Combined Effect of Sonication and Acid Whey on Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activities of Peptides Obtained from Dry-Cured Pork Loin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparations
2.2. Determination of the Chemical Composition of the Raw Materials
2.3. Determination of Peptide Concentration
2.4. Determination of the Antioxidant Activity of Bioactive Peptides and Oxidative Stability
2.4.1. Thiobarbituric Acid Reactive Substances
2.4.2. Oxidation–Reduction Potential
2.4.3. Free Radical-Scavenging Activity
2.4.4. Reducing Power
2.5. Determination of Angiotensin-Converting Enzyme Inhibitory Activity
2.6. Statistical Analysis
3. Results
3.1. Proximate Composition
3.2. Characteristics of Products after Storage
3.2.1. Oxidative Stability
3.2.2. Evaluation of Peptide Content and Potential Biologic Activity
3.3. Statistical Comparison
4. Discussion
4.1. Oxidative Stability
4.2. Peptide Content and In Vitro Biologic Activity
4.3. Statistical Comparison
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ABTS | 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) |
ACE | angiotensin-converting enzyme |
LAB | lactic acid bacteria |
MDA | malondialdehyde |
ORP | oxidation–reduction potential |
RP | reducing power |
TBARS | thiobarbituric acid reactive substances |
References
- Mora, L.; Gallego, M.; Toldrá, F. ACEI-inhibitory peptides naturally generated in meat and meat products and their health relevance. Nutrients 2018, 10, 1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez, A.; Vázquez, A. Bioactive peptides: A review. Food Qual. Saf. 2017, 1, 29–46. [Google Scholar]
- Toldrá, F.; Reig, M.; Aristoy, M.C.; Mora, L. Generation of bioactive peptides during food processing. Food Chem. 2018, 267, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Agyei, D.; Pan, S.; Acquah, C.; Danquah, M.K. Bioactivity profiling of peptides from food proteins. In Soft Chemistry and Food Fermentation; Academic Press: Cambridge, MA, USA, 2017; pp. 49–77. [Google Scholar]
- Boateng, E.F.; Nasiru, M.M. Applications of Ultrasound in Meat Processing Technology: A Review. Food Sci. Tech. 2019, 7, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Mason, T.J.; Peters, D. Practical Sonochemistry: Power Ultrasound Uses and Applications; Woodhead Publishing: Cambridge, UK, 2002. [Google Scholar]
- Ashokkumar, M. Applications of ultrasound in food and bioprocessing. Ultrason. Sonochem. 2015, 25, 17–23. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, C.P.; Tiwari, B.K.; Bourke, P.; Cullen, P.J. Effect of ultrasonic processing on food enzymes of industrial importance. Trends Food Sci. Technol. 2010, 21, 358–367. [Google Scholar] [CrossRef] [Green Version]
- Stadnik, J.; Stasiak, D.M.; Dolatowski, Z.J. Proteolysis in dry-aged loins manufactured with sonicated pork and inoculated with Lactobacillus casei ŁOCK 0900 probiotic strain. Int. J Food Sci. Tech. 2014, 49, 2578–2584. [Google Scholar] [CrossRef]
- Huang, G.; Chen, S.; Dai, C.; Sun, L.; Sun, W.; Tang, Y.; Ma, H. Effects of ultrasound on microbial growth and enzyme activity. Ultrason. Sonochem. 2017, 37, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Nadar, S.S.; Rathod, V.K. Ultrasound assisted intensification of enzyme activity and its properties: A mini-review. World J. Microb. Biotechnol. 2017, 33, 170. [Google Scholar] [CrossRef] [PubMed]
- PN-A-82109:2010. Mięso i Przetwory Mięsne—Oznaczanie Zawartości Tłuszczu, Białka i Wody—Metoda Spektrometrii Transmisyjnej w Bliskiej Podczerwieni (NIT) z Wykorzystaniem Kalibracji na Sztucznych Sieciach Neuronowych (ANN); Polski Komitet Normalizacyjny: Warszawa, Polska. (In Polish)
- PN-73/A-82112. Mięso i Przetwory Mięsne. Oznaczanie Zawartości Soli Kuchennej; Polski Komitet Normalizacyjny: Warszawa, Polska. (In Polish)
- Mora, L.; Sentandreu, M.A.; Toldrá, F. Identification of small troponin T peptides generated in dry-cured ham. Food Chem. 2010, 123, 691–697. [Google Scholar] [CrossRef]
- Adler-Nissen, J. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J. Agric. Food Chem. 1979, 27, 1256–1262. [Google Scholar] [CrossRef] [PubMed]
- Pikul, J.; Leszczynski, D.E.; Kummerow, F.A. Evaluation of three modified TBA methods for measuring lipid oxidation in chicken meat. J. Agric. Food Chem. 1989, 37, 1309–1313. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction: Antioxidative activity of products of browning reaction. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Yamamoto, N.; Sakai, K.; Okubo, A.; Yamazaki, S.; Takano, T. Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk. J. Dairy Sci. 1995, 78, 777–783. [Google Scholar] [CrossRef]
- Wójciak, K.M.; Dolatowski, Z.J.; Kolozyn-Krajewska, D. Stabilność oksydacyjna ekologicznej kiełbasy surowo dojrzewającej z dodatkiem probiotycznego szczepu Lactobacillus casei ŁOCK 0900 i serwatki kwasowej. Zywn-Nauk Technol. Jakosc. 2014, 2, 93–109. (In Polish) [Google Scholar]
- Jiang, J.; Xiong, Y.L. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review. Meat Sci. 2016, 120, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Sohaib, M.; Anjum, F.M.; Sahar, A.; Arshad, M.S.; Rahman, U.U.; Imran, A.; Hussain, S. Antioxidant proteins and peptides to enhance the oxidative stability of meat and meat products: A comprehensive review. Int. J. Food Prop. 2017, 20, 2581–2593. [Google Scholar] [CrossRef]
- Wójciak, K.M.; Kęska, P.; Okoń, A.; Solska, E.; Libera, J.; Dolatowski, Z.J. The influence of acid whey on the antioxidant peptides generated to reduce oxidation and improve colour stability in uncured roasted beef. J. Sci. Food Agric. 2018, 98, 3728–3734. [Google Scholar] [CrossRef]
- Gök, V.; Obuz, E.; Akkaya, L. Effects of packaging method and storage time on the chemical, microbiological, and sensory properties of Turkish pastirma—A dry cured beef product. Meat Sci. 2008, 80, 335–344. [Google Scholar] [CrossRef]
- Estévez, M. Protein carbonyls in meat systems: A review. Meat Sci. 2011, 89, 259–279. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, V.; Estévez, M.; Ventanas, J.; Ventanas, S. Impact of lipid content and composition on lipid oxidation and protein carbonylation in experimental fermented sausages. Food Chem. 2014, 147, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.C.; Wong, R.X. Textural and biochemical properties of cobia (Rachycentron canadum) sashimi tenderised with the ultrasonic water bath. Food Chem. 2012, 132, 1340–1345. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.C.; Zou, Y.H.; Cheng, Y.P.; Xing, L.J.; Zhou, G.H.; Zhang, W.G. Effects of power ultrasound on oxidation and structure of beef proteins during curing processing. Ultrason. Sonochem. 2016, 33, 47–53. [Google Scholar] [CrossRef]
- de Lima Alves, L.; da Silva, M.S.; Flores, D.R.M.; Athayde, D.R.; Ruviaro, A.R.; Brum, D.; Wagner, R. Effect of ultrasound on the physicochemical and microbiological characteristics of Italian salami. Food Res. Int. 2017, 106, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Stadnik, J.; Dolatowski, Z.J. Influence of sonication on the oxidative stability of beef. Roczniki Instytutu Przemysłu Miesnego i Tłuszczowego 2008, 47, 63–68. [Google Scholar]
- McDonnell, C.K.; Allen, P.; Morin, C.; Lyng, J.G. The effect of ultrasonic salting on protein and water–protein interactions in meat. Food Chem. 2014, 147, 245–251. [Google Scholar] [CrossRef]
- Cichoski, A.J.; Rampelotto, C.; Silva, M.S.; de Moura, H.C.; Terra, N.N.; Wagner, R.; Barin, J.S. Ultrasound-assisted post-packaging pasteurization of sausages. Innov. Food Sci. Emerg. 2015, 30, 132–137. [Google Scholar] [CrossRef]
- Rzepkowska, A.; Zielińska, D.; Ołdak, A.; Kołożyn-Krajewska, D. Organic whey as a source of Lactobacillus strains with selected technological and antimicrobial properties. Int. J. Food Sci. 2017, 52, 1983–1994. [Google Scholar] [CrossRef]
- Kęska, P.; Stadnik, J. Characteristic of antioxidant activity of dry-cured pork loins inoculated with probiotic strains of LAB. CyTA-J. Food 2017, 15, 374–381. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Wang, W.; Li, Q.; Chen, Y.; Zheng, D.; Zou, Y.; Wu, X. Physicochemical, functional properties and antioxidant activities of porcine cerebral hydrolysate peptides produced by ultrasound processing. Process Biochem. 2016, 51, 431–443. [Google Scholar] [CrossRef]
- Jia, J.; Ma, H.; Zhao, W.; Wang, Z.; Tian, W.; Luo, L.; He, R. The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein. Food Chem. 2010, 119, 336–342. [Google Scholar] [CrossRef]
- Siewe, F.B.; Kudre, T.G.; Bettadaiah, B.K.; Bhaskar, N. Effects of ultrasound-assisted heating on aroma profile, peptide structure, peptide molecular weight, antioxidant activities and sensory characteristics of natural fish flavouring. Ultrason. Sonochem. 2020, 65, 105055. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, C.K.; Lyng, J.G.; Arimi, J.M.; Allen, P. The acceleration of pork curing by power ultrasound: A pilot-scale production. Innov. Food Sci. Emerg. 2014, 26, 191–198. [Google Scholar] [CrossRef]
Sample | Preservative | Treatments |
---|---|---|
C sample with curing salt | Curing salt | - |
CU sample with curing salt subjected to ultrasound treatment | Curing salt | Ultrasound |
S sample with sea salt | Sea salt | - |
SU sample with sea salt subjected to ultrasound treatment | Sea salt | Ultrasound |
SW sample with sea salt subjected to acid whey marination | Sea salt | Acid whey marination |
SWU sample with sea salt subjected to acid whey margination and ultrasound treatment | Sea salt | Acid whey marination + ultrasound |
Raw Material | pH | ORP (mV) Oxidation–Reduction Potential | aw | TBARS (mg MDA kg−1) Thiobarbituric Acid Reactive Substances |
---|---|---|---|---|
meat | 5.400 ± 0.052 | 315.54 ± 3.227 | 0.982 ± 0.001 | 0.293 ± 0.072 |
acid whey | 4.340 ± 0.026 | 388.50 ± 5.292 | - | - |
Parameter | Value (%) |
---|---|
Water | 72.3 ± 0.08 |
Protein | 23.27 ± 0.34 |
Fat | 4.20 ± 0.26 |
Collagen | 1.04 ± 0.08 |
Salt [Cl−] | 0.63 ± 0.04 |
Sample | Time (Days) | Parameter | |
---|---|---|---|
TBARS (mg MDA kg−1) | ORP (mV) | ||
C | 7 | 0.490 ± 0.031 c,C | 333.500 ± 6.690 a,A |
21 | 1.071 ± 0.040 b,A | 310.167 ± 5.353 a,C | |
42 | 0.604 ± 0.033 d,B | 319.697 ± 5.971 a,B | |
CU | 7 | 0.536 ± 0.091 c,B | 298.367 ± 2.873 b,A |
21 | 1.167 ± 0.071 b,A | 254.667 ± 8.851 b,B | |
42 | 0.624 ± 0.035 d,B | 288.267 ± 4.027 b,A | |
S | 7 | 0.922 ± 0.058 b,B | 298.367 ± 1.222 b,A |
21 | 0.811 ± 0.098 d,B | 296.533 ± 2.386 a,c,A | |
42 | 1.209 ± 0.078 a,A | 235.867 ± 5.187 c,B | |
SU | 7 | 0.846 ± 0.115 b,B | 270.800 ± 2.646 c,A |
21 | 1.004 ± 0.050 c,A | 269.135 ± 8.113 b,A | |
42 | 1.080 ± 0.065 b,A | 235.900 ± 2.621 c,B | |
SW | 7 | 1.075 ± 0.018 a,B | 247.800 ± 5.231 d,B |
21 | 1.287 ± 0.034 a,A | 303.967 ± 4.528 a,A | |
42 | 0.766 ± 0.066 c,C | 293.000 ± 5.624 b,A | |
SWU | 7 | 0.958 ± 0.040 a,b,B | 263.300 ± 6.861 c,B |
21 | 1.211 ± 0.032 a,b,A | 287.000 ± 4.073 c,A | |
42 | 0.794 ± 0.050 c,C | 250.367 ± 3.591 d,C |
Sample | Time (Days) | Parameter | |||
---|---|---|---|---|---|
PC (mg/mL) Peptide Concentration | ABTS (%) (2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic Acid) Scavenging Activity) | RP (700 nm) Reducing Power | ACE (%) Angiotensin-Converting Enzyme Unit Inhibiting | ||
C | 7 | 2.93 ± 0.17 c,C | 49.67 ± 2.93 e,C | 0.763 ± 0.038 c,d,B | 76.32 ± 2.44 b,A |
21 | 3.17 ± 0.10 a,b,B | 54.66 ± 2.39 d,B | 1.115 ± 0.003 b,c,A | 76.23 ± 1.86 a,A | |
42 | 3.99 ± 0.12 b,A | 65.07 ± 0.40 c,A | 0.558 ± 0.035 c,C | 78.37 ± 1.10 a,A | |
CU | 7 | 2.19 ± 0.11 d,B | 51.31 ± 0.49 e,C | 0.684 ± 0.061 d,B | 71.76 ± 2.14 b,A |
21 | 2.25 ± 0.35 c,B | 67.05 ± 3.69 c,B | 1.122 ± 0.039 a,A | 72.69± 2.96 a,A | |
42 | 3.70 ± 0.09 b,A | 70.00 ± 1.28 b,A | 0.580 ± 0.057 c,C | 73.34 ± 2.63 a,A | |
S | 7 | 3.76 ± 0.22 a,A | 68.86 ± 2.38 a,C | 1.061 ± 0.118 b,A | 86.76 ± 2.16 a,A |
21 | 3.07 ± 0.12 a,b,B | 74.99 ± 3.70 b,B | 0.830 ± 0.045 d,B | 65.95 ± 4.68 b,B | |
42 | 3.85 ± 0.18 b,A | 81.37 ± 2.05 a,A | 0.672 ± 0.024 b,C | 63.93 ± 2.66 b,B | |
SU | 7 | 3.17 ± 0.31 b,c,B | 63.25 ± 2.22 b,C | 1.091 ± 0.047 b,A | 85.65 ± 2.52 a,A |
21 | 2.87 ± 0.19 b,B | 85.10 ± 2.24 a,A | 1.042 ± 0.008 c,A | 60.38 ± 2.39 b,C | |
42 | 4.41 ± 0.07 a,A | 80.44 ± 2.79 a,B | 0.775 ± 0.053 a,B | 69.52 ± 5.52 b,B | |
SW | 7 | 3.36 ± 0.17 a,c,B | 54.67 ± 1.77 d,B | 0.857 ± 0.048 c,B | 74.93 ± 1.07 b,A |
21 | 3.36 ±0.13 a,B | 59.79 ± 1.70 d,B | 1.182 ± 0.076 b,A | 60.76 ± 2.39 b,B | |
42 | 4.58 0.22 a,A | 71.18 ±1.38 b,A | 0.814 ± 0.045 a,B | 72.22 ± 2.63 b,A | |
SWU | 7 | 3.55 ± 0.39 a,b,A,B | 59.79 ± 1.70 c,B | 1.251 ± 0.032 a,A | 71.94 ±3.59 b,A |
21 | 3.07 ± 0.09 a,B | 65.07 ± 4.16 c,A | 1.224 ± 0.022 a,A | 64.48 ± 1.81 b,B | |
42 | 3.90 ± 0.30 b,A | 66.26 ± 3.30 c,A | 0.675 ± 0.064 b,B | 75.48 ± 2.29 b,A |
Effect | Wilks’ Lambda | F | p |
---|---|---|---|
Absolute terms | 0.000060 | 107,274.2 | 0.00 |
Time | 0.000895 | 207.5 | 0.00 |
Treatment | 0.000091 | 54.2 | 0.00 |
Time × Treatment | 0.000007 | 37.5 | 0.00 |
Sample | ABTS | RP | TBARS | ORP | ACE-I | |
---|---|---|---|---|---|---|
PEPTIDE CONTENT | C | 0.995 | −0.623 | −0.142 | −0.323 | 0.966 |
CU | 0.651 | −0.594 | −0.350 | 0.261 | 0.832 | |
S | 0.111 | 0.009 | 0.782 | −0.563 | 0.337 | |
SU | 0.139 | −0.948 | 0.621 | −0.975 | 0.022 | |
SW | 0.953 | −0.590 | −0.919 | 0.331 | 0.337 | |
SWU | 0.076 | −0.789 | −1.000 | −0.997 | 0.994 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kęska, P.; Stadnik, J. Combined Effect of Sonication and Acid Whey on Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activities of Peptides Obtained from Dry-Cured Pork Loin. Appl. Sci. 2020, 10, 4521. https://doi.org/10.3390/app10134521
Kęska P, Stadnik J. Combined Effect of Sonication and Acid Whey on Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activities of Peptides Obtained from Dry-Cured Pork Loin. Applied Sciences. 2020; 10(13):4521. https://doi.org/10.3390/app10134521
Chicago/Turabian StyleKęska, Paulina, and Joanna Stadnik. 2020. "Combined Effect of Sonication and Acid Whey on Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activities of Peptides Obtained from Dry-Cured Pork Loin" Applied Sciences 10, no. 13: 4521. https://doi.org/10.3390/app10134521
APA StyleKęska, P., & Stadnik, J. (2020). Combined Effect of Sonication and Acid Whey on Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activities of Peptides Obtained from Dry-Cured Pork Loin. Applied Sciences, 10(13), 4521. https://doi.org/10.3390/app10134521