT ** [48] - 71.4% -
Mask Text Spotter ** [9] 86.5% 62.4% 65.3%
Ours 86.8% 62.15% 67.6%

* indicates that the model is trained for English language only; ** indicates that the model is trained for multilingual
datasets. Our model is trained for English and Amharic languages, with 430 characters.

Table 4. Scene text detection result of the proposed method compared with previous methods.

Method
ICDAR2013 ICDAR2015 Total-Text

P R F P R F P R F

PSENet [49] 94% 90% 92% 86.2% 84.5% 85.69% 84% 77.9% 80.9%
TextBoxes++ [8] 92% 86% 89% 87.8% 78.5% 82.9% - - -
Mask Text Spotter [9] 94.8% 89.5% 92.1% 86.8% 81.2% 83.4% 81.8% 75.4% 78.5%
Ours 93.91% 88.96% 91.36% 86.02% 80.97% 83.28% 82.3% 73.8% 77.82%

In the experiment, the proposed bilingual scene text reading method had limitations regarding
small font size scene texts and severely distorted images. Furthermore, due to the existence of many
characters and their similarities, and the limited number of training samples for certain Ethiopic
characters, a recognition error occurred at the time of testing. To improve the recognition performance
of the system and the scene text-reading system in general, it is necessary to prepare more training
data that contain enough samples for every character.

6. Conclusions

This paper introduced an end-to-end trainable bilingual (English and Ethiopic) scene text reading
system using octave convolution and time-restricted attention encoder-decoder module. In the
proposed model there were three layers. In the first layer, FPN with ResNet-50 was used as a feature
extractor by replacing vanilla convolution with OctConv. Secondly, bounding box prediction and
detection of texts were performed using RPN. Finally, recognition of text was performed by segmenting
text areas based on the detected bounding boxes on the second layer using a time-restricted attention
encoder-decoder network. To measure the effectiveness of the proposed model, we collect and
syntactically generate a bilingual dataset. Additionally, we use well-known ICDAR2013, ICDAR2015,
and Total Text datasets. Based on the prepared bilingual dataset, the proposed method shows 61.04%
and 85.25% F1-measure on scene text reading and scene text detection, respectively. Compared to
state-of-the-art recognition performance, our proposed model shows promising results. However,
our method shows state-of-the-art results for ICDAR2013 and Total-Text end-to-end text readings.
Furthermore, due to the existence of many characters, their similarities, and the limited number of
training samples for certain Ethiopic characters, a recognition error occurred at the time of testing.
To improve the recognition performance of the system, it is necessary for the future to prepare more
training data that contain enough samples for every character. After the publication of the paper,
the implementation code and the prepared dataset link will be freely available for the researchers on
https://github.com/direselign/amh_eng.

https://github.com/direselign/amh_eng
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