Gradually Applying Weakly Supervised and Active Learning for Mass Detection in Breast Ultrasound Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Training Procedure Using Dstrong Subset
2.3. Training Procedure Using Dweak Subset
2.4. Dactive Construction with Dweak Test Results
2.5. Faster-RCNN Hyperparameters and Model Details
3. Results
3.1. Evaluation Specifications
3.2. Experiments for Controlling the Effect of Weakly Annotated Images in SNUBH Dataset
3.3. Experiments for Active Learning on SNUBH Dataset
3.4. Experiments on Comparable Object Detectors
3.5. Experiments on Stanford Dog dataset
4. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SNUBH | Seoul National University Bundang Hospital |
BUS | Breast Ultrasound |
GANs | Generative Adversarial Networks |
CNN | Convolutional Neural Networks |
FCN | Fully Connected Networks |
RPN | Region Proposal Network |
RoI | Region of Interest |
CorLoc | Correct Localization |
NMS | Non maximum suppression |
mAP | mean average precision |
TP | True Positive |
FP | False Positive |
GT | Ground Truth |
References
- Cheng, H.; Shan, J.; Ju, W.; Guo, Y.; Zhang, L. Automated breast cancer detection and classification using ultrasound images: A survey. Pattern Recognit. 2010, 43, 299–317. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.D.; Shi, X.; Min, R.; Hu, L.; Cai, X.; Du, H. Approaches for automated detection and classification of masses in mammograms. Pattern Recognit. 2006, 39, 646–668. [Google Scholar] [CrossRef]
- Stavros, A.T.; Thickman, D.; Rapp, C.L.; Dennis, M.A.; Parker, S.H.; Sisney, G.A. Solid breast nodules: Use of sonography to distinguish between benign and malignant lesions. Radiology 1995, 196, 123–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drukker, K.; Gruszauskas, N.P.; Sennett, C.A.; Giger, M.L. Breast US computer-aided diagnosis workstation: Performance with a large clinical diagnostic population. Radiology 2008, 248, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Ragesh, N.; Anil, A.; Rajesh, R. Digital image denoising in medical ultrasound images: A survey. In Proceedings of the Icgst Aiml-11 Conference, Dubai, UAE, 12 April 2011; Volume 12, p. 14. [Google Scholar]
- Madjar, H. Role of breast ultrasound for the detection and differentiation of breast lesions. Breast Care 2010, 5, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Hansen, C.; Huttebrauker, N.; Schasse, A.; Wilkening, W.; Ermert, H.; Hollenhorst, M.; Heuser, L.; Schulte-Altedorneburg, G. Ultrasound breast imaging using full angle spatial compounding: In-vivo results. In Proceedings of the 2008 IEEE Ultrasonics Symposium, Beijing, China, 2–5 November 2008; pp. 54–57. [Google Scholar]
- Pons, G.; Martí, R.; Ganau, S.; Sentís, M.; Martí, J. Computerized detection of breast lesions using deformable part models in ultrasound images. Ultrasound Med. Biol. 2014, 40, 2252–2264. [Google Scholar] [CrossRef] [PubMed]
- Yap, M.H.; Goyal, M.; Osman, F.M.; Martí, R.; Denton, E.; Juette, A.; Zwiggelaar, R. Breast ultrasound lesions recognition: End-to-end deep learning approaches. J. Med. Imaging 2018, 6, 011007. [Google Scholar]
- Shin, S.Y.; Lee, S.; Yun, I.D.; Kim, S.M.; Lee, K.M. Joint weakly and semi-supervised deep learning for localization and classification of masses in breast ultrasound images. IEEE Trans. Med. Imaging 2018, 38, 762–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 91–99. [Google Scholar]
- Wang, Y.; Liu, J.; Li, Y.; Lu, H. Semi-and weakly-supervised semantic segmentation with deep convolutional neural networks. In Proceedings of the 23rd ACM international conference on Multimedia, Brisbane, Australia, 13 October 2015; pp. 1223–1226. [Google Scholar]
- Zhang, L.; Gopalakrishnan, V.; Lu, L.; Summers, R.M.; Moss, J.; Yao, J. Self-learning to detect and segment cysts in lung CT images without manual annotation. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 1100–1103. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
Dataset | SNUBH | Stanford Dog | |||||
---|---|---|---|---|---|---|---|
Role | Supervision | Mal. | Ben. | Total | Blk. | Eng. | Total |
Train | Strong | 400 | 400 | 800 | 20 | 20 | 40 |
Weak | 933 | 3291 | 4224 | 107 | 77 | 184 | |
Test | Strong | 200 | 200 | 400 | 60 | 60 | 120 |
Total | 5424 | 354 |
α Control Schedule | CorLoc [%] | Fraction of Lesion Detected [%] |
---|---|---|
constant | 41.75 | 56.00 |
inverse exponential | 49.75 | 69.25 |
linear | 60.25 | 70.50 |
polynomial (1) | 58.75 | 67.00 |
proposed: polynomial (2) | 65.75 | 76.00 |
polynomial (3) | 63.00 | 74.50 |
Active Learing | CorLoc [%] | Fraction of Lesion Detected [%] |
---|---|---|
before | 65.75 | 76.00 |
after | 68.50 | 79.75 |
Detectors | CorLoc [%] | Fraction of Objects Detected [%] |
---|---|---|
Vanilla Faster-RCNN [10] | 42.50 | 57.50 |
Weakly supervised Faster-RCNN [11] | 33.75 | 59.00 |
proposed | 68.50 | 79.75 |
α Increase Method | CorLoc [%] | Fraction of Objects Detected [%] |
---|---|---|
constant | 83.33 | 86.67 |
inverse exponential | 85.83 | 87.50 |
linear | 83.33 | 87.50 |
polynomial (1) | 79.17 | 84.17 |
proposed: polynomial (2) | 87.50 | 89.17 |
polynomial (3) | 81.67 | 87.50 |
Active Learing | CorLoc [%] | Fraction of Lesion Detected [%] | mAP [%] |
---|---|---|---|
before | 87.50 | 89.17 | 36.84 |
after | 84.17 | 87.50 | 54.30 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, J.; Oh, J.; Yun, I. Gradually Applying Weakly Supervised and Active Learning for Mass Detection in Breast Ultrasound Images. Appl. Sci. 2020, 10, 4519. https://doi.org/10.3390/app10134519
Yun J, Oh J, Yun I. Gradually Applying Weakly Supervised and Active Learning for Mass Detection in Breast Ultrasound Images. Applied Sciences. 2020; 10(13):4519. https://doi.org/10.3390/app10134519
Chicago/Turabian StyleYun, JooYeol, JungWoo Oh, and IlDong Yun. 2020. "Gradually Applying Weakly Supervised and Active Learning for Mass Detection in Breast Ultrasound Images" Applied Sciences 10, no. 13: 4519. https://doi.org/10.3390/app10134519
APA StyleYun, J., Oh, J., & Yun, I. (2020). Gradually Applying Weakly Supervised and Active Learning for Mass Detection in Breast Ultrasound Images. Applied Sciences, 10(13), 4519. https://doi.org/10.3390/app10134519