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Abstract: Bringing electricity to areas of difficult terrain is a complicated task, so it is convenient
to generate power using local natural resources, such as wind, through a small horizontal-axis
wind turbine (S-HAWT). However, at the rotor height of these wind turbines, the wind is often
turbulent due to obstacles such as trees and buildings. For a turbine to function properly in these
conditions, the action of the wind force on the rotor must be smoothed out by controlling the pitch
angle. A commercial derivative-integral-proportional (PID)-type pitch controller works well when
system dynamics are stable, but not when there are disturbances in the system. This paper proposes a
hierarchical fuzzy logic controller (HFLC) to solve the nonlinear system effects produced by atypical
winds. The methodology includes a statistical analysis of wind variability at the installation site,
which determines the functions of belonging and its hierarchy. In addition, installing an anemometer
in front of the turbine allows an advanced positioning of the blades in the presence of wind gusts.
The algorithm was implemented in an S-HAWT, and a comparison was made to quantify the
performance difference between the proposed control strategy and a conventional PID controller.

Keywords: fuzzy logic controller; pitch control; renewable energy; small wind turbine;
wind power generation

1. Introduction

Today, technological developments in wind energy are aimed at controlling ever larger turbines,
as the longer the blades are, the more torque is produced to install higher-capacity generators. The size
of the most sold turbines currently has a sweeping area of 12,272 m2 (125 m in diameter) and generates
up to 7.5 MW [1]. Nonetheless, as of 2016, more and more wind turbines with a sweeping area diameter
of 174 m and a production of 9.5 MW are being used [2]. The most recent launch on the market is the
V164-10 wind turbine with a sweeping area diameter of 164 m and 10 MW of production, available for
sale now and ready to be installed until 2021 [3]. According to the specifications of these large wind
turbines, the rotor shaft height is 110 m and requires a nominal wind speed between 10 and 25 m/s [2,3]
with an unobstructed air flow.

However, in places where there are less wind resources, it is necessary to install “small wind
turbines.” The IEC 61400-1: 2014 standard requires that small wind turbines have a rotor swept area of
less than 200 m2 (16 m in diameter), a voltage of less than 1000 V AC or 1500 V DC, and a nominal
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wind speed of between 6 and 10 m/s [4]. According to the global wind atlas, there is a significant
wind potential as at least 50% of the globe has an average wind speed greater than 6.04 m/s at 10 m
high [5]. The limitation is that these areas include urban areas with tall buildings, roofs, wooded areas,
cliffs, or mountains that suggest atypical wind behavior with turbulence and gusts [4]. Therefore, it is
necessary that wind turbines operate with different wind speeds and take full advantage of this natural
resource. For each size and aerodynamic model of turbine, there is a tip speed ratio (TSR) that relates
the wind speed to the rotation speed of the rotor [6]. To maintain the TSR at optimal values with wind
speeds greater than nominal, the pitch angle of the blades must be controlled to reduce the effects of
wind force on the rotor and decrease the rotor speed [7,8].

The control model used in standard wind conditions is a derivative-integral-proportional (PID) or
any of its variants, but for atypical wind conditions, it is no longer valid, because the sensitivity of the
rotor rotation speed to the pitch angle varies in different ways [9,10]. This variation is nonlinear and
implies a control response according to the magnitude of the change in wind speed [11].

A fuzzy logic controller (FLC) interprets the knowledge acquired in a set of mathematical rules,
and obtains solutions through fuzzy inference, so it is possible to compensate for the nonlinearity of
perturbations caused by wind speed randomness [12]. Fuzzy inference rules are adjusted according to
human experience, intuition, wind range classification, and deductive reasoning [13–15]. Typically,
an FLC consists of two input signals, the error in the controlled variable (eτ) and the variation in the
error of the controlled variable (∆eτ), and an output variable. In wind energy applications, the output
is the set point of the pitch angle. In [16–20], the authors used active power as the input variable,
and in [21–23], the generator shaft speed was used as the controlled variable. In [24] researches use
as inputs the error of the active power and generator shaft speed. In [25] is added a third variable,
used the error power, variation of the power error and generator shaft speed error. In [26] is proposed
changing the input variables to wind speed and the error of generator shaft speed. Finally, in [27] is
used as input the voltage and the error in voltage. All these FLC applications got better performance
than a PID controller, however, they do not report their performance when drastic changes in wind
speed occur [28].

Unlike existing solutions, this article proposes a control strategy based on diffuse logic, where the
membership functions of the controller are hierarchically determinate by three levels of control. The first
level of control is based on the operating regions of a wind turbine, and a mathematical model is
used to obtain the values of nominal wind speed, cut-in speed, and cut-off speed. In the second level,
a statistical analysis is carried out with values of the mean, standard deviation, and range of wind
speed variability at the installation site; with this analysis, the range of typical wind speed values close
to the mean is determined where the system is considered stable, and wind speed values greater than
this range are considered as gusts. For the third level of control, the error in the controlled variable
and the change in the magnitude of the error are used to obtain fine control response. Additionally,
this controller is innovative in proposing a wind speed measurement system in front of the turbine.
When a gust of wind is detected, the controller can anticipate the position of the blade and avoid an
overshoot of the force of the wind that could damage the turbine.

The proposed control model will be implemented in a three-bladed wind turbine with a swept
area of 140 m2 and a 14 kW permanent magnet synchronous generator (PMSG). Finally, a comparison
is made between the proposed control strategy and that performed by a conventional controller to
quantify the difference between the controllers.

2. Wind Turbine Generator Systems

In a wind generation system, the rotor converts the kinetic energy of the wind into mechanical
energy, and, in turn, spins the generator shaft, multiplying the rotation speed by means of a gearbox [29].
To analyze the mechanical part, a simplified two-mass model is used, represented in Equations (1)
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to (9) [30]. The rotor torque and the generator electromechanical torque act in opposition, and the
resulting torque generates a speed on the rotor shaft wr and speed on the generator shaft wg.

dwg

dt
=

1
2Hg

[
−

Pelec
wg + w0

− dtg
(
wg −wr

)
− ktg∆θm

]
(1)

dwr

dt
=

1
2Hr

[
−

Protor

wr + w0
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(
wg −wr

)
+ ktg∆θm

]
(2)

where ktg and dtg are the constants of elasticity and damping, respectively, of the mechanical two-mass
model [18]. θm is the gearbox angular position. Hr and Hg are the rotor inertial and generator inertial
moments, respectively, and they are calculated according to:

Hr =
Jrw2

r
2 Pn

(3)

Hg =
Jgw2

g

2 Pn
(4)

where Pn is the nominal power, Jg is the known inertia of the generator, and the inertia of the rotor Jr

can be approximated according to:

Jr =
1
8

mrR2 (5)

where mr is the mass of the rotor and blades, and R is the length of the blade.
The torque of the rotor Tr extracted by the blades is determined from the wind v that crosses the

sweeping area, and it is described with the following equation [31]:

Tr =
1
2
ρ π R3v2 Cp

λ
(6)

The wind density is ρ and Cp is the power coefficient. Cp can be calculated in relation to TSR λ

and the pitch angle β by an approximate method described in Equation (7) [32]:

Cp(λ, β) = 0.5176
(

116
λi
− 0.4β− 5

)
e−

20
λi
+0.0068λ (7)

λi =

[(
1

λ+ 0.08β

)
−

(
0.035
β3 + 1

)]
−1 (8)

λ =
ΩR
v

(9)

where Ω is the rotation frequency in rad/s. In Figure 1, the influence of the pitch angle in Cp is shown.
For this reason, with the pitch angle, it is possible to control speed, acceleration, and deceleration

in the rotor, and mechanical stress in the system and electrical current overshoots are reduced [7].
According to the wind speed, the operation of the turbine is divided into four regions, in each of which
the objective of the pitch control is different. In region I, the wind is not sufficient to move the rotor;
the blade must be in the flag position to avoid possible movement. The objective of pitch control in
region II is to maximize energy production through maximum power point tracking (MPPT), as, in this
region, the rotor begins to rotate and limits the nominal wind speed. In region III, the wind speed
is higher than the nominal speed and pitch control is required to keep the nominal rotation speed
constant; the limit is the maximum design wind speed. For region IV, it is required to stop the rotation
of the rotor for safety, so the blades should be in the flag position [33,34]. The regions of operation of a
wind turbine are shown in Figure 2.



Appl. Sci. 2020, 10, 4592 4 of 17
Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 18 

 
Figure 1. The influence of the pitch angle in Cp. If the value of β increases, Cp decreases. 

For this reason, with the pitch angle, it is possible to control speed, acceleration, and deceleration 
in the rotor, and mechanical stress in the system and electrical current overshoots are reduced [7]. 
According to the wind speed, the operation of the turbine is divided into four regions, in each of 
which the objective of the pitch control is different. In region I, the wind is not sufficient to move the 
rotor; the blade must be in the flag position to avoid possible movement. The objective of pitch control 
in region II is to maximize energy production through maximum power point tracking (MPPT), as, 
in this region, the rotor begins to rotate and limits the nominal wind speed. In region III, the wind 
speed is higher than the nominal speed and pitch control is required to keep the nominal rotation 
speed constant; the limit is the maximum design wind speed. For region IV, it is required to stop the 
rotation of the rotor for safety, so the blades should be in the flag position [33,34]. The regions of 
operation of a wind turbine are shown in Figure 2. 

 
Figure 2. Operating regions of a wind turbine. In region III, pitch control is used to counteract strong 
winds and keep the nominal rotation speed constant. 

A PMSG is mostly used in wind turbines as its characteristics allow efficient operation at variable 
speed and does not require additional energy consumption [35]. To mathematically represent a 
PMSG, it is divided into two axes, the d-axis, representing the rotor winding, and the q-axis, displaced 
by synchronous rotation, 90 electrical degrees in the stator. Voltages d-q are given respectively by the 
following equations [36]: 

Figure 1. The influence of the pitch angle in Cp. If the value of β increases, Cp decreases.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 18 

 
Figure 1. The influence of the pitch angle in Cp. If the value of β increases, Cp decreases. 

For this reason, with the pitch angle, it is possible to control speed, acceleration, and deceleration 
in the rotor, and mechanical stress in the system and electrical current overshoots are reduced [7]. 
According to the wind speed, the operation of the turbine is divided into four regions, in each of 
which the objective of the pitch control is different. In region I, the wind is not sufficient to move the 
rotor; the blade must be in the flag position to avoid possible movement. The objective of pitch control 
in region II is to maximize energy production through maximum power point tracking (MPPT), as, 
in this region, the rotor begins to rotate and limits the nominal wind speed. In region III, the wind 
speed is higher than the nominal speed and pitch control is required to keep the nominal rotation 
speed constant; the limit is the maximum design wind speed. For region IV, it is required to stop the 
rotation of the rotor for safety, so the blades should be in the flag position [33,34]. The regions of 
operation of a wind turbine are shown in Figure 2. 

 
Figure 2. Operating regions of a wind turbine. In region III, pitch control is used to counteract strong 
winds and keep the nominal rotation speed constant. 

A PMSG is mostly used in wind turbines as its characteristics allow efficient operation at variable 
speed and does not require additional energy consumption [35]. To mathematically represent a 
PMSG, it is divided into two axes, the d-axis, representing the rotor winding, and the q-axis, displaced 
by synchronous rotation, 90 electrical degrees in the stator. Voltages d-q are given respectively by the 
following equations [36]: 

Figure 2. Operating regions of a wind turbine. In region III, pitch control is used to counteract strong
winds and keep the nominal rotation speed constant.

A PMSG is mostly used in wind turbines as its characteristics allow efficient operation at variable
speed and does not require additional energy consumption [35]. To mathematically represent a PMSG,
it is divided into two axes, the d-axis, representing the rotor winding, and the q-axis, displaced by
synchronous rotation, 90 electrical degrees in the stator. Voltages d-q are given respectively by the
following equations [36]:

Vd = RdId + Ld
dId
dt
−ωgLqIq (10)

Vq = RqIq + Lq
dIq

dt
+ωg

(
LdId + ϕ f

)
(11)

where Ld and Lq are the inductances, Rd and Rq are the resistances, and Id and Iq are the currents, in axes
d and q, respectively. ϕf represents magnetic flux.

Electromechanical torque Tg can be expressed as [37]:

Tg =
3
2

Ppωre f ((Lq − Ld)idiq + ϕ f iq) (12)

where Pp is a pair of poles of the generator and ωref is the reference speed for MPPT calculated from
the generated power P and is represented using the following equation:

wre f = −0.75P2 + 1.59P + 0.63 (13)
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A schematic of the mathematical model of a wind turbine is shown in Figure 3.
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Figure 3. Schematic of the mathematical model of a wind turbine. All bodies exposed to an airflow
experience an aerodynamic force that can be broken down into a pulling force in the wind direction and
a lifting force perpendicular to the wind direction, which is the force that will cause the rotor to turn.

3. Methodology

This methodology describes the development of a pitch controller for a small horizontal-axis
wind turbine (S-HAWT) considering wind randomness in turbulent places using fuzzy logic and wind
measurements resolved over time at enough distance upstream of the rotor.

The membership functions of the controller are determined hierarchically by three levels of control.
In the first level, the mathematical model is used to obtain the values of nominal wind speed, cut-in
speed, and cut-off speed. In the second level, a statistical analysis of the wind speed variability is
carried out at the installation site to determine the typical values of stable wind speed and those
considered to be gusts. To anticipate a gust of wind, it is proposed to install a wind speed measurement
system far enough away to allow time for the actuator to adapt the pitch angle. In the third level of
control, the error of the controlled variable and the change in the magnitude of the error are used to
obtain a fine control response.

3.1. Wind Turbine Especifications

The test system is a 14 kW three-bladed wind turbine with a swept area of 134 m2 and a tower
height of 18 m from the ground to the rotor shaft. It has a gearbox with a gear ratio of 1:2.1 that
transmits the movement of the rotor shaft to the generator shaft. In the rotor nose is the pitch angle
positioning mechanism, which is actuated by a 0.5 HP direct current motor at 1750 rpm coupled to a
reducer with a 60:1 transmission ratio; the motion is transmitted to each blade by a conical gear system.
The mechanical design of the pitch angle movement increases the torque to reduce the effects of wind
in the blades and to rotate without restriction; however, the speed is considerably reduced to 3◦/s.
The operating range of the pitch angle is between 0◦ and 90◦, with 0◦ being the maximum possible
wind power extracted, and 90◦ being where the wind does not impact the blades, making the rotor
stop rotating. The S-HAWT installed on Universidad Autónoma de Querétaro (UAQ), airport campus,
is shown in Figure 4.

Each blade is made of fiberglass and polyester resin, weighing 260 kg each. Each blade is 6.4 m
long and 1.2 m at its widest point, and the aerodynamic profile design is classified as NACA 6812
according to the National Advisory Committee on Aeronautics (NACA). The system has a nacelle
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equipped with a PMSG with a nominal power of 14 kW at 14.6 rad/s speed. Table 1 indicates the design
characteristics of the PMSG.
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Table 1. Permanent magnet synchronous generator (PMSG) specifications.

Nominal Power 14 kW Frequency 20.33 Hz

Voltage 385 V F.P. 0.94
Current 22.2 A Ins. Class H

Nominal Speed 135 RPM Service Continuous
Frame TC5V Inc. Temp 80 ◦C
Class IP32 Weight 650 Kg

Source: Potencia Industrial, S. A.

To determine the operational limits of the wind turbine, mathematical models of the aerodynamic
system, mechanical system, and generator are used. MatLab-Simulink software [38] and a HP Zbook
15 G4 workstation with Xeon 3.0 GHz processor and 32 GB RAM (64 bit) [39] were used for simulations.
A wind speed ramp from 0 to 15 m/s was simulated as the input variable. The results are shown in
Figure 5.
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Figure 5. In (a), a pitch angle of 0◦ was used and the wind turbine starts rotating with a wind speed of
1 m/s; in addition, nominal rotation speed in the generator shaft was reached at 14.6 rad/s at a wind
speed of 4.9 m/s. In (b), a pitch angle movement from 0◦ to 60◦ was simulated to determine the wind
speed to where the pitch system can decrease the wind force on the blades. It is observed that with a
wind speed of 11.83 m/s and at an angle of 60◦, the nominal speed on the generator shaft is reached.
With a higher wind speed of 11.83 m/s, the pitch angle must be positioned at 90◦.
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3.2. Local Wind Conditions Analysis

This research incorporates a meteorological study with data collected in the last 7 years in weather
station #76628 SMN-CONAGUA, geographically located at 20◦37′24.1′′ N and 100◦ 22′06.0′′ W at an
altitude of 1969 m a.s.l. The data were collected at a ground level height of 18 m. A statistical analysis
of meteorological variables was carried out, to analyze the factors that affect the wind behavior and
operation of the wind turbine. A summary of this statistical analysis is shown in Table 2.

Table 2. Statistical analysis of meteorological variables.

Meteorological
Variables

Wind Speed (m/s)
at 18 m Height Temperature (◦C) Relative Humidity (%) Atmospheric

Pressure (mbar)

Mean 4.44 17.72 58.26 806.99
Standard Error 0.01 0.03 0.13 0.01

Median 4.24 16.88 57.00 807.05
Mode 3.62 14.25 98.67 807.27

Std. Deviation 1.98 6.27 26.20 2.27
Variance 2.72 39.52 688.25 5.15

Range 15.00 37.57 95.50 15.70
Minimum 0.00 0.23 4.50 798.85
Maximum 15.00 37.80 100.00 814.55

In the relative frequency distribution, the data are grouped by each unit and the range of wind
speeds that occur on more occasions is determined. The results obtained indicate that speeds between
3 and 4 m/s occurred 19.44% of the time. Values greater than 10 m/s had a recurrence of less than
1%, so they will not be considered for decision-making, and the controller will consider them as the
cut-off wind speed. The average wind speed was 4.44 m/s with a standard deviation of 1.98 m/s,
so wind speeds between the range of 2.46 and 6.42 m/s will be considered stable winds for controller
decision-making. A histogram of wind speed with relative frequencies for each unit of magnitude of
speed is shown in Figure 6.
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Information on the wind direction at the installation site is also obtained; a direction mode of
83.3◦ (east to west) was obtained, which is interpreted as prevailing winds, where the range between
70◦ and 110◦ represents 72% of the recurrence in the wind direction. A summary of the wind direction
data is shown in Figure 7.
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3.3. Place of Anemometer Instalation

With a wind speed meter located far enough to detect a gust, the controller gives the actuator the
signal of the setpoint to adjust the pitch angle in advance, and by the time the gust is in the turbine,
the rotor does not generate an overshoot of force that rotates the turbine above the cut-off speed, as this
can cause damage to the mechanical system.

The data to determine the appropriate distance for the placement of an anemometer are the
maximum rotation speed of the pitch angle equivalent to 3◦/s; therefore, the time for the pitch angle to
rotate from 0◦ to 90◦ is 30 s. In addition, the minimal speed considered for a gust is 10 m/s and the
maximum wind speed historically presented at the installation site is 15 m/s, so the distance calculated
to detect a wind speed of 15 m/s, 30 s in advance, is 450 m.

The mean of communication between the anemometer and controller located in the tower is
carried out using the MODBUS industrial communication protocol with a transmission speed of
19,200 bps and a maximum distance of 1200 m [40], so the delay in communication is not considerable.

The locations of the wind turbine and the proposed place for the installation of the anemometer
are shown in Figure 8.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 18 

to rotate from 0° to 90° is 30 s. In addition, the minimal speed considered for a gust is 10 m/s and the 
maximum wind speed historically presented at the installation site is 15 m/s, so the distance 
calculated to detect a wind speed of 15 m/s, 30 s in advance, is 450 m. 

The mean of communication between the anemometer and controller located in the tower is 
carried out using the MODBUS industrial communication protocol with a transmission speed of 
19,200 bps and a maximum distance of 1200 m [40], so the delay in communication is not considerable. 

The locations of the wind turbine and the proposed place for the installation of the anemometer 
are shown in Figure 8.  

 

Figure 8. Installation area of the wind turbine and anemometer. Letter A indicates the installation site 
of the wind turbine, and letter B is the installation site for the anemometer. 

A dimensional analysis of the nearby buildings located in a straight line between the wind 
turbine and the anemometer is carried out to verify that the wind path is not affected and the wind 
speed measurements are not altered. Scale diagrams of the wind turbine and the buildings, with the 
height differences between buildings and the wind turbine, are shown in Figure 9. 

  

(a) (b) 

Figure 9. Scale perspective of the wind turbine and nearby buildings. (a) Side view, (b) front view. 

3.4. Hierarchical Fuzzy Logic Controller 

An FLC is developed in three stages [13–15].  
(1) Fuzzification, converts the numerical value of the input variables into functions of belonging, 

based on intuition, deduction, data classification, or inductive reasoning. 
(2) Fuzzy rules, using simple language statements, typically described in the Mamdani inference 

method, which is described by the following equation: ݂ܫ   ଵܺ = ଵ  ܽ݊݀   ܺଶܣ = ܻ   ݄݊݁ݐ   ଶܣ = (14) ܤ

where the input variables X1 and X2 with constant values A1 and A2, respectively, generate the output 
variable Y with a constant value B. 

(3) Defuzzification, converts the result of fuzzy rules to a numerical value of the output variable. 

Figure 8. Installation area of the wind turbine and anemometer. Letter A indicates the installation site
of the wind turbine, and letter B is the installation site for the anemometer.



Appl. Sci. 2020, 10, 4592 9 of 17

A dimensional analysis of the nearby buildings located in a straight line between the wind turbine
and the anemometer is carried out to verify that the wind path is not affected and the wind speed
measurements are not altered. Scale diagrams of the wind turbine and the buildings, with the height
differences between buildings and the wind turbine, are shown in Figure 9.
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3.4. Hierarchical Fuzzy Logic Controller

An FLC is developed in three stages [13–15].

(1) Fuzzification, converts the numerical value of the input variables into functions of belonging,
based on intuition, deduction, data classification, or inductive reasoning.

(2) Fuzzy rules, using simple language statements, typically described in the Mamdani inference
method, which is described by the following equation:

I f X1 = A1 and X2 = A2 then Y = B (14)

where the input variables X1 and X2 with constant values A1 and A2, respectively, generate the
output variable Y with a constant value B.

(3) Defuzzification, converts the result of fuzzy rules to a numerical value of the output variable.

In this proposed hierarchical fuzzy logic controller (HFLC), the inputs for the controller are the
value of wind speed v, the value of the change in wind speed ∆v, the error between rotor speed ωgen

and MPPT rotor speed ωref, and the variation in error of generator speed ∆eωgen. The input variables
are described in the following equations:

∆v = v(t) − v(t− 1) (15)

eωgen = ωgen −ωre f (16)

∆eωgen = eωgen(t) − eωgen(t− 1) (17)

The proposed HFLC scheme for the pitch angle is shown in Figure 10.
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In this HFLC strategy, different levels of control are proposed. When the anemometer detects
higher than nominal wind speeds in advance, or a significant change in wind speed, the controller
anticipates the angle position. The closed loop of the rotor shaft speed determines the fine adjustment.

First level. According to the wind speed, the turbine’s operating region is located. Three linguistic
levels are assigned for each region of operation with the following names: Region 1 (R_1), Region 2 y 3
(R_23), and Region 4 (R_4). The membership functions for wind speed are shown in Figure 11.
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Second level. According to the magnitude of the change in wind speed. In region 2 and 3, it is
important to consider changes in wind speed, as an abrupt change can accelerate the rotor and cause
current spikes, saturate the generator, or physically damage the wind turbine. When a change in wind
speed is detected in the anemometer at 450 m, the pitch angle moves in advance depending on the
value of the magnitude of the change. Five linguistic levels are assigned for each magnitude of the
change with the following names: Negative big (NB_C), negative small (NS_C), Zero (ZE_C), positive
small (PS_C), and positive big (PB_C). The membership functions for changes in wind speed value are
shown in Figure 12.
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Third level. If there is no significant wind speed change, the level of control is based on finding
the optimum angle to generate as much energy as possible, for which it considers the rotation speed
error between the rotor speed and nominal speed, as well as the magnitude of the variation in the same
error. Five linguistic levels are assigned according to the magnitude of the error with the following
names: Negative big (NB_E), negative small (NS_E), Zero (ZE_E), positive small (PS_E), and positive
big (PB_E). In addition, five linguistic levels are assigned according to the magnitude of the change
in error value with the following names: Negative big (NB_D), negative small (NS_D), Zero (ZE_D),
positive small (PS_D), and positive big (PB_D). These membership functions are shown in Figure 13.



Appl. Sci. 2020, 10, 4592 11 of 17

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 18 

value of the magnitude of the change. Five linguistic levels are assigned for each magnitude of the 
change with the following names: Negative big (NB_C), negative small (NS_C), Zero (ZE_C), positive 
small (PS_C), and positive big (PB_C). The membership functions for changes in wind speed value 
are shown in Figure 12. 

 

Figure 12. Membership functions for changes in wind speed value. 

Third level. If there is no significant wind speed change, the level of control is based on finding 
the optimum angle to generate as much energy as possible, for which it considers the rotation speed 
error between the rotor speed and nominal speed, as well as the magnitude of the variation in the 
same error. Five linguistic levels are assigned according to the magnitude of the error with the 
following names: Negative big (NB_E), negative small (NS_E), Zero (ZE_E), positive small (PS_E), 
and positive big (PB_E). In addition, five linguistic levels are assigned according to the magnitude of 
the change in error value with the following names: Negative big (NB_D), negative small (NS_D), 
Zero (ZE_D), positive small (PS_D), and positive big (PB_D). These membership functions are shown 
in Figure 13. 

(a) (b) 

Figure 13. Membership functions for: (a) Error of generator shift speed, (b) magnitude of error 
changes. 

The output value has five linguistic levels with the following names: Negative big (NB_O), 
negative small (NS_O), Zero (ZE_O), positive small (PS_O), and positive big (PB_O). The 
membership functions for output in terms of the control voltage are shown in Figure 14. 

Figure 13. Membership functions for: (a) Error of generator shift speed, (b) magnitude of error changes.

The output value has five linguistic levels with the following names: Negative big (NB_O),
negative small (NS_O), Zero (ZE_O), positive small (PS_O), and positive big (PB_O). The membership
functions for output in terms of the control voltage are shown in Figure 14.
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The relationships between input and output variables of the HFLC are defined by describing
rules for each type of process behavior depending on the input variables, and these rules are defined
using the linguistic variables. Authors propose 34 control rules for HFLC that were defined by their
experience and knowledge. A Mamdani-type inference system is proposed, and input and output
variables are generated using the triangular membership function. The centroid method is used for the
defuzzification process. The rules for each level of control are shown in Figure 15.
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4. Discussion

To validate the algorithm, authors propose the use of a simulation with different wind speed
values, where different circumstances were tuned for the algorithm to work at all levels. Step forms
were used to represent the drastic changes in wind speed. The wind speed model used is shown in
Figure 16.
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region 1. Between 100 and 450 s, the wind turbine is maintained in region 2 with values lower than the
nominal speed. After 450 s, the wind turbine is in region 3. Only between 600 s and 650 s are there
values from region 4.

HFLC performance was compared against the performance of a classic PID controller without
anticipated wind speed measuring to corroborate the advantages of locating a remote anemometer.
The results obtained reflected in the rotation speed of the generator shaft are shown in Figure 17.
It is observed that before 450 s, the speed values of the generator shaft are lower than the nominal
value. After 450 s, the rotation speed is maintained around the nominal speed of 14.6 rad/s, and it is
observed that the HFLC makes the changes as fast as the drastic changes in the wind speed. In addition,
the controller detects changes in the magnitude of the error and executes a response action with a
value selected by the programmer that responds as quickly as is convenient according to different
circumstances. By contrast, the controller based on a mathematical model has a control response
proportional to the magnitude of the error in any circumstance.
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In Figure 18, the pitch angle movement is documented, and it is observed at 450 s that the
controller detects a drastic change in wind speed, the pitch angle movement starts immediately, and
the PID controller without anticipated wind speed measuring starts movement 20 s later. It is also
observed that with the HFLC, the actuator moves long distances until reaching the small error range,
which results in a lower error in the generator shaft speed. On the other hand, the PID controller
dampens the paths of the actuator as the error is reduced, so reduction with the error in the generator
shaft speed is slower.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 18 

In Figure 18, the pitch angle movement is documented, and it is observed at 450 s that the 
controller detects a drastic change in wind speed, the pitch angle movement starts immediately, and 
the PID controller without anticipated wind speed measuring starts movement 20 s later. It is also 
observed that with the HFLC, the actuator moves long distances until reaching the small error range, 
which results in a lower error in the generator shaft speed. On the other hand, the PID controller 
dampens the paths of the actuator as the error is reduced, so reduction with the error in the generator 
shaft speed is slower.  

 

Figure 18. Pitch angle movement. There is also a difference in the pitch angle paths, where the HFLC 
makes sudden (peak-shaped) changes in the angle path, while the PID controller makes smooth 
changes. 

To carry out the experiment, only real winds in the predominant direction between 70° and 110° 
are considered, which represents 72% of the annual time. When the wind direction is in another 
direction range, the controller switches to a conventional PID controller. The development of the 
algorithm in real operating conditions is shown in Figure 19. 

 
Figure 19. Experiment with real wind conditions. The behavior of the wind at the time of the 
experiment is shown in the upper part of the figure. The comparison of the generator shaft rotation 

Figure 18. Pitch angle movement. There is also a difference in the pitch angle paths, where the HFLC
makes sudden (peak-shaped) changes in the angle path, while the PID controller makes smooth changes.

To carry out the experiment, only real winds in the predominant direction between 70◦ and 110◦

are considered, which represents 72% of the annual time. When the wind direction is in another
direction range, the controller switches to a conventional PID controller. The development of the
algorithm in real operating conditions is shown in Figure 19.
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Figure 19. Experiment with real wind conditions. The behavior of the wind at the time of the experiment
is shown in the upper part of the figure. The comparison of the generator shaft rotation speed using the
HFLC and PID controllers is shown in the middle of the figure. The pitch angle movement with both
controllers is shown in the lower part of the figure.
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Graphical results show that an HFLC has a better performance than a PID controller, as the
value of the rotation speed of the generator shaft is always closer to the value of the nominal speed.
According to a variable integration procedure, the average speed of the generator shaft with the HFLC
is 14.159 rad/s, while with the PID controller, it was 12.753 rad/s. In general terms, the proposed control
algorithm proved to be more efficient in the region of operation III, maintaining the nominal rotation
speed of the generator up to 11% longer with respect to the controlled PID. This result is very significant
because the longer the speed the generator shaft is at the nominal value, in the region of operation
II, the more electrical energy will be produced, and in region III, generation losses due to magnetic
saturation in the generator will be avoided. This result confirmed that a controller based on fuzzy logic,
and in advance of the measurement of wind speed, has a better performance when programmed with
decision criteria based on the experience of the programmer and statistical wind speed data, compared
to a controlled PID or any of its variants because the latter reacts under a mathematical model.

5. Conclusions

In this document, a methodology for the development of an HFLC for a S-HAWT has been
presented. This size of turbines is installed where the wind resources are limited; however, at the
height to the center of the rotor axis, the wind is usually atypical, because at this height, the path of the
wind encounters obstacles such as buildings, trees, mountains, or hillsides, which cause turbulence
and gusts of wind. In these atypical wind conditions, the use of a conventional pitch angle controller
parameterized from a mathematical model such as a PID controller is not reliable, because the variability
in the speed and direction of the wind makes this variable behave more as a disturbance to the system
than as a stable input variable.

Furthermore, the response of the mechanical system of pitch angle is usually slow because it
moves a large amount of blade mass; a slow system prevents the obtaining of an adequate response to
wind gusts. The experiment showed that when the rotor rotates at a slower speed than the nominal
speed, a gust of wind can go unnoticed, as it would hardly move a large amount of mass, but when
the rotor rotates at near the nominal speed, a wind gust could greatly accelerate the rotor such that
it would easily exceed the nominal speed and it would be difficult to control the generated inertia,
causing damage to the tower structure and the generator.

To solve this problem, the methodology developed proposes to install a wind speed measurement
system at a calculated distance where the movement of the mechanical system of the pitch angle will
anticipate the position of the setpoint angle and minimize the effects of the wind gust on the rotation of
the turbine. A statistical analysis of the wind resources at the installation site, to determine the average
of the magnitude of the meteorological variables and their frequency distribution, helps to set the
control limits, define the HFLC membership functions, and give greater flexibility to the controller in
the decision-making.

The results showed faster changes in the pitch angle position, which maintained the rotation
speed of the generator shaft at nominal values, but not with a conventional PID controller where
speeds greater than the nominal were obtained for prolonged times. With the HFLC, the pitch angle
displacement is extended until the error in the rotation speed of the generator shaft is reduced. When
the error is minimal, the pitch angle displacement changes sharply in search of a new position, while
with the PID controller, the pitch angle changes to a new position before the error is reduced, so the
response speed of the actuator is smoother. This means that the mechanical design for the pitch angle
shift when using an HFLC must be robust to withstand mechanical shock.

Finally, with the HFLC, the nonlinearities of the system are compensated, avoiding oscillations in
the mechanical system of the pitch angle, mechanical fatigue of the rotor is reduced, and better turbine
performance is obtained.

With these results, it is demonstrated than an HFLC developed with this methodology shows a
better performance than a conventional PID controller applied in the S-HAWT. Therefore, the document
presents a great contribution of low cost, which will help researchers, manufacturers, and developing
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countries where the wind resources have not yet been fully utilized, with a tool for the control of the
pitch angle in the S-HAWT that simplifies and motivates the use of renewable energies.
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