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Abstract: The main contents of this paper are to verify the environmental factors affecting the power
generation of floating photovoltaic systems and to present the power generation prediction model
considering environmental factors by using regression analysis and neural networks studied during
the last decade. This study focused on a comparative analysis of which model is best suited for
the power generation prediction of the floating photovoltaic (PV) system. To compare the power
generation characteristics of a floating and a land-based PV system, two identical 2.5 kW PV systems
were installed—one on the water surface in the Boryeong Dam, Korea, and the other nearby on dry
land—and their performances were compared. The solar irradiance of the floating PV system was
1.1% lower than that of the land-based PV. Nevertheless, the floating PV module temperature was 4.9%
lower than that of the land-based PV, generating approximately 3% more power. Using the correlation
analysis of data mining techniques, environmental factors affecting the efficiency of the floating PV
system were investigated. The correlation coefficient between the module temperature and water
temperature was r = 0.6317 which proves that the high efficiency and low module temperature
characteristics of the floating PV system, when compared with that of the land-based PV, are due
to the water evaporation effect. Considering environmental factors, power-generation prediction
models based on regression analysis and neural networks are presented, and their accuracies are
compared. This comparison confirms that the accuracy of the power generation prediction model
using neural networks was approximately 2.59% higher than that of the regression analysis method.
As a result of adjusting the hidden nodes in the neural network algorithm, it was confirmed that a
neural network algorithm with ten hidden nodes was most suitable for calculating the amount of
power generation.

Keywords: floating photovoltaic system; neural network; prediction power generation;
regression analysis

1. Introduction

Recently, the renewable energy market has been growing rapidly, owing to fossil fuel reduction
and environmental problems [1,2]. With the expansion of the renewable energy market, the global
photovoltaic (PV) capacity is projected to exceed 1 TW by 2022 [3]. Especially, the solar power
market for large-scale PV power-generation systems with capacities in the range of MW or higher
is expanding rapidly. However, it is difficult to secure land for the construction of such large-scale
systems; hence, large-scale floating PV facilities have been proposed as high-efficiency alternatives [4].
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As of 2018, 1314 MW of floating PV systems were installed worldwide, and it has been predicted that
5,211,086 GWh/y of electricity will be generated annually if 10% of the man-made reservoir surfaces
are used for floating PV systems [5]. Various researches have accompanied the growth of the floating
PV market. In Korea, as in many countries around the world, several kinds of research on floating
solar systems are being conducted, such as research on the installation of floating PVs in oceans,
the grounding of floating PVs, and tracing-type floating PVs that track sunlight [6,7].

The floating PV system is a new concept of a power plant, which uses buoyant bodies to float solar
power plants on the surfaces of dam reservoirs. The system is designed such that the solar module is
fixed to a float that is secured by a mooring device on the water surface [8].

Figure 1 shows the concept of a typical floating PV system. The benefit of a large-scale floating PV
system is that it can be installed in the reservoir of a dam without the need for deforestation, which is a
common problem encountered while installing land-based PV systems.
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Figure 1. Concept of floating PV system.

The first floating PV system was built in 2007 in Aichi, Japan, following which several other
countries, including France, Italy, Korea, Spain, and the United States, installed small-scale systems for
research and development (R&D) purposes [5]. Recently, PV systems have been widely deployed in
many countries, and their capacity has increased to several tens of MW or higher. A 7.5 MW system and
a 6.3 MW system on the Umenoki reservoir, Japan, and the Queen Elizabeth II Lake, UK, are currently
in operation. In Huainan City, China, a 40 MW PV system is in operation [5,9]. In Korea, a 100 kW
demonstration floating PV system was installed, for the first time, on the water surface of the Hapcheon
Dam reservoir, in October 2011. After successfully installing this PV system, a 500 kW commercial
floating PV system was installed at another nearby location in 2012. As of 2020, the representative
floating PV systems operating in Korea are a 2 MW system on the Boryeong Dam reservoir, a 3 MW
system on the Chungju Dam reservoir, and an 18.7 MW system on the lagoon at the Gunsan Industrial
Complex. Figure 2 shows the 3MW floating PV system installed on the reservoir of the Chungju
Dam, Korea.
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The power generation characteristics of PV modules are heavily influenced by the cell/module
temperature [10]. Generally, the PV module output can be estimated as shown in Equation (1), and thus,
the rating of a PV module may differ depending on the temperature differences from the actual
site under the standard test conditions (STC), wherein the solar radiation intensity is 1000 W/m2,
the module temperature is 25 ◦C, and the air mass (AM) coefficient is 1.5 [11].

P = GTτpvηTre f A[1− 0.0045(Tc − 25)], (1)

where P is the output power of the PV module [W], GT is the solar irradiance on the module plane
[W/m2], τpv is the transmittance of the PV cells’ outside layers, ηTre f is the electrical efficiency of the
module at a specified temperature, A is the surface area of the PV module [m2], and Tc is the module
operating temperature [◦C]. From Equation (1), it can be expected that the amount of power generation
decreases by 0.45% as the module temperature increases by 1 ◦C from 25 ◦C.

Published research has concluded that the power generation of floating PV systems is 10 to 15%
greater than that of the land-based PV systems because of the cooling effect [12,13]. In one study,
a PV module cooling system with intermittent water spray to module was installed to get the above
mentioned result, and in another, the solar-cell module temperature was presumed to be reduced by
the evaporation of water. This paper investigates the PV systems without any mechanical cooling
system and with the same sizes and nearby locations, which is rarely reviewed in the other papers.
In addition, this paper proposes how to calculate the generated power by a machine learning algorithm,
which is not done much in floating PV systems. The various factors used for comparing the land
and floating PV systems were different; for example, the modules, inverters, years of installation, and
power-generation capacities were different. Therefore, there was a limit to the precise comparison of
the power-generation characteristics of the two types of PV systems.

To develop a large-scale floating PV power plant, the economic feasibility must be secured,
and the most important factor in analyzing the economic feasibility is the power-generation prediction.
The land-based PV system output forecasting problem has been thoroughly studied during the last
decade using machine or neural network-based learning. However, the installation environmental
of floating PV systems is different from that of land-based PV systems. Therefore, this paper focuses
on selecting the most suitable power generation prediction model, considering the power generation
characteristics of floating PV system.

Two identical 2.5 kW PV systems were installed on the water surface of the Boryoung Dam
reservoir, Korea, and on the nearby land, respectively, to ensure precise comparison [14]. Based
on the operation results over six months, the following facts were confirmed: The solar irradiance
of the floating PV was 1.1% less than that of land-based PV. Nevertheless, the floating PV module
temperature was 4.9% lower than that of the land-based PV, generating approximately 3% more
power. The correlation coefficient between the module temperature and water temperature was
r = 0.6317, which proved that the high efficiency and low module temperature characteristics of
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the floating PV, when compared to that of the land-based PV, were due to the water evaporation
effect. Through regression analysis, the power-generation prediction model of a floating PV system
considering environmental factors was presented. Recently, neural network analysis is being widely
used for estimating the generation of power because of its more accurate prediction when compared
to regression analysis [15]. Therefore, a prediction model using neural networks, represented by
a nonlinear algorithm, was developed in this study. A hyperbolic tangent was used as the activation
function, and prediction models were compared using one to twenty nodes to choose the best model.

In this study, prediction models for floating PV power generation, considering environmental
factors, are presented using regression analysis and neural networks. Upon comparing the accuracy,
it was confirmed that the prediction model using neural networks was more accurate than the one
using regression analysis. Therefore, this study presents more logical and accurate approaches to
power generation prediction and economic feasibility analysis, which are essential for the development
of large-scale floating PV power plants.

2. Floating PV Power Generation Characteristics

2.1. Power Generation Characteristics Comparison System (PGCCS)

To precisely compare and analyze the power generation characteristics of floating and land-based
PV systems, depending on the environmental effects, both systems should have the same system
specifications and installation conditions, such as PV modules, inverters, the capacity of facilities,
installation orientation, and angle [16].

In this study, 2.5 kW power generation characteristics comparison systems (PGCCS) were installed,
as shown in Figure 3. The configuration of the power circuit of the 2.5 kW PGCCS is shown in Figure 4.
Table 1 lists the specifications of the PV module and Power Conditioning System (PCS) of the PGCCS
installed, as shown in Figure 4. The installation direction of PGCCS was south, and the mounting tilt
was fixed at 30 degrees.
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Table 1. Specification of Power Generation Characteristics Comparison System (PGCCS).

PV Module and Array PCS

Pmax Cell Array
Configuration Rated Output Operating Voltage Control Method

315 W Polycrystal72 4 × 2 3.1 kW Vdc: 100∼500 V
Vac: 220 V, 60 Hz

Pulse–Width
Modulation (PWM)

To analyze the power generation characteristics, the PV output and meteorological data,
as summarized in Table 2, were collected.

Table 2. Measurement indexes of PGCCS.

Index
Array Output Irradiation Temperature Wind Speed

Vdc Idc Horizontal Slope Air Water PV Module

Unit V A W/m2 W/m2 ◦C ◦C ◦C m/s

The analysis period was six months from 1 July 2017 to 31 December 2017, and the analysis
time was from 7:00 to 19:00 during the daytime when solar power is generated. Because the PGCCS
was installed at the end of June 2017, it was analyzed based on the results of operation over the six
months from 1 July 2017 to 31 December 2017. As the climate during spring and autumn exhibits
the same characteristics, in Korea, all the different seasonal characteristics for these seasons could
be covered during this period of analysis. The analysis was performed in the daytime because the
module temperature was influenced by solar irradiance during the daytime and this directly affected
the system efficiency. Night-time was excluded because the deviation in the PV module temperature
characteristics reduced when it was included in the analysis time.

2.2. Operating Characteristics

Figures 5–7 show the comparative results of the floating and land-based PV systems in terms of
the amount of power generated, the PV module temperatures, and irradiation, respectively.
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Figure 5. Comparative results of power generation.
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During the survey period, the total solar irradiances were 622,262 and 615,696 W/m2 for the
land-based and floating PV systems, respectively, as shown in Figure 7. This means that the solar
irradiance of the land-based PV system was 1.1% higher than that of the floating PV system. The reason
for the solar irradiance of the floating PV system being slightly lower than that of the land PV system
was presumed to be the mist at the water surface that occurred frequently. However, as shown in
Figure 6, the daytime PV module temperature of the floating PV system was 4.9% lower than that of
the land-based PV system. The outputs of the floating and land-based PV systems were 1408 and
1367 kWh, respectively, as shown in Figure 5. Therefore, the output of the floating PV system was 3%
higher than that of the land-based PV system.

3. Data Analysis Algorithm

For analyzing the power-generation characteristics of the floating PV system, correlation and
regression analyses were used first, following which the neural networks-based analysis was applied
as an improved method for more accurate analysis.

3.1. Correlation Analysis

Correlation analysis is a method of numerically expressing the correlations of the mutual
effects in the data [17]. Pearson’s correlation, which is the correlation statistic most widely used to
measure the degree of the relationship between linearly related variables, was used to analyze the
relationship between the temperatures of the PV modules and the environmental factors, including
water temperature and wind speed. Pearson’s correlation coefficient, r, is described in Equation (2).

r =
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2 ∑n

i=1(yi − y)2
, (2)

where, x = 1
n
∑n

i=1 xn, y = 1
n
∑n

i=1 yn, n is the number of samples, and −1 ≤ r ≤ 1 [18].
The variables xi and yi, which affect the module temperature of the floating PV, are defined as in

Equations (3)–(5).
xi = Tcspv − Tc f pv, (3)

yi1 = Ta − Tw, (4)

yi2 = vspv − v f pv, (5)

where xi is the module temperature difference between the temperatures of the land-based PV module,
Tcspv, and floating PV module, Tc f pv. yi1 is the temperature difference between the PV system on
land, Ta, and the water surface, Tw, and yi2 is the wind speed difference between land, vspv, and water
surface, v f pv. The reason for setting the temperature differences, xi, yi1, and yi2, as above is to focus on
the precise influence of each variable.

3.2. Regression Analysis

Regression analysis was used to analyze the power-generation characteristics of the floating PV
system, according to the change in module temperature. For describing the dependent variable Y,
the multiple regression model was defined as in Equation (6) with the k number of Xk [19–21].

Yi = β0 + β1X1i + β2X2i + · · ·+ βkXki + εi, (6)

where, Y = dependent variable, PV generated power. Xk= independent variables, such as module
temp, slope irradiation, water temp, and so on. β0, β1, . . . , βk are the regression coefficients to be
estimated, εi. is the residual error, and i is the data number.
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The progress of estimating the regression coefficients in the multiple regression models is as
follows. Assuming that the estimates of the regression coefficients, β0, β1, . . . , βk, are β̂0, β̂1, · · · , β̂k,
the least-squares method is applied to obtain β̂0, β̂1, · · · , β̂k, that minimizes the squared sum of
the residuals.

3.3. Neural Network Analysis

Neural networks that mimic the information processing functions of the brain nerves of organisms
can be classified into supervised learning and unsupervised learning networks, according to the
learning methods.

Figure 8 shows the supervised learning process of neural networks, which use training data
consisting of input values and target values to adjust the weight, which is the strength of the formation,
according to certain rules, to minimize the error between the neural network output value and target
output value. Therefore, the weight is set such that the correspondence between the input and output
from the given input and output data is implemented well [22].
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In unsupervised learning, on the other hand, no target values corresponding to the input values
are provided. In this case, the weights are adjusted for similar input patterns so that each node
produces a similar output.

In this study, the multilayer perceptron (MLP) was used, which is the most popular model for
supervised learning [23]. The MLP consists of units with many interconnected nodes. Each node
function usually consists of a weighted sum and differential nonlinear activity function. Figure 9
shows the most useful activation functions of MLP.

In artificial neural networks, the activity function of a node defines the output of that node, given
an input or set of inputs. A standard integrated circuit can be expressed as a digital network of activity
functions, which can be “ON” (1) or “OFF” (0), depending on the input.

If three activation functions are to be described as equations, they can be expressed as the following
equations:

Logistic function : f (x) =
1

1 + e−x , (7)

Hyperbolic tan gent function : f (x) = tanh
(x

2

)
=

1− e−x

1 + e−x , (8)

Identity function : f (x) = x, (9)
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4. Analysis Results

4.1. Influence Factors

To analyze the environmental factors affecting the floating PV module temperature, correlations
among the module temperature difference, air–water temperature difference, and wind speed difference
between land and water, were analyzed.

Figure 10a shows a scatter plot that compares the module temperature difference between the
land-based and floating PV modules to the temperature difference between the air over land and
water [19]. It is observed that the scatter plot has a regular form and a positive correlation wherein
the larger the temperature difference between the air over land and the water, the larger the module
temperature difference between the land-based and floating PV modules is. The linear regression
algorithm shows a high correlation coefficient of r = 0.6317. In general, the degree of correlation to
the correlation value r is given, as in Table 3 [24,25]. Thus, significant correlations exist between the
land-based and floating module temperature differences and the air and water temperature differences.

Table 3. Correlation coefficient and relationship degree.

Correlation Coefficient r Relationship Degree

0~0.2 Almost no correlation
0.2~0.4 Some correlation
0.4~0.7 Significant correlation
0.7~1.0 Strong correlation

Figure 10b shows the results of the nonlinear learning method applied to improve the results of
the linear regression analysis. As a result of this analysis, the correlation coefficient r was improved to
0.6541, and it exhibited mutual nonlinearity.

Figure 11 shows a scatter plot showing the mutual characteristics of the module temperature
difference and wind speed difference between land and water. The land-based and floating module
temperature difference and wind speed difference indicate that there is no special pattern and that
the correlation coefficient is very low (0.0032), which indicates that there is no specific correlation.
Therefore, the module temperature that directly affects power generation has a very low correlation
with wind speed; however, the change in water temperature has a significant correlation with the
module temperature.
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4.2. Prediction Model Based on Linear Regression Analysis

Table 4 summarizes that solar radiation is the most influential factor in the correlation analysis for
calculating the amount of solar power generated by the floating PV module, followed by the module
temperature and ambient temperature, in sequence. The wind speed and direction have little effect on
power generation. From Table 4, the correlation between the horizontal surface irradiance and slope
irradiance, and that between the ambient temperature and module temperature, are 0.97 and 0.89,
respectively, which means that the data are relatively similar. Thus, it is desirable to consider only the
slope irradiance and module temperature.

Table 4. Floating PV correlation analysis.

Correlation Power
Generation

Module
Temperature

Ambient
Temperature

Horizontal
Irradiation

Slope
Irradiation

Wind
Speed

Wind
Direction

Power
Generation 1 — — — — — —

Module
Temperature 0.64 1 — — — — —

Ambient
Temperature 0.25 0.89 1 — — — —

Horizontal
Irradiation 0.97 0.69 0.34 1 — — —

Slope
Irradiation 0.98 0.61 0.21 0.97 1 — —

Wind Speed −0.06 −0.09 −0.05 −0.07 −0.06 1 —

Wind Direction −0.16 −0.17 −0.10 −0.15 −0.15 0.32 1

Table 5 summarizes the analysis results of the floating PV regression. From this table, the multiple
correlation coefficient is 0.9859, which is more accurate than that of the land-based PV system. In detail,
the t-statistic of irradiation is 178.63; therefore, the linear relationship between the independent
variable and the dependent variable is very high. As the p-values of the module temperature and
solar irradiation are 0 and the y-intercept is 0.01, whose absolute value is less than 0.05, the null
hypothesis that there is no linear relationship is rejected. Therefore, the module temperature and solar
irradiation coefficient can be used as the variables [26]. As a result, the formula for estimating the
power generation of the floating PV module using linear regression is described in Equation (10).

P f pv = Tc × (0.0024851) + Gt × (0.0019761) + (−0.0141039), (10)

where P f pv is the floating PV module output (kW), Tc is the module temperature (◦C), and G is the
solar irradiation amount (W/m2).

Table 5. Floating PV regression analysis results.

Division Coefficient Standard Error t-Statistics p-Value

Module Temperature 0.0024851 0.00 9.88 0

Irradiation 0.0019761 0.00 178.63 0

y-Intercept −0.0141039 0.01 −2.75 0.01

Multiple Correlation
Coefficient 0.9859

Upon generating random numbers from the floating PV operating results data, 50% of the data
were used for training, and the remaining 50% were used for verification, to confirm whether overfitting



Appl. Sci. 2020, 10, 4526 12 of 20

occurred or not. In addition, an error function, the mean absolute percentage error (MAPE) was used
to compare the accuracy, as shown in Equation (11) [27].

MAPE =
100
n

n∑
i=1

⌊
Ei −Di

Ei

⌋
, (11)

where Di is the value predicted by the predictive model, Ei is the measured value, and n is the number
of datasets.

Figure 12 shows the results of the linear regression analysis with the learning data. The linearity
can be confirmed as a result of plotting the true output and predicted output. Upon converting this
into MAPE, the error showed 9.61%.
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Figure 13 shows the results obtained by entering the test data into the learning model generated
from the learning data. The MAPE is 11.35%, which is greater by 1.74%, but it was confirmed that
overfitting did not occur.
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4.3. Prediction Model Based on Neural Network Analysis

Neural networks are used as representative nonlinear algorithms, which can be learned by
adjusting the layer, node, and activation functions. In this work, the hyperbolic tangent was used as
the activation function, and the numbers of nodes were set as 1, 5, 10, and 20. Before those models
were made, the dataset was preprocessed to remove the outlier data to have more than 40% MAPE
in the linear model, which was also applied in linear regression. Figure 14 shows the learning result
model with one hidden layer node.
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Figure 15. Neural network analysis results (training data).

Figure 16 shows the result of verifying the accuracy by entering the test data into the trained
model. The MAPE was 12.17%, which was similar to that of the learning model, without overfitting.

Figure 17 shows a model that predicts the power generation after calculating eight input variables
with five hidden nodes.

Figure 18 shows that the percentage error is reduced to 8.78% as a result of the five hidden
nodes learned.
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Figure 19 presents the results of verifying the accuracy of the model by entering test data into the
trained model. The percentage error is 10.36% and an error increase of 1.58% occurs; however, it can be
confirmed that the percentage error is lower than that of the result of the learning and verification of
the linear regression analysis.Appl. Sci. 2020, 10, 4526 16 of 21 
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Figure 21 shows that the percentage error is reduced to 6.98% as a result of the ten hidden
nodes learned.
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Figure 22 presents the results of verifying the accuracy of the model by entering verification
data into the trained model. The percentage error is 8.8% and an error increase of 1.82% occurs;
however, it can be confirmed that the percentage error is lower than that of the result of the learning
and verification of the linear regression analysis and the 5 hidden nodes of the neural network.
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Figure 23 shows a model that predicts the power generation after calculating eight input variables
with twenty hidden nodes.
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Figure 25 presents the results of verifying the accuracy of the model by entering verification data
into the trained model. The percentage error is 11.35% and an error increase of 3.81% occurs. It is
confirmed that overfitting occurred with an error value much higher than that of the linear regression
or the neural networks of the hidden nodes 1, 5, and 10.
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4.4. Prediction Model Comparison

Table 6 summarizes an analysis of the linear and nonlinear algorithms reviewed to predict the
amount of power generated by the floating PV system. The linear regression prediction model showed
a percentage error of 9.61–11.35%, and the neural network prediction model with five hidden nodes
showed an error range of 8.78–10.36%. As a result, it was confirmed that the neural network prediction
model, which was a nonlinear algorithm, showed 2.59% higher accuracy than the linear regression
analysis prediction model, on average. The numbers of hidden nodes were set to one to twenty in the
neural network algorithm, and it was confirmed that overfitting happened in twenty nodes and ten
hidden nodes produced the best accurate results among them. In conclusion, the power generation
must be calculated in the non-linear model and the number of hidden nodes should be taken into
consideration so as not to have overfitting, as below.

Table 6. MAPE of training and test dataset, obtained using algorithms.

MAPE
Linear

Regression
Number of Hidden Nodes of Neural Network

1 5 10 20

Training 9.61% 10.25% 8.78% 6.98% 7.54%

Test 11.35% 12.17% 10.36% 8.8% 11.35%

5. Conclusions

In this study, the power-generation prediction model for a floating PV system using neural
networks was compared and analyzed with one based on regression analysis. The summary of the
characteristics of the floating solar power generation model verified in this study is as follows:

• The existing knowledge that the cooling effect and efficiency of the floating PV system increased
with the evaporation of water from the surface was supplemented by more objective and concrete
analyses. Based on the operation of two 2.5 kW land-based and floating PV systems installed near
and on the water surface of the Boryeong Dam, Korea, respectively, the results were analyzed
comparatively by applying a statistical probability method.
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• During the period of analysis, the amount of solar irradiation for the land-based PV system was
approximately 1.1% higher than that of the floating PV system; however, the average module
temperature of the floating PV system was 4.9% lower than that of the land-based PV system.

• To analyze the reason behind the module temperature of the floating PV system being lower than
that of the land-based PV system, the correlation between the module temperature difference
and the air–water temperature, as well as the module temperature and wind speed, were
analyzed. From the results, it was shown that there was a positive correlation between the
module temperature difference and the land and water temperature difference, with a correlation
coefficient of 0.6451. On the other hand, there was no correlation between the module temperature
difference and the wind speed, with a correlation coefficient of 0.0032. Based on the operational
data, the regression analysis method suggested a characteristic function that could predict the
power generation, even considering solar radiation and module temperature.

• This study proved that the efficiency of a floating PV system was higher than that of a land-based
PV system, owing to the cooling effect of water, although there are some differences, according to
the environmental factors of the area. Using the water temperature characteristics, it was possible
to predict the amount of electricity generated more accurately.

• In addition, the accuracy of the power generation prediction model using neural networks was
approximately 2.91% higher than that of the regression analysis method. As a result of adjusting the
hidden nodes in the neural network algorithm, it was confirmed that a neural network algorithm
with ten hidden nodes was most suitable for calculating the amount of power generation

• This paper is the result of utilizing 2.5 kW research equipment installed in the dams and nearby
areas of South Korea. Therefore, as a result of this study, it is possible to more accurately predict the
power generation of the floating PV system in an environment similar to these study conditions,
such as installation locations, system scales and configurations, etc.
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