
applied  
sciences

Article

Detecting the Structural Hole for Social Communities
Based on Conductance–Degree

Zhifang Liao 1 , Lite Gu 1, Xiaoping Fan 2,* , Yan Zhang 3 and Chuanqi Tang 1

1 School of Computer Science and Engineering, Central South University, Changsha 410083, China;
zfliao@csu.edu.cn (Z.L.); gulite@csu.edu.cn (L.G.); 184712010@csu.edu.cn (C.T.)

2 Information Management Department, Hunan University of Finance and Economics,
Changsha 410205, China

3 Department of Computer, School of Engineering and Built Environment, Glasgow Caledonian University,
Glasgow G4 0BA, UK; yan.zhang@gcu.ac.uk

* Correspondence: xpfan@csu.edu.cn; Tel.: +86-0731-88811267

Received: 31 May 2020; Accepted: 26 June 2020; Published: 29 June 2020
����������
�������

Abstract: It has been shown that identifying the structural holes in social networks may help people
analyze complex networks, which is crucial in community detection, diffusion control, viral marketing,
and academic activities. Structural holes bridge different communities and gain access to multiple
sources of information flow. In this paper, we devised a structural hole detection algorithm, known
as the Conductance–Degree structural hole detection algorithm (CD-SHA), which computes the
conductance and degree score of a vertex to identify the structural hole spanners in social networks.
Next, we proposed an improved label propagation algorithm based on conductance (C-LPA) to filter
the jamming nodes, which have a high conductance and degree score but are not structural holes.
Finally, we evaluated the performance of the algorithm on different real-world networks, and we
calculated several metrics for both structural holes and communities. The experimental results show
that the algorithm can detect the structural holes and communities accurately and efficiently.
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1. Introduction

We are living in an online era, and many people are surfing online social networks to make friends,
study, do academic research, or engage in other activities to satisfy their social needs at different levels.
Scholarly data can be easily accessed. More powerful data analysis technologies must be developed.
The interconnectedness of individuals in different communities has a significant impact on the lifespan
and sustainability of the community [1,2]. The structure that acts as a bridge or tie between individuals
of different communities tends to allow access to a richer supply of information and determines
whether to allow the information from one group to diffuse to another; therefore, it is important to
detect structural holes. Burt [3], who studied the social structures of many organizations, first provided
the notion of structural holes as a means to bridge diverse groups and lead to benefits and termed the
vertices lying on those positions as structural hole spanners. In social networks, users who bridge
different communities are known as structural hole spanners. Structural holes are fundamental in
many applications, and several models have been developed [4–6]. In viral marketing, structural
holes can accelerate new product marketing to different groups [7,8]. Discovering the structural holes
from real large-scale networks accurately and efficiently is a challenge that has attracted the attention
of researchers.

There are many models that detect structural holes. However, the nodes identified by the existing
model in the social network are not necessarily occupants of the structural hole spanner, but may also

Appl. Sci. 2020, 10, 4525; doi:10.3390/app10134525 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-5525-904X
https://sciprofiles.com/profile/245766
https://orcid.org/0000-0003-0172-4070
http://dx.doi.org/10.3390/app10134525
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/13/4525?type=check_update&version=2


Appl. Sci. 2020, 10, 4525 2 of 12

be the central node of the network. In Figure 1, the larger blue node is a typical structural hole spanner,
while the larger yellow node is not a structural hole spanner but has similar more specific features.
It is necessary for us to detect the structural holes more accurately and remove the core nodes from
the results.
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In this paper, our contributions are as follows:

(1) We present a model called the Conductance-Degree structural hole detection algorithm (CD-SHA),
which uses conductance and degree to detect structural holes and uses conductance to detect the
local minimum communities (LMCs)

(2) We propose an improved label propagation algorithm based on conductance (C-LPA) to recognize
communities in a network and filter the structural hole results.

We use real datasets to evaluate the performance using evaluation indicators, such as constraint,
effective size, efficiency, clustering coefficient, and hierarchy. Experimental results show that the
structural holes detected by the algorithm act as a bridge between communities in real large-scale social
networks. Additionally, the evaluations show that the algorithm performs well regarding accuracy
and robustness.

The remaining parts of this paper are arranged as follows. Section 2 discusses related studies
and introduces basic notations. Section 3 proposes a solution to the problem. Section 4 introduces
the dataset, and then analyzes and evaluates the performance and results of the algorithm. Section 5
presents the study’s conclusions.

2. Related Work

2.1. Structural Holes

The concept of structural holes was first proposed as a sociology notion by Burt [3] and was later
refined. Goyal et al. [9] proposed a model that is appropriate for star networks. However, social
networks do not use a star topology. Those researchers determined that the vertices that lie on a large
number of the shortest paths are more likely to be the structural hole spanners, which is similar to
betweenness centrality. Kleinberg et al. [10] designed a decreasing function of the number of paths
using the length between two neighbors to avoid the star topology, but this model requires careful
tuning of the parameters. Because the structural hole spanners are the bridges or ties to connect several
groups, there has been a series of studies relying on communities to identify them.

For example, Rezvani et al. [11] devised two fast but scalable linear time algorithms for the
problem using both the bounded inverse closeness centrality of the vertices and articulation points
of the network. Gong et al. [12] proposed a new solution to identify structural holes based on user
profiles and user-generated content through machine learning methods. Wei et al. [13] provided a
new improved method to identify structural holes according to the features of a temporal network,
while considering nodes as topological, temporal path, and temporal subgraph between the nodes.
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2.2. Label Propagation Algorithms

The label propagation algorithm (LPA) was originally proposed by Zhu et al. [14]. This is a semi-
supervised learning method based on a graph. The idea of this algorithm is to predict the tag information
of other unmarked nodes through the marked node tag information for community detection.

The LPA has been shown to be a highly efficient approach to community detection due to its
near-linear time complexity and simplicity. Additionally, the process of label propagation simulates the
information dissemination in the network. However, the sequence of nodes for the LPA is important.
Different sequences may have different efficiency values and may lead to different results. In this
paper, we use conductance to improve the LPA and capture the information about the communities in
networks to filter the structural hole results.

Zhu [14] developed the LPA algorithm as a graph-based semi-supervised learning model. The
algorithm takes advantage of the information regarding the labels that have been known to predict
unknown labels. Barber et al. [15] developed the modularity-specialized label propagation algorithm
(LPAm) to avoid allocating all of the nodes into the same community. Those researchers introduced
the notions of hop attenuation and node preference to prevent large communities. Kouni et al. [16]
simulated a special propagation and filtering process using information deduced from the properties
of nodes to detect overlapping communities. Lin et al. [17] proposed an efficient community detection
method based on the label propagation algorithm with community kernel (CK-LPA). These researchers
discussed the composition of weights, the label updating strategy, the label propagation strategy,
and the convergence conditions. Chen [18] proposed a novel label propagation algorithm by iteratively
employing a teaching-to-learn and learning-to-teach (TLLT) scheme. Those authors manipulated the
propagation sequence to move from the simple to the difficult and determined the feedback-driven
curricula. Yang et al. [19] proposed a graph-based label propagation algorithm for community detection.
Wang et al. [20] proposed a two-step algorithm with an adjustable parameter based on clustering
coefficient and label propagation. The first step is to prioritize the nodes according to their degree
and clustering coefficient, and initialize the label according to the ranking result. The second step is
based on the first step. In order to avoid randomness, the neighbor nodes are sorted according to their
clustering coefficient and degree, and the optimal neighbor node is selected to update the label.

2.3. Definitions and Notations

It is necessary for us to introduce several fundamental notations and background regarding social
networks before we formally explain our model. Conductance and degree are often used to develop
communities or cluster in social networks. These parameters explain the influence and importance of
nodes. The conductance describes the topology structure of nodes in the network.

The expression G = (V, E) represents an undirected connected graph, where V is a set of vertices
and E contains the edges representing the relationships between those vertices, given two sets of
vertices S, T, with no common part between them. E(S, T) is a set that represents the edges between the
two groups and cut(S, T) represents the cut of the two sets, that is, the number of the edges between S
and T. The conductance of a cluster is defined as the probability that a one-step random walk begins
in one cluster and finally leaves that cluster. S_bar is the complement of S. The conductance of the set S
and S_bar, denoted φ(S), is as follows:

φ(S) =
cut(S)

min(d_sum(S), d_sum(S_bar))
(1)

There is φ(S) ∈ [0, 1] and φ(S) = φ(S_bar). cut(S) represents the cut of S and S_bar. d_sum(S)
represents the sum of degrees of the vertices in S. If given deges(S) is twice the number of edges
among vertices in S, we have the following:

edges(S) = d_sum(S) − cut(S) (2)
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Let us define a single vertex v’s neighborhoods as N(v) =
{
w

∣∣∣d(w, v) = 1
}
, where d(w, v)

represents the length of the shortest path between w and v. Now, put v and N(v) into a group as a
neighbor community of v. If the conductance of the neighbor community of vertex v is smaller than
the conductance of the neighbor community of any neighbor vertex w, the neighbor community of v is
an LMC. Additionally, to the notation of conductance, the lower the conductance, the fewer the cut(S).
That indicates fewer communications with others and more information exchange within the group;
it is more likely to be a community, so it is appropriate to consider an LMC as an original community.
The LMC can be explained as follows:

∀wi ∈ N(v),φ(N(v)) ≤ φ(N(wi)) (3)

where N(v) represents the neighbor community of v and N(wi) represents the neighbor community of w.
Conversely, the more the conductance, the more the cut(S) is, which indicates that the neighbors

of the node have more communications with others than with the node’s other neighbors, as shown
in Figure 2. There are few relations between the node in dark color and its neighbors, whereas there
are more relations both in the left and right groups. In this paper, we consider both conductance and
degree to detect structural holes.
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3. Conductance–Degree Structural Hole Detection Algorithm

In this section, we propose a new algorithm to detect structural hole spanners. This algorithm can
avoid mistakenly identifying central nodes of social networks as structural hole spanners. Furthermore,
through five common evaluation methods, our algorithm is superior to the other four common
structural hole detection algorithms. We first computed the conductance and degree of the nodes and
calculated the score (CD-score) according to the CD-SHA. The larger the CD-score, the more likely that
the node was a structural hole spanner. Next, we identified the LMC structure in a social network to
start the C-LPA and detect communities in the network. Next, we considered the position of the nodes
in the network and filtered those nodes that did not access communities. Finally, we identified the
structural hole spanners according to their CD-scores after filtering. Figure 3 illustrates the process of
the algorithm.

3.1. Conductance and Degree Score

The larger the conductance value, the more relations exist among the neighbor community and
other groups, and the more nodes have an association with the vertex and the more information per
path. In real social networks, if those vertices with large conductance are lying on the edge of the
communities, then they are more likely to be structural hole spanners.

It is easy to determine the degree of each node when we load the vertices and edges into memory.
The greater the degree, the more importance and influence the node has on the networks. However,
not all of the nodes with large degrees are structural hole spanners. Some of them are the core of the
communities. In this paper, we computed a CD-score that refers to both the conductance and degree.
We denoted α and β as the regulatory factors, and we indicated that α+ β = 1. The bigger the α,
the more influence the detected nodes have, and the bigger the β, the more accuracy the detected



Appl. Sci. 2020, 10, 4525 5 of 12

nodes have. In our experiments, the α was 0.3 and the β was 0.7. The larger the conductance and the
degree, the greater is the CD-score:

s = α·
d(v)

g
+ β·φ(v) (4)

where s is the CD-score, d(v) is the degree of node v, φ(v) is the conductance of node v’s neighbor
community, and α and β are the regulatory factors.Appl. Sci. 2020, 10, 4525 5 of 12 
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includes 5 steps: (1) Compute the conductance and degree; (2) Calculate CD-score; (3) Identify the local
minimum community (LMC) structure in the network; (4) Detect communities by the label propagation
algorithm based on conductance (C-LPA); (5) Identify the structural hole spanners according to their
CD-scores after filtering.

Algorithm 1 provides a method to compute the conductance. It takes O(n) time. Computing the
degree of a node to detect structural holes uses different approaches but achieves equally satisfactory
results in Goyal’s [10] and J. Tang’s [21] work. Although they describe the node’s message passing ability,
the degree is easier to compute, and we improve the method with conductance. However, because the
core of the communities has a large conductance and degree, we need more information regarding the
relative position of the vertex in the communities.

Algorithm 1

Input: Network (Nodes and edges)
Output: φ(S)
1: Initialize node List
2: For each node in List do
3: if node is in v-neighbor do
4: d_sum(S) += 2;
5: edges(S)++;
6: Else
7: d_sum(S)++;
8: cut(S)++;
9: End if
10: End for
11: φ(S) = cut(S)

min(d_sum(S),d_sum(S_bar))
12: Return
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3.2. C-LPA and CD-SHA

The original LPA has many disadvantages, such as the different sequences of vertices resulting
in different results of communities. However, we solved this problem by detecting the LMCs as
the original communities before we started spreading the labels from those original communities in
the C-LPA.

According to the notion of conductance, the lower the conductance, the fewer communications with
others and the more information exchange within the group, and the more likely it is to be a community.
The detailed process to compute the LMCs is described as Algorithm 2.

Algorithm 2

Input: the original Network (nodes and edges)
Output: φ(v) and the original Community structure
1: For each node in List do
2: Get the node’s neighborhoods
3: Compute φ(v)
4: End for
5: For each node v in List do
6: For each node’s neighborhoods w in List do
7: if φ(v) > φ(w)

8: flag = false
9: continue
10: else
11: flag = true
12: End for
13: if flag = true
14: add v to result
15: flag = true
16: End For
17: Return

The dominant running time of the algorithm above computes the conductance of the neighbor
community of each vertex v ∈ V and later compares it with its neighbors. We assumed that there were
n vertices and each vertex had m neighbors, and it would take O(mn) time. In real social networks,
according to the heavy-tailed degree distributions, most nodes have few neighbors, and least nodes
have many neighbors, and it is true that m << n. We previously computed the conductance for
structural holes, so there is little extra cost.

By the end of Algorithm 2, we identified several independent LMCs. Next, we assigned each
LMC a unique label and allocated a random label to the other nodes, as is illustrated in the left side of
Figure 4. Next, we started the C-LPA with the LMCs. A simplified overview of the process is shown in
Figure 4. The right side of the graph shows the situation after the C-LPA is executed. Different colors
represent different communities.
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For the CD-SHA, we defined the structural holes (SHs) to satisfy Equation (5) and across communities;
s represents the CD-score.

∀v ∈ SH, sv > sneighbor (5)

CD-SHA

Input: Network
Output: Community structural and structural holes
1: Allocate unique labels to each LMC
2: Allocate random labels to the other nodes
3: Initialize the List (LMCs are in the front of the List and the other nodes are in the back)
4: While Current Labels! = Last Time Labels do
5: For each node in List do
6: Compute the Neighbor nodes’ community label
7: Update the label
8: if on the edge
9: compare the CD-score
10: End for
11: End While
12: Return

While executing the C-LPA, we compared each node’s CD-score with its neighbors and found
those nodes that did not have a lower CD-score than their neighbors as structural hole candidates. If a
candidate crossed at least two communities, we marked it as a structural hole spanner. The CD-score of
the vertex told us which nodes exchanged more messages in a social network and the C-LPA informed
us about the communities in the network. By the end of the CD-SHA, we identified communities with
different labels and structural holes. The algorithm required a linear time similar to that of the LPA.

4. Dataset and Experiment

4.1. Dataset

To evaluate the performance of the proposed algorithms, we prepared several real-world datasets,
which are listed in Table 1, namely the dolphin social network and the college football network.

Table 1. Six different real datasets.

Dataset Edge Info Node Count Edge Count

Dolphins Communication 62 159

Football Competition 115 616

Dolphin social network. The dataset owns 62 nodes from two dolphin families. Lusseau observed
those dolphins for seven years and recorded the relationship between each pair of dolphins. The relationship
can be described as 159 edges in the dolphin network.

College football network. The dataset describes the USA college league football match in 2000.
There are 115 teams and 616 games in the network. All of the teams were divided into 12 groups
according to the geographical situation of the United States. There were many games both within a
single group and among groups; therefore, this network is very close to the random network.

4.2. Related Algorithms

We compared the following methods for detecting the structural hole spanners with the CD-SHA.
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• Path Count [11]: for each node, the algorithm counted the average number of shortest paths
(between each pair of nodes), and then selected those nodes with the highest number as the
structural hole spanners.

• Two-step connectivity [22]: for each node, the algorithm counted the number of pairs of neighbors
that were not directly connected. Next, those nodes that had high numbers were identified as
structural hole spanners.

• PageRank: PageRank can estimate the importance of a webpage. The algorithm used PageRank [22]
to compute the importance of every node and then selected those nodes with high PageRank
scores as the structural hole spanners.

• CD-SHA: for the network, it computed the conductance and degree score of each node and
compared it to its neighbors to identify the larger ones as structural hole candidates. Next, it used
the C-LPA to detect communities and filtered the candidates. If the candidates were on the edge of
the communities and had an association with at least two groups, the candidates were confirmed
as the structural hole spanners.

4.3. Evaluation Indexes

To evaluate the proposed algorithm, we have considered the following performance metrics:
Constraint (CT). The network constraint coefficient uses the degree of dependence of nodes on the

other nodes as the evaluation criteria. The greater the value, the stronger the constraint, the stronger
the dependence, and the lower the ability to cross the structural hole.

Ci j = (Pi j +
∑

q
PiqPqj)

2
(6)

Node q is a common neighbor of node I and node j. Pij is the weight of node j between the
neighbors of node i. The constraint of node i is as follows:

Ci =
∑

j

Ci j (7)

Effective size (ES). The effective size measures the overall influence of the node. This index
measures the importance of the structural hole quantitatively:

ESi =
∑

j

(1−
∑

q
PiqP jq) = n−

1
n

∑
j

∑
q

P jq (8)

where n is the degree of node i, j represents a neighbor node of i, and q is a common neighbor of nodes
i and j.

Efficient (EF). Efficient describes the impact of nodes on other nodes in the network. In other
words, the efficiency of the nodes in the structural hole is relatively large.

EFi =
ESi
n

(9)

Clustering coefficient (CC). According to the notation of the structural hole, the greater the
clustering coefficient value is, the lower the possibility that the node is a spanner:

C(i) =
2E(i)

k(i)[k(i) − 1]
(10)

where E(i) represents the edges of the node i and k(i) is the degree of the node i.
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Hierarchy (HI). Hierarchy describes part of the features of the structural hole nodes, and the
greater the value, the smaller the possibility the node is a spanner:

HI j =

∑
j (Ci j/ C

N )ln(Ci j/ C
N )

Nln(N)
(11)

where Cij is the constraint of the nodes i and j and C is the constraint of the node i.

4.4. Results and Analysis

Figure 5 shows the results of four algorithms on the dolphin network. Different colors in the graph
represent different communities, and the green nodes are the structural hole spanners detected by the
algorithm. There are two communities and two structural hole spanners in the picture. Regarding
the results of the CD-SHA and the Path Count algorithm, the green nodes act as bridges between the
groups in the network and each structural hole spanner connects at least two communities. The results
of the PageRank and two-step algorithm are in the same community. The number of the structural
hole spanners is significantly less than the total number of nodes. That indicates that a few special
nodes in the network control much of the information diffusion.
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Figure 5. Structural holes in the dolphins’ networks detected by the CD-SHA algorithm, the Path
Count algorithm, the two-step connectivity algorithm, and the PageRank algorithm.

We computed the constraint, the effective size, the efficient, the clustering coefficient, and the
hierarchy of the structural hole spanners detected by the Path Count algorithm, the two-step connectivity
algorithm, the PageRank algorithm, and the CD-LPA algorithm. Figure 6 shows the results for the college
football network.

Figure 6 shows the performance of different algorithms regarding the constraint coefficient,
the efficiency, the clustering coefficient, and the hierarchy in the college football network. Different
colors represent different nodes. We chose the top five results from the algorithm results to draw the
picture. Regarding the effective size, the four algorithms had similar resultant values; the PageRank
algorithm had the largest value and had the best results. Regarding efficiency, the four algorithms had
similar resultant values; the CD-SHA had the highest value and was the best of the four. Regarding the
constraint, the CD-SHA and the two-step connectivity algorithm had smaller values and were better
than the other two algorithms. Regarding the clustering coefficient, the CD-SHA had the smallest
value and was the best of the four algorithms. Regarding the hierarchy, the CD-SHA had the smallest
value and was the best of the four. In general, the CD-SHA works well regarding the constraint,
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the clustering coefficient, the efficiency, and the hierarchy, and has a performance similar to that of the
other algorithms regarding the effective size. We then compared the average value of the CT, the ES,
the EF, the CC, and the HI values, as shown in Figure 7.
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networking applications (such as recommendation, community evolution) warrants further 
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The average values of CT, HI, and CC of the CD-SHA in Figure 7, both in the dolphin social
network and in the college football network, are lower than those of the other three algorithms.
This finding suggests that the structural holes detected by the CD-SHA have better performance
regarding CT, HI, and CC. For the EF in Figure 7, the average value of CD-SHA is close to that of the
other three algorithms in the college football network and slightly bigger in the dolphin social network.
This indicates that the structural holes detected by the CD-SHA are better than the others. Finally,
regarding the ES, our algorithm has similar resultant values with the other three algorithms.

5. Conclusions and Limitations

In this paper, we studied how to develop the structural hole spanners in large-scale social networks.
We first adapted the idea of conductance and the degree of the node to compute the CD-score in
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order to detect the structural hole spanners. Next, we computed the LMC structure in the network
as a seed for the C-LPA to filter the result. Next, we filtered the structural holes using the result of
the C-LPA. Next, we applied the experiments to real datasets and observed the performance of the
proposed algorithm. Finally, we evaluated the algorithm using quantitative indexes and analyzed
the result. The results show that the proposed model captures the structural hole spanners efficiently
and accurately in social networks. However, at the same time, our experiment has certain limitations.
Our experiments are currently conducted on small social networks, and we may consider applying
them to larger social networks in the future.

Structural holes play an important role in social networks and relate to a wide range of indicators
of social success. For future studies, we need to address weighting networks. So many of the large real
social networks are weighting networks, and if we ignore the weight of each edge or node, this results
in deviation and mistakes. Furthermore, a visual analytics approach can better represent the location
and role of structural holes in the network [23,24]. How structural holes can help social networking
applications (such as recommendation, community evolution) warrants further investigation.
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