Potential Role of Plant Extracts and Phytochemicals Against Foodborne Pathogens
Abstract
:1. Introduction
2. Materials and Methods
3. Plant Extracts and Phytochemicals against Bacteria Causing Foodborne Diseases
3.1. Campylobacter Species
3.2. Salmonella
3.3. Escherichia coli
3.4. Staphylococcus aureus
3.5. Shigella
3.6. Listeria monocytogenes
3.7. Clostridium spp.
3.8. Bacillus cereus
3.9. Vibrio cholerae
4. Plant Extracts and Phytochemicals against Viruses Causing Foodborne Diseases
4.1. Norovirus
4.2. Astrovirus
4.3. Hepatitis-A Virus
4.4. Rotavirus
5. Plant Extracts and Phytochemicals against Parasites Causing Foodborne Diseases
5.1. Giardia lambia
5.2. Entamoeba histolytica
5.3. Toxoplasma gondii
5.4. Cryptosporidium
6. Mechanisms of Antimicrobial Activity
7. Persisting Challenges
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rane, S. Street vended food in developing world: Hazard analyses. Indian J. Microbiol. 2011, 51, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Nout, M. Fermented foods and food safety. Food Res. Int. 1994, 27, 291–298. [Google Scholar] [CrossRef]
- Ayaz, M.; Junaid, M.; Subhan, F.; Ullah, F.; Sadiq, A.; Ahmad, S.; Imran, M.; Kamal, Z.; Hussain, S.; Shah, S.M. Heavy metals analysis, phytochemical, phytotoxic and anthelmintic investigations of crude methanolic extract, subsequent fractions and crude saponins from Polygonum hydropiper L. BMC Complement. Altern. Med. 2014, 14, 465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.-A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, Y.; Gilmour, S.; Ota, E.; Momose, Y.; Onishi, T.; Bilano, F.; Luanni, V.; Kasuga, F.; Sekizaki, T.; Shibuya, K. Estimating the burden of foodborne diseases in Japan. Bull. World Health Organ. 2015, 93, 540–549. [Google Scholar] [CrossRef]
- Olsen, S.J.; MacKinon, L.C.; Goulding, J.S.; Bean, N.H.; Slutsker, L. Surveillance for Foodborne-Disease Outbreaks, United States, 1993–1997. MMWR CDC Surveill. Summ. 2000, 49, 1–62. [Google Scholar] [PubMed]
- Park, M.S.; Kim, Y.S.; Lee, S.H.; Kim, S.H.; Park, K.H.; Bahk, G.J. Estimating the burden of foodborne disease, South Korea, 2008–2012. Foodborne Pathog. Dis. 2015, 12, 207–213. [Google Scholar] [CrossRef]
- Available online: https://www.who.int/activities/estimating-the-burden-of-foodborne-diseases (accessed on 26 May 2020).
- Buchanan, R.L.; Smith, J.L.; Long, W. Microbial risk assessment: Dose-response relations and risk characterization. Int. J. Food Microbiol. 2000, 58, 159–172. [Google Scholar] [CrossRef]
- Xiao, L.; Ryan, U.; Feng, Y. Biology of Foodborne Parasites; CRC Press: Boca Raton, FL, USA, 2015; Volume 1. [Google Scholar]
- Dei-Cas, E.; Aliouat, C.-M.; Certad, G.; Creusy, C.; Guyot, K. Infectious Forms of Parasites in Food: Man Embedded in Ecosystems. In Detection of Bacteria, Viruses, Parasites and Fungi; Springer: Dordrecht, The Netherlands, 2010; pp. 299–332. [Google Scholar]
- Hernández-Cortez, C.; Palma-Martínez, I.; Gonzalez-Avila, L.U.; Guerrero-Mandujano, A.; Solís, R.C.; Castro-Escarpulli, G. Food Poisoning Caused by Bacteria (Food Toxins). In Poisoning—From Specific Toxic Agents to Novel Rapid and Simplified Techniques for Analysis; IntechOpen Limited: London, UK, 2017; pp. 33–72. [Google Scholar]
- Walsh, C.; Fanning, S. Antimicrobial resistance in foodborne pathogens-A cause for concern? Curr. Drug Targets 2008, 9, 808–815. [Google Scholar] [CrossRef]
- Slutsker, L.; Altekruse, S.F.; Swerdlow, D.L. Foodborne diseases: Emerging pathogens and trends. Infect. Dis. Clin. 1998, 12, 199–216. [Google Scholar] [CrossRef]
- Abd El-Baky, H.H.; El-Baroty, G.S. The Potential Use of Microalgal Carotenoids as Dietary Supplements and Natural Preservative Ingredients. J. Aquat. Food Prod. Technol. 2013, 22, 392–406. [Google Scholar] [CrossRef]
- Msagati, T.A. The Chemistry of Food Additives and Preservatives; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Switaj, T.L.; Winter, K.J.; Christensen, S.R. Diagnosis and management of foodborne illness. Am. Fam. Physician 2015, 92, 358–365. [Google Scholar]
- Ayaz, M.; Subhan, F.; Sadiq, A.; Ullah, F.; Ahmed, J.; Sewell, R. Cellular efflux transporters and the potential role of natural products in combating efflux mediated drug resistance. Front. Biosci. (Landmark Ed.) 2017, 22, 732–756. [Google Scholar] [CrossRef]
- Ayaz, M.; Subhan, F.; Ahmed, J.; Khan, A.-u.; Ullah, F.; Ullah, I.; Ali, G.; Hussain, S. Sertraline enhances the activity of antimicrobial agents against pathogens of clinical relevance. J. Biol. Res. Thessalon. 2015, 22, 4. [Google Scholar] [CrossRef] [Green Version]
- Ayaz, M.; Subhan, F.; Ahmed, J.; Khan, A.-U.; Ullah, F.; Sadiq, A.; Syed, N.; Ullah, I.; Hussain, S. Citalopram and venlafaxine differentially augments antimicrobial properties of antibiotics. Acta Pol. Pharm. Drug Res. 2015, 72, 1269–1278. [Google Scholar]
- Shahid, M.; Subhan, F.; Ahmad, N.; Ullah, I. A bacosides containing Bacopa monnieri extract alleviates allodynia and hyperalgesia in the chronic constriction injury model of neuropathic pain in rats. BMC Complement. Altern. Med. 2017, 17, 293. [Google Scholar] [CrossRef]
- Shahid, M.; Subhan, F.; Ullah, I.; Ali, G.; Alam, J.; Shah, R. Beneficial effects of Bacopa monnieri extract on opioid induced toxicity. Heliyon 2016, 2, e00068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aman, U.; Subhan, F.; Shahid, M.; Akbar, S.; Ahmad, N.; Ali, G.; Fawad, K.; Sewell, R.D. Passiflora incarnata attenuation of neuropathic allodynia and vulvodynia apropos GABA-ergic and opioidergic antinociceptive and behavioural mechanisms. BMC Complement. Altern. Med. 2016, 16, 77. [Google Scholar] [CrossRef] [Green Version]
- Ullah, I.; Subhan, F.; Alam, J.; Shahid, M.; Ayaz, M. Suppression of cisplatin-induced vomiting by Cannabis sativa in pigeons: Neurochemical evidences. Front. Pharmacol. 2018, 9, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayaz, M.; Sadiq, A.; Junaid, M.; Ullah, F.; Subhan, F.; Ahmed, J. Neuroprotective and anti-aging potentials of essential oils from aromatic and medicinal plants. Front. Aging Neurosci. 2017, 9, 168. [Google Scholar] [CrossRef] [Green Version]
- Ovais, M.; Ayaz, M.; Khalil, A.T.; Shah, S.A.; Jan, M.S.; Raza, A.; Shahid, M.; Shinwari, Z.K. HPLC-DAD finger printing, antioxidant, cholinesterase, and α-glucosidase inhibitory potentials of a novel plant Olax nana. BMC Complement. Altern. Med. 2018, 18, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odeyemi, O.A.; Sani, N.A. Antibiotic resistance and burden of foodborne diseases in developing countries. Future Sci. 2016, 2, FSO139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grace, D. Food safety in low and middle income countries. Int. J. Environ. Res. Public Health 2015, 12, 10490–10507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayaz, M.; Ullah, F.; Sadiq, A.; Ullah, F.; Ovais, M.; Ahmed, J.; Devkota, H.P. Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chem. Biol. Interact. 2019, 308, 294–303. [Google Scholar] [CrossRef]
- Smid, E.J.; Gorris, L.G. Natural antimicrobials for food preservation. In Handbook of Food Preservation; CRC Press: Boca Raton, FL, USA, 2007; pp. 237–358. [Google Scholar]
- Ehiri, J.E.; Morris, G. Food safety control strategies: A critical review of traditional approaches. Int. J. Environ. Health Res. 1994, 4, 254–263. [Google Scholar] [CrossRef]
- Castillo, S.L.; Heredia, N.; Contreras, J.F.; Garcia, S. Extracts of edible and medicinal plants in inhibition of growth, adherence, and cytotoxin production of Campylobacter jejuni and Campylobacter coli. J. Food Sci. 2011, 76, M421–M426. [Google Scholar] [CrossRef]
- Harris, J.C.; Plummer, S.; Turner, M.P.; Lloyd, D. The microaerophilic flagellate Giardia intestinalis: Allium sativum (garlic) is an effective antigiardial. Microbiology 2000, 146, 3119–3127. [Google Scholar] [CrossRef] [Green Version]
- Silver, L.; Bostian, K. Screening of natural products for antimicrobial agents. Eur. J. Clin. Microbiol. Infect. Dis. 1990, 9, 455–461. [Google Scholar] [CrossRef]
- Nachamkin, I.; Szymanski, C.M.; Blaser, M.J. Campylobacter, 3rd ed.; American Society for Microbiology Press: Washington, DC, USA, 2008. [Google Scholar]
- Kirk, M.D.; Pires, S.M.; Black, R.E.; Caipo, M.; Crump, J.A.; Devleesschauwer, B.; Dopfer, D.; Fazil, A.; Fischer-Walker, C.L.; Hald, T.; et al. World Health Organization Estimates of the Global and Regional Disease Burden of 22 Foodborne Bacterial, Protozoal, and Viral Diseases, 2010: A Data Synthesis. PLoS Med. 2015, 12, e1001921. [Google Scholar] [CrossRef] [Green Version]
- Cha, W.; Mosci, R.E.; Wengert, S.L.; Venegas Vargas, C.; Rust, S.R.; Bartlett, P.C.; Grooms, D.L.; Manning, S.D. Comparing the Genetic Diversity and Antimicrobial Resistance Profiles of Campylobacter jejuni Recovered from Cattle and Humans. Front. Microbiol. 2017, 8, 818. [Google Scholar] [CrossRef] [Green Version]
- Szczepanska, B.; Andrzejewska, M.; Spica, D.; Klawe, J.J. Prevalence and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolated from children and environmental sources in urban and suburban areas. BMC Microbiol. 2017, 17, 80. [Google Scholar] [CrossRef] [Green Version]
- Dholvitayakhun, A.; Cushnie, T.P.; Trachoo, N. Antibacterial activity of three medicinal Thai plants against Campylobacter jejuni and other foodborne pathogens. Nat. Prod. Res. 2012, 26, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Passsari, A.K.; Leo, V.V.; Mishra, V.K.; Subbarayan, S.; Singh, B.P.; Kumar, B.; Kumar, S.; Gupta, V.K.; Lalhlenmawia, H.; et al. Evaluation of Phenolic Content Variability along with Antioxidant, Antimicrobial, and Cytotoxic Potential of Selected Traditional Medicinal Plants from India. Front. Plant Sci. 2016, 7, 407. [Google Scholar] [CrossRef] [Green Version]
- Ouahouo, B.M.; Azebaze, A.G.; Meyer, M.; Bodo, B.; Fomum, Z.T.; Nkengfack, A.E. Cytotoxic and antimicrobial coumarins from Mammea africana. Ann. Trop. Med. Parasitol. 2004, 98, 733–739. [Google Scholar] [CrossRef]
- Canning, C.; Sun, S.; Ji, X.; Gupta, S.; Zhou, K. Antibacterial and cytotoxic activity of isoprenylated coumarin mammea A/AA isolated from Mammea africana. J. Ethnopharmacol. 2013, 147, 259–262. [Google Scholar] [CrossRef]
- Fais, T.; Delmas, J.; Serres, A.; Bonnet, R.; Dalmasso, G. Impact of CDT Toxin on Human Diseases. Toxins 2016, 8, 220. [Google Scholar] [CrossRef]
- Sanchez, E.; Garcia, S.; Heredia, N. Extracts of edible and medicinal plants damage membranes of Vibrio cholerae. Appl. Environ. Microbiol. 2010, 76, 6888–6894. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, A.; Arsi, K.; Wagle, B.R.; Upadhyaya, I.; Shrestha, S.; Donoghue, A.M.; Donoghue, D.J. Trans-Cinnamaldehyde, Carvacrol, and Eugenol Reduce Campylobacter jejuni Colonization Factors and Expression of Virulence Genes in Vitro. Front. Microbiol. 2017, 8, 713. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, J.K.; Felso, P.; Makszin, L.; Papai, Z.; Horvath, G.; Abraham, H.; Palkovics, T.; Boszormenyi, A.; Emody, L.; Schneider, G. Antimicrobial and Virulence-Modulating Effects of Clove Essential Oil on the Foodborne Pathogen Campylobacter jejuni. Appl. Environ. Microbiol. 2016, 82, 6158–6166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, M.; Henika, P.R.; Mandrell, R.E. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Prot. 2002, 65, 1545–1560. [Google Scholar] [CrossRef] [PubMed]
- Fisher, K.; Phillips, C.A. The effect of lemon, orange and bergamot essential oils and their components on the survival of Campylobacter jejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus in vitro and in food systems. J. Appl. Microbiol. 2006, 101, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
- Kurekci, C.; Padmanabha, J.; Bishop-Hurley, S.L.; Hassan, E.; Al Jassim, R.A.; McSweeney, C.S. Antimicrobial activity of essential oils and five terpenoid compounds against Campylobacter jejuni in pure and mixed culture experiments. Int. J. Food Microbiol. 2013, 166, 450–457. [Google Scholar] [CrossRef]
- Rattanachaikunsopon, P.; Phumkhachorn, P. Potential of coriander (Coriandrum sativum) oil as a natural antimicrobial compound in controlling Campylobacter jejuni in raw meat. Biosci. Biotechnol. Biochem. 2010, 74, 31–35. [Google Scholar] [CrossRef] [Green Version]
- Rossi, P.G.; Bao, L.; Luciani, A.; Panighi, J.; Desjobert, J.M.; Costa, J.; Casanova, J.; Bolla, J.M.; Berti, L. (E)-Methylisoeugenol and elemicin: Antibacterial components of Daucus carota L. essential oil against Campylobacter jejuni. J. Agric. Food Chem. 2007, 55, 7332–7336. [Google Scholar] [CrossRef]
- Hernandez-Ochoa, L.; Aguirre-Prieto, Y.B.; Nevarez-Moorillon, G.V.; Gutierrez-Mendez, N.; Salas-Munoz, E. Use of essential oils and extracts from spices in meat protection. J. Food Sci. Technol. 2014, 51, 957–963. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Rasco, B.A.; Jabal, J.M.; Aston, D.E.; Lin, M.; Konkel, M.E. Investigating antibacterial effects of garlic (Allium sativum) concentrate and garlic-derived organosulfur compounds on Campylobacter jejuni by using Fourier transform infrared spectroscopy, Raman spectroscopy, and electron microscopy. Appl. Environ. Microbiol. 2011, 77, 5257–5269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith-Palmer, A.; Stewart, J.; Fyfe, L. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett. Appl. Microbiol. 1998, 26, 118–122. [Google Scholar] [CrossRef]
- Ozogul, Y.; Kuley, E.; Ucar, Y.; Ozogul, F. Antimicrobial Impacts of Essential Oils on Food Borne-Pathogens. Recent Pat. Food Nutr. Agric. 2015, 7, 53–61. [Google Scholar] [CrossRef]
- Sela, F.; Karapandzova, M.; Stefkov, G.; Cvetkovikj, I.; Kulevanova, S. Chemical composition and antimicrobial activity of essential oils of Juniperus excelsa Bieb. (Cupressaceae) grown in R. Macedonia. Pharmacogn. Res. 2015, 7, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Silva, O.; Duarte, A.; Pimentel, M.; Viegas, S.; Barroso, H.; Machado, J.; Pires, I.; Cabrita, J.; Gomes, E. Antimicrobial activity of Terminalia macroptera root. J. Ethnopharmacol. 1997, 57, 203–207. [Google Scholar] [CrossRef]
- Samie, A.; Obi, C.L.; Lall, N.; Meyer, J.J. In-vitro cytotoxicity and antimicrobial activities, against clinical isolates of Campylobacter species and Entamoeba histolytica, of local medicinal plants from the Venda region, in South Africa. Ann. Trop. Med. Parasitol. 2009, 103, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Paulo, A.; Pimentel, M.; Viegas, S.; Pires, I.; Duarte, A.; Cabrita, J.; Gomes, E.T. Cryptolepis sanguinolenta activity against diarrhoeal bacteria. J. Ethnopharmacol. 1994, 44, 73–77. [Google Scholar] [CrossRef]
- Jarriyawattanachaikul, W.; Chaveerach, P.; Chokesajjawatee, N. Antimicrobial Activity of Thai-herbal Plants against Food-borne Pathogens E. coli, S. aureus and C. jejuni. Agric. Agric. Sci. Procedia 2016, 11, 20–24. [Google Scholar] [CrossRef]
- Sreeramulu, G.; Zhu, Y.; Knol, W. Kombucha fermentation and its antimicrobial activity. J. Agric. Food Chem. 2000, 48, 2589–2594. [Google Scholar] [CrossRef] [PubMed]
- Diker, K.S.; Akan, M.; Hascelik, G.; Yurdakök, M. The bactericidal activity of tea against Campylobacter jejuni and Campylobacter coli. Lett. Appl. Microbiol. 1991, 12, 34–35. [Google Scholar] [CrossRef]
- Aslim, B.; Yucel, N. In vitro antimicrobial activity of essential oil from endemic Origanum minutiflorum on ciprofloxacin-resistant Campylobacter spp. Food Chem. 2008, 107, 602–606. [Google Scholar] [CrossRef]
- Kurekci, C.; Bishop-Hurley, S.L.; Vercoe, P.E.; Durmic, Z.; Al Jassim, R.A.; McSweeney, C.S. Screening of Australian plants for antimicrobial activity against Campylobacter jejuni. Phytother. Res. 2012, 26, 186–190. [Google Scholar] [CrossRef]
- Welkos, S.; Schreiber, M.; Baer, H. Identification of Salmonella with the O-1 bacteriophage. Appl. Environ. Microbiol. 1974, 28, 618–622. [Google Scholar] [CrossRef] [Green Version]
- Letellier, A.; Messier, S.; Quessy, S. Prevalence of Salmonella spp. and Yersinia enterocolitica in finishing swine at Canadian abattoirs. J. Food Prot. 1999, 62, 22–25. [Google Scholar] [CrossRef]
- Robinson, R. Salmonella infection: Diagnosis and control. N. Z. Vet. J. 1970, 18, 259–277. [Google Scholar] [CrossRef]
- Thorns, C. Bacterial food-borne zoonoses. Rev. Sci. Et Tech. Off. Int. Des Epizoot. 2000, 19, 226–239. [Google Scholar] [CrossRef]
- Salmonella—A Dangerous Foodborne Pathogen; Mahmoud, B.S.M. (Ed.) InTechOpen Limited: London, UK, 2016. [Google Scholar]
- Sadiq, M.B.; Tarning, J.; Aye Cho, T.Z.; Anal, A.K. Antibacterial Activities and Possible Modes of Action of Acacia nilotica (L.) Del. against Multidrug-Resistant Escherichia coli and Salmonella. Molecules 2017, 22, 47. [Google Scholar] [CrossRef]
- Khan, R.; Islam, B.; Akram, M.; Shakil, S.; Ahmad, A.A.; Ali, S.M.; Siddiqui, M.; Khan, A. Antimicrobial Activity of Five Herbal Extracts Against Multi Drug Resistant (MDR) Strains of Bacteria and Fungus of Clinical Origin. Molecules 2009, 14, 586. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, M.; Zhao, Z.; Yu, S. The antibiotic activity and mechanisms of sugarcane (Saccharum officinarum L.) bagasse extract against food-borne pathogens. Food Chem. 2015, 185, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Bisi-Johnson, M.A.; Obi, C.L.; Samuel, B.B.; Eloff, J.N.; Okoh, A.I. Antibacterial activity of crude extracts of some South African medicinal plants against multidrug resistant etiological agents of diarrhoea. BMC Complement. Altern. Med. 2017, 17, 321. [Google Scholar] [CrossRef] [PubMed]
- Elisha, I.L.; Botha, F.S.; McGaw, L.J.; Eloff, J.N. The antibacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts. BMC Complement. Altern. Med. 2017, 17, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzoyem, J.P.; Melong, R.; Tsamo, A.T.; Tchinda, A.T.; Kapche, D.G.; Ngadjui, B.T.; McGaw, L.J.; Eloff, J.N. Cytotoxicity, antimicrobial and antioxidant activity of eight compounds isolated from Entada abyssinica (Fabaceae). BMC Res. Notes 2017, 10, 118. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Imran, T.B.; Islam, S. Antioxidative, antimicrobial and cytotoxic effects of the phenolics of Leea indica leaf extract. Saudi J. Biol. Sci. 2013, 20, 213–225. [Google Scholar] [CrossRef] [Green Version]
- Razwinani, M.; Tshikalange, T.E.; Motaung, S.C. Antimicrobial and anti-inflammatory activities of Pleurostylia capensis Turcz (Loes) (Celastraceae). Afr. J. Tradit Complement. Altern Med. 2014, 11, 452–457. [Google Scholar] [CrossRef] [Green Version]
- Tanih, N.F.; Ndip, R.N. Evaluation of the Acetone and Aqueous Extracts of Mature Stem Bark of Sclerocarya birrea for Antioxidant and Antimicrobial Properties. Evid. Based Complement. Altern. Med. 2012, 2012, 834156. [Google Scholar] [CrossRef] [Green Version]
- Gull, I.; Sohail, M.; Aslam, M.S.; Amin Athar, M. Phytochemical, toxicological and antimicrobial evaluation of Lawsonia inermis extracts against clinical isolates of pathogenic bacteria. Ann. Clin. Microbiol. Antimicrob. 2013, 12, 36. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, S.; Subaramaihha, S.R.; Subbaiah, S.G.; Eshwarappa, R.S.; Lakkappa, D.B. Evaluating the antimicrobial activity of methonolic extract of Rhus succedanea leaf gall. Bioimpacts 2013, 3, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Stojanovic, G.; Radulovic, N.; Hashimoto, T.; Palic, R. In vitro antimicrobial activity of extracts of four Achillea species: The composition of Achillea clavennae L. (Asteraceae) extract. J. Ethnopharmacol. 2005, 101, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Ozbay, H.; Alim, A. Antimicrobial activity of some water plants from the northeastern Anatolian region of Turkey. Molecules 2009, 14, 321–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbosso Teinkela, J.E.; Assob Nguedia, J.C.; Meyer, F.; Vouffo Donfack, E.; Lenta Ndjakou, B.; Ngouela, S.; Tsamo, E.; Adiogo, D.; Guy Blaise Azebaze, A.; Wintjens, R. In vitro antimicrobial and anti-proliferative activities of plant extracts from Spathodea campanulata, Ficus bubu, and Carica papaya. Pharm. Biol. 2016, 54, 1086–1095. [Google Scholar] [CrossRef]
- Assob, J.C.; Kamga, H.L.; Nsagha, D.S.; Njunda, A.L.; Nde, P.F.; Asongalem, E.A.; Njouendou, A.J.; Sandjon, B.; Penlap, V.B. Antimicrobial and toxicological activities of five medicinal plant species from Cameroon traditional medicine. BMC Complement. Altern. Med. 2011, 11, 70. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Lu, W.; Zhou, X. Phenolic Compounds and In Vitro Antibacterial and Antioxidant Activities of Three Tropic Fruits: Persimmon, Guava, and Sweetsop. BioMed Res. Int. 2016, 2016, 4287461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Wang, Q.; Liu, Y.; Chen, G.; Cui, J. Antimicrobial and antioxidant activities of Cichorium intybus root extract using orthogonal matrix design. J. Food Sci. 2013, 78, M258–M263. [Google Scholar] [CrossRef]
- Onivogui, G.; Diaby, M.; Chen, X.; Zhang, H.; Kargbo, M.R.; Song, Y. Antibacterial and antifungal activities of various solvent extracts from the leaves and stem bark of Anisophyllea laurina R. Br ex Sabine used as traditional medicine in Guinea. J. Ethnopharmacol. 2015, 168, 287–290. [Google Scholar] [CrossRef]
- Benevides Bahiense, J.; Marques, F.M.; Figueira, M.M.; Vargas, T.S.; Kondratyuk, T.P.; Endringer, D.C.; Scherer, R.; Fronza, M. Potential anti-inflammatory, antioxidant and antimicrobial activities of Sambucus australis. Pharm. Biol. 2017, 55, 991–997. [Google Scholar] [CrossRef] [Green Version]
- Akinyemi, K.; Mendie, U.; Smith, S.; Oyefolu, A.; Coker, A. Screening of some medicinal plants used in south-west Nigerian traditional medicine for anti-Salmonella typhi activity. J. Herb. Pharmacother. 2005, 5, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Franklyne, J.S.; Mukherjee, A.; Chandrasekaran, N. Essential oil micro- and nanoemulsions: Promising roles in antimicrobial therapy targeting human pathogens. Lett. Appl. Microbiol. 2016, 63, 322–334. [Google Scholar] [CrossRef]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crop. Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Ovais, M.; Zia, N.; Khalil, A.T.; Ayaz, M.; Khalil, A.; Ahmad, I. Nanoantibiotics: Recent Developments and Future Prospects. Front. Clin. Drug Res. Anti. Infect. 2019, 5, 158. [Google Scholar]
- Qasim Nasar, M.; Zohra, T.; Khalil, A.T.; Saqib, S.; Ayaz, M.; Ahmad, A.; Shinwari, Z.K. Seripheidium quettense mediated green synthesis of biogenic silver nanoparticles and their theranostic applications. Green Chem. Lett. Rev. 2019, 12, 310–322. [Google Scholar] [CrossRef] [Green Version]
- Ovais, M.; Ahmad, I.; Khalil, A.T.; Mukherjee, S.; Javed, R.; Ayaz, M.; Raza, A.; Shinwari, Z.K. Wound healing applications of biogenic colloidal silver and gold nanoparticles: Recent trends and future prospects. Appl. Microbiol. Biotechnol. 2018, 102, 4305–4318. [Google Scholar] [CrossRef]
- Ovais, M.; Khalil, A.T.; Islam, N.U.; Ahmad, I.; Ayaz, M.; Saravanan, M.; Shinwari, Z.K.; Mukherjee, S. Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl. Microbiol. Biotechnol. 2018, 102, 6799–6814. [Google Scholar] [CrossRef]
- Ayaz, M.; Ovais, M.; Ahmad, I.; Sadiq, A.; Khalil, A.T.; Ullah, F. Biosynthesized metal nanoparticles as potential Alzheimer’s disease therapeutics. In Metal Nanoparticles for Drug Delivery and Diagnostic Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 31–42. [Google Scholar]
- Elemike, E.; Onwudiwe, D.; Ekennia, A.; Sonde, C.; Ehiri, R. Green Synthesis of Ag/Ag2O Nanoparticles Using Aqueous Leaf Extract of Eupatorium odoratum and Its Antimicrobial and Mosquito Larvicidal Activities. Molecules 2017, 22, 674. [Google Scholar] [CrossRef] [Green Version]
- Elemike, E.E.; Onwudiwe, D.C.; Ekennia, A.C.; Ehiri, R.C.; Nnaji, N.J. Phytosynthesis of silver nanoparticles using aqueous leaf extracts of Lippia citriodora: Antimicrobial, larvicidal and photocatalytic evaluations. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 75, 980–989. [Google Scholar] [CrossRef]
- Rashid, M.M.O.; Akhter, K.N.; Chowdhury, J.A.; Hossen, F.; Hussain, M.S.; Hossain, M.T. Characterization of phytoconstituents and evaluation of antimicrobial activity of silver-extract nanoparticles synthesized from Momordica charantia fruit extract. BMC Complement. Altern. Med. 2017, 17, 336. [Google Scholar] [CrossRef] [Green Version]
- Zia, M.; Gul, S.; Akhtar, J.; Haq, I.U.; Abbasi, B.H.; Hussain, A.; Naz, S.; Chaudhary, M.F. Green synthesis of silver nanoparticles from grape and tomato juices and evaluation of biological activities. IET Nanobiotechnol. 2017, 11, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, S.; Sivaji, I.; Kandasamy, S.; Duraisamy, S.; Kumar, N.S.; Gurusubramanian, G. Biosynthesis of silver nanoparticles using Myristica fragrans seed (nutmeg) extract and its antibacterial activity against multidrug-resistant (MDR) Salmonella enterica serovar Typhi isolates. Environ. Sci. Pollut. Res. Int. 2017, 24, 14758–14769. [Google Scholar] [CrossRef] [PubMed]
- Bettelheim, K. Escherichia coli in the normal flora of humans and animals. In Escherichia Coli: Mechanisms of Virulence; Cambridge University Press: Cambridge, UK, 1997; pp. 85–109. [Google Scholar]
- Meng, J.; LeJeune, J.T.; Zhao, T.; Doyle, M.P. Enterohemorrhagic Escherichia coli. In Food Microbiology; American Society of Microbiology: Washington, DC, USA, 2013; pp. 287–309. [Google Scholar]
- Prescott, L.M.; Harley, J.P.; Klein, D.A. Microbiology; McGraw-Hill: Boston, MA, USA, 2002; Volume fifth. [Google Scholar]
- Johnson, J.K.; Robinson, G.L.; Pineles, L.L.; Ajao, A.O.; Zhao, L.; Albrecht, J.S.; Harris, A.D.; Thom, K.A.; Furuno, J.P. Carbapenem MICs in Escherichia coli and Klebsiella Species Producing Extended-Spectrum beta-Lactamases in Critical Care Patients from 2001 to 2009. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Dockery, C.R.; Crosby, M.; Chavarria, K.; Patterson, B.; Giedd, M. Antibacterial Activities of Wasabi against Escherichia coli O157:H7 and Staphylococcus aureus. Front. Microbiol. 2016, 7, 1403. [Google Scholar] [CrossRef] [Green Version]
- Lansky, E.P.; Newman, R.A. Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J. Ethnopharmacol. 2007, 109, 177–206. [Google Scholar] [CrossRef]
- Rahmani, A.H.; Alsahli, M.A.; Almatroodi, S.A. Active constituents of pomegranates (Punica granatum) as potential candidates in the management of health through modulation of biological activities. Pharmacogn. J. 2017, 9, 689–695. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, H.R.; Arastoo, M.; Ostad, S.N. A Comprehensive Review of Punica granatum (Pomegranate) Properties in Toxicological, Pharmacological, Cellular and Molecular Biology Researches. Iran. J. Pharm. Res. IJPR 2012, 11, 385–400. [Google Scholar] [PubMed]
- Mostafa, A.A.; Al-Askar, A.A.; Almaary, K.S.; Dawoud, T.M.; Sholkamy, E.N.; Bakri, M.M. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J. Biol. Sci. 2018, 25, 361–366. [Google Scholar] [CrossRef]
- Zohra, T.; Ovais, M.; Khalil, A.T.; Qasim, M.; Ayaz, M.; Shinwari, Z.K.; Ahmad, S.; Zahoor, M. Bio-guided profiling and HPLC-DAD finger printing of Atriplex lasiantha Boiss. BMC Complement. Altern. Med. 2019, 19, 4. [Google Scholar] [CrossRef]
- Al-Zoreky, N.S. Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. Int. J. Food Microbiol. 2009, 134, 244–248. [Google Scholar] [CrossRef]
- Mahwasane, S.; Middleton, L.; Boaduo, N. An ethnobotanical survey of indigenous knowledge on medicinal plants used by the traditional healers of the Lwamondo area, Limpopo province, South Africa. S. Afr. J. Bot. 2013, 88, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Mathabe, M.C.; Nikolova, R.V.; Lall, N.; Nyazema, N.Z. Antibacterial activities of medicinal plants used for the treatment of diarrhoea in Limpopo Province, South Africa. J. Ethnopharmacol. 2006, 105, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Meléndez, P.A.; Capriles, V.A. Antibacterial properties of tropical plants from Puerto Rico. Phytomedicine 2006, 13, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.C.; Wang, C.S.; An, Z.Y. A murine model of ulcerative colitis: Induced with sinusitis-derived superantigen and food allergen. BMC Gastroenterol. 2005, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Lina, G.; Cozon, G.; Ferrandiz, J.; Greenland, T.; Vandenesch, F.; Etienne, J. Detection of Staphylococcal superantigenic toxins by a CD69-specific cytofluorimetric assay measuring T-cell activation. J. Clin. Microbiol. 1998, 36, 1042–1045. [Google Scholar] [CrossRef] [Green Version]
- Llewelyn, M.; Cohen, J. Superantigens: Microbial agents that corrupt immunity. Lancet Infect. Dis. 2002, 2, 156–162. [Google Scholar] [CrossRef]
- Letertre, C.; Perelle, S.; Dilasser, F.; Fach, P. Identification of a new putative enterotoxin SEU encoded by the egc cluster of Staphylococcus aureus. J. Appl. Microbiol. 2003, 95, 38–43. [Google Scholar] [CrossRef]
- Fueyo, J.M.; Mendoza, M.C.; Rodicio, M.R.; Muniz, J.; Alvarez, M.A.; Martin, M.C. Cytotoxin and pyrogenic toxin superantigen gene profiles of Staphylococcus aureus associated with subclinical mastitis in dairy cows and relationships with macrorestriction genomic profiles. J. Clin. Microbiol. 2005, 43, 1278–1284. [Google Scholar] [CrossRef] [Green Version]
- Umeda, K.; Nakamura, H.; Yamamoto, K.; Nishina, N.; Yasufuku, K.; Hirai, Y.; Hirayama, T.; Goto, K.; Hase, A.; Ogasawara, J. Molecular and epidemiological characterization of staphylococcal foodborne outbreak of Staphylococcus aureus harboring seg, sei, sem, sen, seo, and selu genes without production of classical enterotoxins. Int. J. Food Microbiol. 2017, 256, 30–35. [Google Scholar] [CrossRef]
- Naz, R.; Ayub, H.; Nawaz, S.; Islam, Z.U.; Yasmin, T.; Bano, A.; Wakeel, A.; Zia, S.; Roberts, T.H. Antimicrobial activity, toxicity and anti-inflammatory potential of methanolic extracts of four ethnomedicinal plant species from Punjab, Pakistan. BMC Complement. Altern. Med. 2017, 17, 302. [Google Scholar] [CrossRef] [Green Version]
- Hoekou, Y.P.; Tchacondo, T.; Karou, S.D.; Yerbanga, R.S.; Achoribo, E.; Da, O.; Atakpama, W.; Batawila, K. Therapeutic Potentials of Ethanolic Extract of Leaves of Holarrhena floribunda (G. Don) Dur. and Schinz (Apocynaceae). Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 227–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamokou, J.D.D.; Tala, M.F.; Wabo, H.K.; Kuiate, J.R.; Tane, P. Antimicrobial activities of methanol extract and compounds from stem bark of Vismia rubescens. J. Ethnopharmacol. 2009, 124, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Kuete, V.; Nguemeving, J.R.; Beng, V.P.; Azebaze, A.G.B.; Etoa, F.-X.; Meyer, M.; Bodo, B.; Nkengfack, A.E. Antimicrobial activity of the methanolic extracts and compounds from Vismia laurentii De Wild (Guttiferae). J. Ethnopharmacol. 2007, 109, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Idowu, T.O.; Ogundaini, A.O.; Adesanya, S.A.; Onawunmi, G.O.; Osungunna, M.O.; Obuotor, E.M.; Abegaz, B.M. Isolation and Characterization of Chemical Constituents from Chrysophyllum Albidum G. Don-Holl. Stem-Bark Extracts and Their Antioxidant and Antibacterial Properties. Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Coulibaly, K.; Zirihi, G.N.; Guessennd-Kouadio, N.; Oussou, K.R.; Dosso, M. Antibacterial properties studies of trunk barks of Terminalia ivorensis, a commercial and medicinal species on some methicillin-resistant Staphylococci species strains. Afr. Health Sci. 2014, 14, 753–756. [Google Scholar] [CrossRef] [Green Version]
- Elegami, A.; El-Nima, E.; El Tohami, M.; Muddathir, A. Antimicrobial activity of some species of the family Combretaceae. Phytother. Res. 2002, 16, 555–561. [Google Scholar] [CrossRef]
- Tayel, A.A.; Hussein, H.; Sorour, N.M.; El-Tras, W.F. Foodborne Pathogens Prevention and Sensory Attributes Enhancement in Processed Cheese via Flavoring with Plant Extracts. J. Food Sci. 2015, 80, M2886–M2891. [Google Scholar] [CrossRef]
- Ferhat, M.; Erol, E.; Beladjila, K.A.; Cetintas, Y.; Duru, M.E.; Ozturk, M.; Kabouche, A.; Kabouche, Z. Antioxidant, anticholinesterase and antibacterial activities of Stachys guyoniana and Mentha aquatica. Pharm. Biol. 2017, 55, 324–329. [Google Scholar] [CrossRef] [Green Version]
- Zater, H.; Huet, J.; Fontaine, V.; Benayache, S.; Stevigny, C.; Duez, P.; Benayache, F. Chemical constituents, cytotoxic, antifungal and antimicrobial properties of Centaurea diluta Ait. subsp. algeriensis (Coss. & Dur.) Maire. Asian Pac. J. Trop. Med. 2016, 9, 554–561. [Google Scholar] [CrossRef] [Green Version]
- Bouchouka, E.; Djilani, A.; Bekkouche, A. Antibacterial and antioxidant activities of three endemic plants from Algerian Sahara. Acta Sci. Pol. Technol. Aliment. 2012, 11, 61–65. [Google Scholar]
- Njeru, S.N.; Obonyo, M.; Nyambati, S.; Ngari, S.; Mwakubambanya, R.; Mavura, H. Antimicrobial and cytotoxicity properties of the organic solvent fractions of Clerodendrum myricoides (Hochst.) R. Br. ex Vatke: Kenyan traditional medicinal plant. J. Intercult Ethnopharmacol. 2016, 5, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Z.; Wu, R.; Jiang, D.; Bai, B.; Tan, D.; Yan, T.; Sun, X.; Zhang, Q.; Wu, Z. Proteomic Analysis of the Antibacterial Mechanism of Action of Juglone against Staphylococcus aureus. Nat. Prod. Commun. 2016, 11, 825–827. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.S.; Han, S.H.; Lee, S.H.; Kim, Y.G.; Park, C.B.; Kang, O.H.; Keum, J.H.; Kim, S.B.; Mun, S.H.; Seo, Y.S.; et al. The mechanism of antibacterial activity of tetrandrine against Staphylococcus aureus. Foodborne Pathog. Dis. 2012, 9, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zou, D.; Xie, K.; Xie, M. Antibacterial mechanism of fraxetin against Staphylococcus aureus. Mol. Med. Rep. 2014, 10, 2341–2345. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Kim, H.; Jung, E.; Kim, J.H.; Hwang, W.; Kang, E.J.; Lee, S.; Ha, B.J.; Lee, J.; Park, D. A novel antibacterial compound from Siegesbeckia glabrescens. Molecules 2012, 17, 12469–12477. [Google Scholar] [CrossRef] [Green Version]
- Bajpai, V.K.; Kang, S.C. Antibacterial abietane-type diterpenoid, taxodone from Metasequoia glyptostroboides Miki ex Hu. J. Biosci. 2010, 35, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.Y.; Shim, J.S.; Rukayadi, Y.; Hwang, J.K. Antibacterial activity of xanthorrhizol isolated from Curcuma xanthorrhiza Roxb. against foodborne pathogens. J. Food Prot. 2008, 71, 1926–1930. [Google Scholar] [CrossRef]
- Linde, G.A.; Gazim, Z.C.; Cardoso, B.K.; Jorge, L.F.; Tesevic, V.; Glamoclija, J.; Sokovic, M.; Colauto, N.B. Antifungal and antibacterial activities of Petroselinum crispum essential oil. Genet Mol. Res. 2016, 15. [Google Scholar] [CrossRef]
- Tavakoli, H.R.; Mashak, Z.; Moradi, B.; Sodagari, H.R. Antimicrobial Activities of the Combined Use of Cuminum cyminum L. Essential Oil, Nisin and Storage Temperature Against Salmonella typhimurium and Staphylococcus aureus In Vitro. Jundishapur J. Microbiol. 2015, 8, e24838. [Google Scholar] [CrossRef] [Green Version]
- Monu, E.A.; David, J.R.; Schmidt, M.; Davidson, P.M. Effect of white mustard essential oil on the growth of foodborne pathogens and spoilage microorganisms and the effect of food components on its efficacy. J. Food Prot. 2014, 77, 2062–2068. [Google Scholar] [CrossRef] [PubMed]
- Park, M.J.; Choi, W.S.; Kang, H.Y.; Gwak, K.S.; Lee, G.S.; Jeung, E.B.; Choi, I.G. Inhibitory effect of the essential oil from Chamaecyparis obtusa on the growth of food-borne pathogens. J. Microbiol. 2010, 48, 496–501. [Google Scholar] [CrossRef]
- Hale, T.L. Genetic basis of virulence in Shigella species. Microbiol. Mol. Biol. Rev. 1991, 55, 206–224. [Google Scholar] [CrossRef] [Green Version]
- Surawicz, C.M. Mechanisms of diarrhea. Curr. Gastroenterol. Rep. 2010, 12, 236–241. [Google Scholar] [CrossRef]
- Mattock, E.; Blocker, A.J. How Do the Virulence Factors of Shigella Work Together to Cause Disease? Front. Cell. Infect. Microbiol. 2017, 7, 64. [Google Scholar] [CrossRef] [PubMed]
- Mahboubi, A.; Asgarpanah, J.; Sadaghiyani, P.N.; Faizi, M. Total phenolic and flavonoid content and antibacterial activity of Punica granatum L. var. pleniflora flowers (Golnar) against bacterial strains causing foodborne diseases. BMC Complement. Altern. Med. 2015, 15, 366. [Google Scholar] [CrossRef] [Green Version]
- Mahboubi, A.; Kamalinejad, M.; Ayatollahi, A.M.; Babaeian, M. Total Phenolic Content and Antibacterial Activity of Five Plants of Labiatae against Four Foodborne and Some Other Bacteria. Iran. J. Pharm. Res. IJPR 2014, 13, 559–566. [Google Scholar]
- van Vuuren, S.F.; Nkwanyana, M.N.; de Wet, H. Antimicrobial evaluation of plants used for the treatment of diarrhoea in a rural community in northern Maputaland, KwaZulu-Natal, South Africa. BMC Complement. Altern. Med. 2015, 15, 53. [Google Scholar] [CrossRef] [Green Version]
- Nasir, M.; Tafess, K.; Abate, D. Antimicrobial potential of the Ethiopian Thymus schimperi essential oil in comparison with others against certain fungal and bacterial species. BMC Complement. Altern. Med. 2015, 15, 260. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, U.; Ojha, S.; Tripathi, N.N.; Singh, P. In vitro antibacterial, antioxidant activity and total phenolic content of some essential oils. J. Environ. Biol. 2015, 36, 1329–1336. [Google Scholar]
- Hamon, M.; Bierne, H.; Cossart, P. Listeria monocytogenes: A multifaceted model. Nat. Rev. Microbiol. 2006, 4, 423–434. [Google Scholar] [CrossRef]
- Portnoy, D.A.; Chakraborty, T.; Goebel, W.; Cossart, P. Molecular determinants of Listeria monocytogenes pathogenesis. Infection and immunity. 1992, 60, 1263. [Google Scholar] [CrossRef] [Green Version]
- Gray, M.L.; Killinger, A. Listeria monocytogenes and listeric infections. Bacteriol. Rev. 1966, 30, 309. [Google Scholar] [CrossRef]
- Farber, J.M.; Peterkin, P.I. Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 1991, 55, 476–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, Y.; Choi, K.H. Antimicrobial activities of therapeutic herbal plants against Listeria monocytogenes and the herbal plant cytotoxicity on Caco-2 cell. Lett. Appl. Microbiol. 2012, 55, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, A.; Johny, A.K.; Amalaradjou, M.A.; Ananda Baskaran, S.; Kim, K.S.; Venkitanarayanan, K. Plant-derived antimicrobials reduce Listeria monocytogenes virulence factors in vitro, and down-regulate expression of virulence genes. Int. J. Food Microbiol. 2012, 157, 88–94. [Google Scholar] [CrossRef]
- Xu, Y.; Li, G.; Zhang, B.; Wu, Q.; Wang, X.; Xia, X. Tannin-rich pomegranate rind extracts reduce adhesion to and invasion of Caco-2 cells by Listeria monocytogenes and decrease its expression of virulence genes. J. Food Prot. 2015, 78, 128–133. [Google Scholar] [CrossRef]
- Raeisi, M.; Tajik, H.; Razavi Rohani, S.M.; Tepe, B.; Kiani, H.; Khoshbakht, R.; Shirzad Aski, H.; Tadrisi, H. Inhibitory effect of Zataria multiflora Boiss. essential oil, alone and in combination with monolaurin, on Listeria monocytogenes. Vet. Res. Forum. 2016, 7, 7–11. [Google Scholar]
- Rabiey, S.; Hosseini, H.; Rezaei, M. Use Carum copticum essential oil for controlling the Listeria monocytogenes growth in fish model system. Braz. J. Microbiol. 2014, 45, 89–96. [Google Scholar] [CrossRef] [Green Version]
- El Abed, N.; Kaabi, B.; Smaali, M.I.; Chabbouh, M.; Habibi, K.; Mejri, M.; Marzouki, M.N.; Ben Hadj Ahmed, S. Chemical Composition, Antioxidant and Antimicrobial Activities of Thymus capitata Essential Oil with Its Preservative Effect against Listeria monocytogenes Inoculated in Minced Beef Meat. Evid. Based Complement. Altern. Med. 2014, 2014, 152487. [Google Scholar] [CrossRef] [Green Version]
- Leite, C.J.; de Sousa, J.P.; Medeiros, J.A.; da Conceicao, M.L.; dos Santos Falcao-Silva, V.; de Souza, E.L. Inactivation of Escherichia coli, Listeria monocytogenes, and Salmonella enteritidis by Cymbopogon citratus D.C. Stapf. Essential Oil in Pineapple Juice. J. Food Prot. 2016, 79, 213–219. [Google Scholar] [CrossRef]
- Ngang, J.J.; Nyegue, M.A.; Ndoye, F.C.; Tchuenchieu Kamgain, A.D.; Sado Kamdem, S.L.; Lanciotti, R.; Gardini, F.; Etoa, F.X. Characterization of Mexican coriander (Eryngium foetidum) essential oil and its inactivation of Listeria monocytogenes in vitro and during mild thermal pasteurization of pineapple juice. J. Food Prot. 2014, 77, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Poxton, I.R. Other Clostridium spp. In Principles and Practice of Clinical Bacteriology, 2nd ed.; John Wiley & Sons Ltd.: West Sussex, UK, 2006; pp. 567–574. [Google Scholar]
- Sugiyama, H. Clostridium botulinum neurotoxin. Microbiol. Rev. 1980, 44, 419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakaguchi, G. Clostridium botulinum toxins. Pharmacol. Ther. 1982, 19, 165–194. [Google Scholar] [CrossRef]
- Doyle, M.P.; Buchanan, R.L. Food Microbiology: Fundamentals and Frontiers; American Society for Microbiology Press: Washington, DC, USA, 2012. [Google Scholar]
- Shukla, H.D.; Sharma, S.K. Clostridium botulinum: A bug with beauty and weapon. Crit. Rev. Microbiol. 2005, 31, 11–18. [Google Scholar] [CrossRef]
- Nakai, Y.; Pellett, S.; Tepp, W.H.; Johnson, E.A.; Janda, K.D. Toosendanin: Synthesis of the AB-ring and investigations of its anti-botulinum properties (Part II). Bioorganic Med. Chem. 2010, 18, 1280–1287. [Google Scholar] [CrossRef] [Green Version]
- Uzal, F.A.; Freedman, J.C.; Shrestha, A.; Theoret, J.R.; Garcia, J.; Awad, M.M.; Adams, V.; Moore, R.J.; Rood, J.I.; McClane, B.A. Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future Microbiol. 2014, 9, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Garcia, S.; Araiza, M.; Gomez, M.; Heredia, N. Inhibition of growth, enterotoxin production, and spore formation of Clostridium perfringens by extracts of medicinal plants. J. Food Prot. 2002, 65, 1667–1669. [Google Scholar] [CrossRef]
- De Oliveira, T.L.C.; de Araújo Soares, R.; Ramos, E.M.; das Graças Cardoso, M.; Alves, E.; Piccoli, R.H. Antimicrobial activity of Satureja montana L. essential oil against Clostridium perfringens type A inoculated in mortadella-type sausages formulated with different levels of sodium nitrite. Int. J. Food Microbiol. 2011, 144, 546–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, X.Y.; Zhiyong, H.; Wenyue, W.; Colin, P.; Zhi-cheng, X. The Effects of Berberine on Clostridium perfringens Induced Necrotic Enteritis in Broiler Chickens. Arch. Clin. Microbiol. 2017, 8. [Google Scholar] [CrossRef]
- Ahn, Y.; Kwon, J.; Chae, S.; Park, J.; Yoo, J. Growth-inhibitory responses of human intestinal bacteria to extracts of oriental medicinal plants. Microb. Ecol. Health Dis. 1994, 7, 257–261. [Google Scholar]
- Bottone, E.J. Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 2010, 23, 382–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, H.; Kim, J.; Bang, J.; Kim, H.; Beuchat, L.R.; Ryu, J.-H. Combined effects of plant extracts in inhibiting the growth of Bacillus cereus in reconstituted infant rice cereal. Int. J. Food Microbiol. 2013, 160, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, M.; Al-Ismail, K.; Al-Delaimy, K. The antibacterial activity of selected edible plant extracts against Bacillus cereus. Jordan J. Agric. Sci. 2007, 3, 148–155. [Google Scholar]
- Silva, A.J.; Benitez, J.A. Vibrio cholerae biofilms and cholera pathogenesis. PLoS Negl. Trop. Dis. 2016, 10, e0004330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faruque, S.M.; Albert, M.J.; Mekalanos, J.J. Epidemiology, Genetics, and Ecology of Toxigenic Vibrio cholerae. Microbiol. Mol. Biol. Rev. 1998, 62, 1301–1314. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, E.; Heredia, N.; del Camacho-Corona, M.R.; García, S. Isolation, characterization and mode of antimicrobial action against Vibrio cholerae of methyl gallate isolated from Acacia farnesiana. J. Appl. Microbiol. 2013, 115, 1307–1316. [Google Scholar] [CrossRef]
- Yamasaki, S.; Asakura, M.; Neogi, S.B.; Hinenoya, A.; Iwaoka, E.; Aoki, S. Inhibition of virulence potential of Vibrio cholerae by natural compounds. Indian J. Med Res. 2011, 133, 232. [Google Scholar]
- García, S.; Alarcón, G.; Rodríguez, C.; Heredia, N. Extracts of Acacia farnesiana and Artemisia ludoviciana inhibit growth, enterotoxin production and adhesion of Vibrio cholerae. World J. Microbiol. Biotechnol. 2006, 22, 669–674. [Google Scholar] [CrossRef]
- Acharyya, S.; Patra, A.; Bag, P.K. Evaluation of the antimicrobial activity of some medicinal plants against enteric bacteria with particular reference to multi-drug resistant Vibrio cholerae. Trop. J. Pharm. Res. 2009, 8, 231–237. [Google Scholar] [CrossRef]
- Lopman, B.A.; Reacher, M.; Gallimore, C.; Adak, G.K.; Gray, J.J.; Brown, D.W. A summertime peak of” winter vomiting disease”: Surveillance of noroviruses in England and Wales, 1995 to 2002. BMC Public Health 2003, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.M.V.; Chan, C.W.D.; Ma, C.k.; Chan, H.B. Norovirus as cause of benign convulsion associated with gastro-enteritis. J. Paediatr. Child Health 2011, 47, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Glass, R.I.; Parashar, U.D.; Estes, M.K. Norovirus Gastroenteritis. N. Engl. J. Med. 2009, 361, 1776–1785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhuri, B.S.; Bhakta, S.; Barik, R.; Basu, J.; Kundu, M.; Chakrabati, P. Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis. J. Bacteriol. 2002, 367, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-F.; Dai, Y.-C.; Zhong, W.; Tan, M.; Lv, Z.-P.; Zhou, Y.-C.; Jiang, X. Tannic acid inhibited norovirus binding to HBGA receptors, a study of 50 Chinese medicinal herbs. Bioorganic Med. Chem. 2012, 20, 1616–1623. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; D’Souza, D.H. Grape seed extract for control of human enteric viruses. Appl. Environ. Microbiol. 2011, 77, 3982–3987. [Google Scholar] [CrossRef] [Green Version]
- Gilling, D.H.; Kitajima, M.; Torrey, J.R.; Bright, K.R. Mechanisms of antiviral action of plant antimicrobials against murine norovirus. Appl. Environ. Microbiol. 2014, 80, 4898–4910. [Google Scholar] [CrossRef] [Green Version]
- Cortez, V.; Meliopoulos, V.A.; Karlsson, E.A.; Hargest, V.; Johnson, C.; Schultz-Cherry, S. Astrovirus biology and pathogenesis. Annu. Rev. Virol. 2017, 4, 327–348. [Google Scholar] [CrossRef]
- Téllez, M.; Téllez, A.; Vélez, F.; Ulloa, J. In vitro antiviral activity against rotavirus and astrovirus infection exerted by substances obtained from Achyrocline bogotensis (Kunth) DC.(Compositae). BMC Complement. Altern. Med. 2015, 15, 428. [Google Scholar]
- El-Baz, F.; El-Senousy, W.; El-Sayed, A.; Kamel, M. In vitro antiviral and antimicrobial activities of Spirulina platensis extract. J. Appl. Pharm. Sci. 2013, 3, 52–56. [Google Scholar]
- Kudi, A.; Myint, S. Antiviral activity of some Nigerian medicinal plant extracts. J. Ethnopharmacol. 1999, 68, 289–294. [Google Scholar] [CrossRef]
- Cuthbert, J.A. Hepatitis A: Old and new. Clin. Microbiol. Rev. 2001, 14, 38–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, D.J.; Lee, M.; Jeon, S.B.; Park, H.; Jeong, S.; Lee, B.-H.; Choi, C. Antiviral activity of herbal extracts against the hepatitis A virus. Food Control 2017, 72, 9–13. [Google Scholar] [CrossRef]
- Abd-Elshafy, D.N. Effect of methanolic-extracted green tea on hepatitis A virus and its usage in clearing the virus from drinking Water. J. Virol. Sci. 2018, 3, 58–67. [Google Scholar]
- Ogilvie, I.; Khoury, H.; El Khoury, A.C.; Goetghebeur, M.M. Burden of rotavirus gastroenteritis in the pediatric population in Central and Eastern Europe: Serotype distribution and burden of illness. Hum. Vaccines 2011, 7, 523–533. [Google Scholar] [CrossRef] [Green Version]
- Grimwood, K.; Lambert, S.B.; Milne, R.J. Rotavirus infections and vaccines. Pediatr. Drugs 2010, 12, 235–256. [Google Scholar] [CrossRef]
- Cecílio, A.B.; de Faria, D.B.; de Carvalho Oliveira, P.; Caldas, S.; de Oliveira, D.A.; Sobral, M.E.G.; Duarte, M.G.R.; de Souza Moreira, C.P.; Silva, C.G.; de Almeida, V.L. Screening of Brazilian medicinal plants for antiviral activity against rotavirus. J. Ethnopharmacol. 2012, 141, 975–981. [Google Scholar] [CrossRef] [Green Version]
- Knipping, K.; Garssen, J.; van’t Land, B. An evaluation of the inhibitory effects against rotavirus infection of edible plant extracts. Virol. J. 2012, 9, 137. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Gong, X.; Tan, J.Y.; Kang, L.; Li, D.; Yang, J.; Du, G. In vitro Antiviral Activity of Rubia cordifolia Aerial Part Extract against Rotavirus. Front. Pharmacol. 2016, 7, 308. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, S.; Mamdouh, E.; Adel, M.; Samy, M.; Nagwa, E. Antiviral activity of Bauhinia variegata extracts against rotavirus in vitro. Curr. Sci. Int. 2014, 3, 172–178. [Google Scholar]
- Shaheen, M.; Mostafa, S.; El-Esnawy, N. Anti-Rotaviral Effects of Calliandra haematocephala Leaf Extracts In-vitro and In-vivo. J. Virol. Antivir. Res. 2015, 4, 1–7. [Google Scholar] [CrossRef]
- Kawahara, T.; Tomono, T.; Hamauzu, Y.; Tanaka, K.; Yasui, H. Inhibitory effect of a hot-water extract of leaves of Japanese big-leaf magnolia (Magnolia obovata) on rotavirus-induced diarrhea in mouse pups. Evid. Based Complement. Altern. Med. 2014, 2014, 365831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farthing, M.J. Giardiasis. Gastroenterol. Clin. 1996, 25, 493–515. [Google Scholar] [CrossRef]
- Derda, M.; Hadaś, E. The use of phytotherapy in diseases caused by parasitic protozoa. Acta Parasitol. 2015, 60, 1–8. [Google Scholar] [CrossRef]
- Hawrelak, J. Giardiasis: Pathophysiology and management. Altern. Med. Rev. 2003, 8, 129–142. [Google Scholar]
- Phillipson, J.D.; Wright, C.W.; Kirby, G.C.; Warhurst, D.C. Tropical plants as sources of antiprotozoal agents. In Phytochemical Potential of Tropical Plants; Springer: New York, NY, USA, 1993; pp. 1–40. [Google Scholar]
- Ross, I. Medicinal Plants of the World: Chemical Constituents, Traditional and Modern Medicinal Uses; Humana Press: Totowa, NJ, USA, 2002; pp. 25–63. [Google Scholar]
- Soffar, S.; Mokhtar, G. Evaluation of the antiparasitic effect of aqueous garlic (Allium sativum) extract in hymenolepiasis nana and giardiasis. J. Egypt. Soc. Parasitol. 1991, 21, 497–502. [Google Scholar]
- Ankri, S.; Mirelman, D. Antimicrobial properties of allicin from garlic. Microbes Infect. 1999, 1, 125–129. [Google Scholar] [CrossRef]
- Jiménez, J.; Uzcanga, G.; Zambrano, A.; Di Prisco, M.; Lynch, N. Identification and partial characterization of excretory/secretory products with proteolytic activity in Giardia intestinalis. J. Parasitol. 2000, 86, 859–862. [Google Scholar] [CrossRef]
- Frawley, D.; Lad, V. The Yoga of Herbs: An Ayurvedic Guide to Herbal Medicine; Lotus Press: Twin Lakeswi, Kenosha County, WI, USA, 1986; pp. 180–182. [Google Scholar]
- Tripathi, D.; Gupta, N.; Lakshmi, V.; Saxena, K.; Agrawal, A. Antigiardial and immunostimulatory effect of Piper longum on giardiasis due to Giardia lamblia. Phytother. Res. 1999, 13, 561–565. [Google Scholar] [CrossRef]
- Agarwal, A.; Singh, M.; Gupta, N.; Saxena, R.; Puri, A.; Verma, A.; Saxena, R.; Dubey, C.; Saxena, K. Management of giardiasis by an immuno-modulatory herbal drug Pippali Rasayana. J. Ethnopharmacol. 1994, 44, 143–146. [Google Scholar] [CrossRef]
- Agrawal, A.; Tripathi, D.; Sahai, R.; Gupta, N.; Saxena, R.; Puri, A.; Singh, M.; Misra, R.; Dubey, C.; Saxena, K. Management of Giardiasis by a herbal drug ‘Pippali Rasayana’: A clinical study. J. Ethnopharmacol. 1997, 56, 233–236. [Google Scholar] [CrossRef]
- Miyares, C.; Hollands, I.; Castaneda, C.; Gonzalez, T.; Fragoso, T.; Curras, R.; Soria, C. Clinical trial with a preparation based on propolis“propolisina” in human giardiasis. Acta Gastroenterol. Latinoam. 1987, 18, 195–201. [Google Scholar]
- Snow, J.M. Hydrastis canadensis L. (Ranunculaceae). Protoc. J. Bot. Med. 1997, 2, 25–30. [Google Scholar]
- Willard, T. The Wild Rose Scientific Herbal; Wild Rose College of Natural Healing: Calgary, AB, Canada, 1991; pp. 24–29. [Google Scholar]
- Kaneda, Y.; Torii, M.; Tanaka, T.; Aikawa, M. In vitro effects of berberine sulphate on the growth and structure of Entamoeba histolytica, Giardia lamblia and Trichomonas vaginalis. Ann. Trop. Med. Parasitol. 1991, 85, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Choudhry, V.; Sabir, M.; Bhide, V. Berberine in giardiasis. Indian Pediatr. 1972, 9, 143. [Google Scholar] [PubMed]
- Gupte, S. Use of berberine in treatment of giardiasis. Am. J. Dis. Child. 1975, 129, 866. [Google Scholar] [CrossRef]
- Kaneda, Y.; Tanaka, T.; Saw, T. Effects of berberine, a plant alkaloid, on the growth of anaerobic protozoa in axenic culture. Tokai J. Exp. Clin. Med. 1990, 15, 417–423. [Google Scholar]
- Calzada, F.; Meckes, M.; Cedillo-Rivera, R. Antiamoebic and antigiardial activity of plant flavonoids. Planta Med. 1999, 65, 78–80. [Google Scholar] [CrossRef]
- Cai, Y.; Evans, F.; Roberts, M.; Phillipson, J.; Zenk, M.; Gleba, Y. Polyphenolic compounds from Croton lechleri. Phytochemistry 1991, 30, 2033–2040. [Google Scholar] [CrossRef]
- Blumenthal, M.; Goldberg, A.; Brinckmann, J. Herbal Medicine: Expanded Commission E Monographs; Integrative Medicine Communications: Austintx, TX, USA, 2000; pp. 413–417. [Google Scholar]
- Ponce-Macotela, M.; Navarro-Alegria, I.; Martinez-Gordillo, M.; Alvarez-Chacon, R. In vitro effect against Giardia of 14 plant extracts. Rev. Investig. Clin. Organo Hosp. Enferm. Nutr. 1993, 46, 343–347. [Google Scholar]
- Barbosa, E.; Calzada, F.; Campos, R. In vivo antigiardial activity of three flavonoids isolated of some medicinal plants used in Mexican traditional medicine for the treatment of diarrhea. J. Ethnopharmacol. 2007, 109, 552–554. [Google Scholar] [CrossRef]
- Orozco, E.; Pérez, D.; Gómez, M.; Ayala, P. Multidrug resistance in Entamoeba histolytica. Parasitol. Today 1995, 11, 473–475. [Google Scholar] [CrossRef]
- Bruckner, D.A. Amebiasis. Clin. Microbiol. Rev. 1992, 5, 356–369. [Google Scholar] [CrossRef] [PubMed]
- Tengku, S.; Norhayati, M. Review Paper Public health and clinical importance of amoebiasis in Malaysia: A review. Trop. Biomed. 2011, 28, 194–222. [Google Scholar]
- Kammanadiminti, S.J. Early Interactions between Entamoeba histolytica and Mucosal Cells; McGill University Libraries: Montreal, QC, Canada, 2006. [Google Scholar]
- Otshudi, A.L.; Vercruysse, A.; Foriers, A. Contribution to the ethnobotanical, phytochemical and pharmacological studies of traditionally used medicinal plants in the treatment of dysentery and diarrhoea in Lomela area, Democratic Republic of Congo (DRC). J. Ethnopharmacol. 2000, 71, 411–423. [Google Scholar] [CrossRef]
- Taylor, M.; Pillai, G.; Kvalsvig, J. Targeted chemotherapy for parasite infestations in rural black preschool children. S. Afr. Med. J. 1995, 85, 870–874. [Google Scholar]
- Swetman, S.C. Martindale. In: The Complete Drug Reference 33th ed. Pharm. Presslondon 2002, 594. [Google Scholar]
- Kapoor, K.; Chandra, M.; Nag, D.; Paliwal, J.; Gupta, R.; Saxena, R. Evaluation of metronidazole toxicity: A prospective study. Int. J. Clin. Pharmacol. Res. 1998, 19, 83–88. [Google Scholar]
- Azam, A.; Agarwal, S. Targeting Amoebiasis: Status and developments. Curr. Bioact. Compd. 2007, 3, 121–133. [Google Scholar] [CrossRef]
- Ayaz, M.; Junaid, M.; Ullah, F.; Sadiq, A.; Ovais, M.; Ahmad, W.; Zeb, A. Chemical profiling, antimicrobial and insecticidal evaluations of Polygonum hydropiper L. BMC Complement. Altern. Med. 2016, 16, 502. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Ullah, F.; Ayaz, M.; Sadiq, A.; Imran, M. Antioxidant and anticholinesterase investigations of Rumex hastatus D. Don: Potential effectiveness in oxidative stress and neurological disorders. Biol. Res. 2015, 48, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ayaz, M.; Junaid, M.; Ullah, F.; Sadiq, A.; Subhan, F.; Khan, M.A.; Ahmad, W.; Ali, G.; Imran, M.; Ahmad, S. Molecularly characterized solvent extracts and saponins from Polygonum hydropiper L show high anti-angiogenic, anti-tumor, brine shrimp and fibroblast NIH/3T3 cell line cytotoxicity. Front. Pharmacol. 2016, 7, 74. [Google Scholar] [CrossRef] [Green Version]
- Zeb, A.; Ahmad, S.; Ullah, F.; Ayaz, M.; Sadiq, A. Anti-nociceptive activity of ethnomedicinally important analgesic plant Isodon rugosus Wall. ex Benth: Mechanistic study and identifications of bioactive compounds. Front. Pharmacol. 2016, 7, 200. [Google Scholar] [CrossRef] [Green Version]
- Gillin, F.; Reiner, D.; Suffness, M. Bruceantin, a potent amoebicide from a plant, Brucea antidysenterica. Antimicrob. Agents Chemother. 1982, 22, 342–345. [Google Scholar] [CrossRef] [Green Version]
- Sharma, G.; Bhutani, K. Plant based amoebicidal activity of parthenin isolated from Parthenium hysterophorus. Planta Med. 1987, 2, 120–122. [Google Scholar]
- Wright, C.; O’neill, M.; Phillipson, J.; Warhurst, D. Use of microdilution to assess in vitro antiamoebic activities of Brucea javanica fruits, Simarouba amara stem, and a number of quassinoids. Antimicrob. Agents Chemother. 1988, 32, 1725–1729. [Google Scholar] [CrossRef] [Green Version]
- Wright, C.; Allen, D.; Cai, Y.; Phillipson, J.; Said, I.; Kirby, G.; Warhurst, D. In vitro antiamoebic and antiplasmodial activities of alkaloids isolated from Alstonia angustifolia roots. Phytother. Res. 1992, 6, 121–124. [Google Scholar] [CrossRef]
- Cimanga, R.; Kambu, K.; Tona, L.; Hermans, N.; Apers, S.; Totte, J.; Pieters, L.; Vlietinck, A. Cytotoxicity and in vitro susceptibility of Entamoeba histolytica to Morinda morindoides leaf extracts and its isolated constituents. J. Ethnopharmacol. 2006, 107, 83–90. [Google Scholar] [CrossRef]
- Tona, L.; Kambu, K.; Ngimbi, N.; Cimanga, K.; Vlietinck, A. Antiamoebic and phytochemical screening of some Congolese medicinal plants. J. Ethnopharmacol. 1998, 61, 57–65. [Google Scholar] [CrossRef]
- Sohni, Y.R.; Kaimal, P.; Bhatt, R.M. The antiamoebic effect of a crude drug formulation of herbal extracts against Entamoeba histolytica in vitro and in vivo. J. Ethnopharmacol. 1995, 45, 43–52. [Google Scholar] [CrossRef]
- Calzada, F.; Yepez-Mulia, L.; Tapia-Contreras, A.; Bautista, E.; Maldonado, E.; Ortega, A. Evaluation of the antiprotozoal activity of neo-clerodane type diterpenes from Salvia polystachya against Entamoeba histolytica and Giardia lamblia. Phytother. Res. 2010, 24, 662–665. [Google Scholar]
- Calzada, F.; Yépez-Mulia, L.; Aguilar, A. In vitro susceptibility of Entamoeba histolytica and Giardia lamblia to plants used in Mexican traditional medicine for the treatment of gastrointestinal disorders. J. Ethnopharmacol. 2006, 108, 367–370. [Google Scholar] [CrossRef]
- Calzada, F.; Cervantes-Martínez, J.A.; Yépez-Mulia, L. In vitro antiprotozoal activity from the roots of Geranium mexicanum and its constituents on Entamoeba histolytica and Giardia lamblia. J. Ethnopharmacol. 2005, 98, 191–193. [Google Scholar] [CrossRef]
- Alanís, A.D.; Calzada, F.; Cedillo-Rivera, R.; Meckes, M. Antiprotozoal activity of the constituents of Rubus coriifolius. Phytother. Res. 2003, 17, 681–682. [Google Scholar] [CrossRef]
- Kijlstra, A.; Jongert, E. Control of the risk of human toxoplasmosis transmitted by meat. Int. J. Parasitol. 2008, 38, 1359–1370. [Google Scholar] [CrossRef]
- Jones, J.L.; Dubey, J. Foodborne toxoplasmosis. Clin. Infect. Dis. 2012, 55, 845–851. [Google Scholar] [CrossRef]
- Choi, W.-Y.; Nam, H.-W.; Kwak, N.-H.; Huh, W.; Kim, Y.-R.; Kang, M.-W.; Cho, S.-Y.; Dubey, J. Foodborne outbreaks of human toxoplasmosis. J. Infect. Dis. 1997, 175, 1280–1282. [Google Scholar] [CrossRef]
- Jones, J.L.; Hanson, D.L.; Dworkin, M.S.; Alderton, D.L.; Fleming, P.L.; Kaplan, J.E.; Ward, J. Surveillance for AIDS-defining opportunistic illnesses, 1992–1997. Arch. Dermatol. 1999, 135, 897–902. [Google Scholar] [CrossRef]
- Gkogka, E.; Reij, M.W.; Havelaar, A.H.; Zwietering, M.H.; Gorris, L.G. Risk-based estimate of effect of foodborne diseases on public health, Greece. Emerg. Infect. Dis. 2011, 17, 1581. [Google Scholar] [CrossRef] [Green Version]
- Youn, H.; Lakritz, J.; Kim, D.; Rottinghaus, G.; Marsh, A. Anti-protozoal efficacy of medicinal herb extracts against Toxoplasma gondii and Neospora caninum. Vet. Parasitol. 2003, 116, 7–14. [Google Scholar] [CrossRef]
- Wright, C.W.; Anderson, M.M.; Allen, D.; Phillipson, J.D.; Kirby, G.C.; Warhurst, D.C.; Chang, H.R. Quassinoids exhibit greater selectivity against Plasmodium falciparum than against Entamoeba histolytica, Giardia intestinalis or Toxoplasma gondii in vitro. J. Eukaryot. Microbiol. 1993, 40, 244–246. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.-M.; Gang, J.; Yun, J. Anti-Toxoplasma gondii RH strain activity of herbal extracts used in traditional medicine. Int. J. Antimicrob. Agents 2008, 32, 360–362. [Google Scholar] [CrossRef]
- Vanathy, K.; Parija, S.C.; Mandal, J.; Hamide, A.; Krishnamurthy, S. Cryptosporidiosis: A mini review. Trop. Parasitol. 2017, 7, 72–80. [Google Scholar]
- Checkley, W.; White, A.C., Jr.; Jaganath, D.; Arrowood, M.J.; Chalmers, R.M.; Chen, X.-M.; Fayer, R.; Griffiths, J.K.; Guerrant, R.L.; Hedstrom, L. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium. Lancet Infect. Dis. 2015, 15, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Teichmann, K.; Kuliberda, M.; Schatzmayr, G.; Pacher, T.; Zitterl-Eglseer, K.; Joachim, A.; Hadacek, F. In vitro inhibitory effects of plant-derived by-products against Cryptosporidium parvum. Parasite 2016, 23, 41. [Google Scholar] [CrossRef]
- Al-Jboori, A.H.; Al-Alousi, T.I.; Obiad, H.M. The in vivo effect of some medicinal plant extracts on Cryptosporidium parasite. J. Univ. Anbar Pure Sci. 2012, 6, 15–26. [Google Scholar]
- Almoradie, A.M.; Angeles, R.J.; Beltran, E.V.; Ugali, M.; Valles, N.S.; Los Banos, Z.D.; Mahboob, T.; Barusrux, S.; Nissapatorn, V. Cryptosporicidal Activity of Plant Extracts against Cryptosporidium parvum and Cryptosporidium hominis. Asian J. Pharmacogn. 2018, 2, 22–31. [Google Scholar]
- Khater, M.M.; El-Sayed, S.H.; Yousof, H.-A.S.; Mahmoud, S.S.; El-Dib, N.; El-Badry, A.A. Anti-Cryptosporidium efficacy of Olea europaea and Actinidia deliciosa in a neonatal mouse model. Kasr Al Ainy Med J. 2017, 23, 32–37. [Google Scholar] [CrossRef]
- Saritha, K.; Rajesh, A.; Manjulatha, K.; Setty, O.H.; Yenugu, S. Mechanism of antibacterial action of the alcoholic extracts of Hemidesmus indicus (L.) R. Br. ex Schult, Leucas aspera (Wild.), Plumbago zeylanica L., and Tridax procumbens (L.) R. Br. ex Schult. Front. Microbiol. 2015, 6, 577. [Google Scholar] [CrossRef] [Green Version]
- Yadav, A.K.; Saraswat, S.; Sirohi, P.; Rani, M.; Srivastava, S.; Singh, M.P.; Singh, N.K. Antimicrobial action of methanolic seed extracts of Syzygium cumini Linn. on Bacillus subtilis. AMB Express 2017, 7, 196. [Google Scholar] [CrossRef]
- Chandar, B.; Poovitha, S.; Ilango, K.; MohanKumar, R.; Parani, M. Inhibition of New Delhi Metallo-β-Lactamase 1 (NDM-1) producing Escherichia coli IR-6 by selected plant extracts and their synergistic actions with antibiotics. Front. Microbiol. 2017, 8, 1580. [Google Scholar] [CrossRef] [Green Version]
- Ono, K.; Nakane, H.; Fukushima, M.; Chermann, J.-C.; Barré-Sinoussi, F. Inhibition of reverse transcriptase activity by a flavonoid compound, 5,6,7-trihydroxyflavone. Biochem. Biophys. Res. Commun. 1989, 160, 982–987. [Google Scholar] [CrossRef]
- Brinkworth, R.I.; Stoermer, M.J.; Fairlie, D.P. Flavones are inhibitors of HIV-1 proteinase. Biochem. Biophys. Res. Commun. 1992, 188, 631–637. [Google Scholar] [CrossRef]
- Gonelimali, F.D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M.; Hatab, S.R. Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front. Microbiol. 2018, 9, 1639. [Google Scholar] [CrossRef]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef] [Green Version]
- Alexopoulos, A.; Plessas, S.; Kimbaris, A.; Varvatou, M.; Mantzourani, I.; Fournomiti, M. Mode of antimicrobial action of Origanum vulgare essential oil against clinical pathogens. Curr. Res. Nutr. Food Sci. J. 2017, 5, 109–115. [Google Scholar] [CrossRef]
- Faleiro, M. The mode of antibacterial action of essential oils. Sci. Against Microb. Pathog. Commun. Curr. Res. Technol. Adv. 2011, 2, 1143–1156. [Google Scholar]
- Sledz, W.; Los, E.; Paczek, A.; Rischka, J.; Motyka, A.; Zoledowska, S.; Piosik, J.; Lojkowska, E. Antibacterial activity of caffeine against plant pathogenic bacteria. Acta Biochim. Pol. 2015, 62, 605–612. [Google Scholar] [CrossRef]
- Saad, N.Y.; Muller, C.D.; Lobstein, A. Major bioactivities and mechanism of action of essential oils and their components. Flavour Fragr. J. 2013, 28, 269–279. [Google Scholar] [CrossRef]
- Cushnie, T.T.; Cushnie, B.; Lamb, A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents 2014, 44, 377–386. [Google Scholar] [CrossRef]
- Awasthi, L.; Verma, H.; Kluge, S. A Possible mechanism of action for the inhibition of plant viruses by an antiviral glycoprotein isolated from Boerhaavia diffusa roots. Virol. Antivir. Res. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Ngan, L.T.M.; Jang, M.J.; Kwon, M.J.; Ahn, Y.J. Antiviral activity and possible mechanism of action of constituents identified in Paeonia lactiflora root toward human rhinoviruses. PLoS ONE 2015, 10, e0121629. [Google Scholar] [CrossRef] [PubMed]
- Idriss, M.T.; Suliman, M.M.; Khongwichit, S.; Tongluan, N.; Smith, D.R.; Abdurahman, N.; Elnima, A.I. Antiviral activity and possible mechanisms of action of Aristolochia bracteolate against influenza A virus. Microbiol. Curr. Res. 2017, 1, 22. [Google Scholar]
- Lecoin, M.O.P. Mechanism of action of antiviral compounds isolated from plants: HIV virus as a model. Univ. Tor. Repos. 2008, va07012. [Google Scholar]
- Aziz, Q.; Doré, J.; Emmanuel, A.; Guarner, F.; Quigley, E. Gut microbiota and gastrointestinal health: Current concepts and future directions. Neurogastroenterol. Motil. 2013, 25, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.J.; Young, V.B. Antibiotic administration alters the community structure of the gastrointestinal microbiota. Gut Microbes 2010, 1, 279–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zweifel, C.; Stephan, R. Spices and herbs as source of Salmonella-related foodborne diseases. Food Res. Int. 2012, 45, 765–769. [Google Scholar] [CrossRef]
- Kim, M.; Zahn, M.; Reporter, R.; Askar, Z.; Green, N.; Needham, M.; Terashita, D. Outbreak of foodborne botulism associated with prepackaged pouches of liquid herbal tea. Open Forum. Infect. Dis. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Farkas, J. Irradiation as a method for decontaminating food: A review. Int. J. Food Microbiol. 1998, 44, 189–204. [Google Scholar] [CrossRef]
- Pelaez, F. The historical delivery of antibiotics from microbial natural products—Can history repeat? Biochem. Pharmacol. 2006, 71, 981–990. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [Green Version]
- Ulrich-Merzenich, G.S. Combination screening of synthetic drugs and plant derived natural products—Potential and challenges for drug development. Synergy 2014, 1, 59–69. [Google Scholar] [CrossRef]
Plant Source | Part Used | Effective Against | Mechanism/IC50 | Reference |
---|---|---|---|---|
Allium sativum | Crude methanolic eextract | G. intestinalis | 300 µg/mL ↓ Parasite motility ↓ Flagellar movement ↑Trophozoite swelling ↓Transmembrane electrochemical gradient ↓ Osmoregulation ↑ Morphologic changes in the ventral disc | [33] |
Allyl mercaptan Diallyl disulfide Diallyl sulfide Allyl alcohol Dimethyl disulfide | G. intestinalis | 37 µg/mL 100 µg/mL 1300 µg/mL 7 µg/mL 200 µg/mL | [33] | |
Aqueous extract commercial capsule | G. lamblia | ↓Giardiasis symptoms ↓Giardia stool content | [211] | |
Allicin | G. lamblia | ↓ Cysteine proteases ↓ Giardia waste products | [212,213] | |
Piper longum | Crude ethanolic extract and aqueous extract of fruit powder | G. lamblia | 100% Lethality ↓ Trophozoites count | [215] |
Piper longum and Butea monosperma | Pippali Rasayana Formulation at 225, 450, 900 mg/kg | G. lamblia | 62%, 79%, 98% Parasite clearance ↑ Macrophage phagocytic action ↑Macrophage migration index ↑Host immune system ↑Clearance of parasite wastes | [216] |
Pippali Rasayana Formulation 1 g T.D.S | G. lamblia | ↑Giardia inhibition (92%) ↓Diarrhea frequency ↓Stool mucous content ↓Leukocyte migration | [217] | |
Coptis chinensis, Berberis vulgaris, Berberis aristata, Berberis aquifolium, Hydrastis canadensis | Crude extracts, Berberine | G. lamblia | ↑Morphologic changes in trophozoites ↑ Trophozoites Swelling ↑Glycogen deposition ↓Giardia stool content | [221,222,223,224] |
Quercus robur, Hamamelis virginiana, Croton lechleri | Epicatechin, Quercetin, Epigallocatechin, Apigenin, Kempferol | G. lamblia | ↑Giardia inhibition | [225,226,227] |
Origanum vulgare, Psidium guajava, Mangifera indica, Plantago major | Flavonoids and tannins rich crude extracts | G. lamblia | ↑Antigiardial activity | [228] |
Geranium mexicanum, Helianthemum glomeratum, Cuphea pinetorum and Rubus coriifolius | Kempferol Tiliroside Epicatechin | G. lamblia | 2.05 µmol/kg 1.42 µmol/kg 0.07 µmol/kg | [229] |
Geranium mexicanum | Dichloromethane-methanol extract | E. histolytica G. lamblia | 79.2 µg/mL 100.4 µg/mL | [252] |
Ethyl acetate extract | E. histolytica G. lamblia | 66.7 µg/mL 63.7 µg/mL | ||
Aqueous extract | E. histolytica G. lamblia | 221.6 µg/mL 215.9 µg/mL | ||
Epicatechin | E. histolytica G. lamblia | 1.9 µg/mL 1.6 µg/mL | ||
Catechin | E. histolytica G. lamblia | 65.6 µg/mL 33.9 µg/mL | ||
β-Sitosterol 3-O-β-D- glucopyranoside | E. histolytica G. lamblia | 82.2 µg/mL 61.5 µg/mL | ||
Tyramine | E. histolytica G. lamblia | 54.2 µg/mL 68.9 µg/mL | ||
Rubus coriifolius | Dichloromethane-methanol extract | E. histolytica G. lamblia | 11.6 µg/mL 55.6 µg/mL | [253] |
Epicatechin | E. histolytica G. lamblia | 1.9 µg/mL 1.6 µg/mL | ||
Catechin | E. histolytica G. lamblia | 65.5 µg/mL 34.0 µg/mL | ||
Nigaichigoside | E. histolytica G. lamblia | 111.9 µg/mL 123.6 µg/mL | ||
β-Sitosterol 3-O-β-D- glucopyranoside | E. histolytica G. lamblia | 82.16 µg/mL 61.5 µg/mL | ||
Hyperin | E. histolytica G. lamblia | 143.6 µg/mL 49.2 µg/mL | ||
Gallic acid | E. histolytica G. lamblia | 220.1 µg/mL 70.3 µg/mL | ||
Ellagic acid | E. histolytica G. lamblia | 56.5 µg/mL 24.9 µg/mL | ||
Allium sativum | Methanolic extract | E. histolytica G. lamblia | 61.8 µg/mL 64.9 µg/mL | [251] |
Aloysia triphylla | Methanolic extract | E. histolytica G. lamblia | 113.4 µg/mL 106.9 µg/mL | |
Annona cherimola | Methanolic extract | E. histolytica G. lamblia | 14.8 µg/mL 146.0 µg/mL | |
Artemisia absinthium | Methanolic extract | E. histolytica G. lamblia | 72.3 µg/mL 135.4 µg/mL | |
Artemisia ludoviciana | Methanolic extract | E. histolytica G. lamblia | 82.2 µg/mL 95.1 µg/mL | |
Bocconia frutescens | Methanolic extract | E. histolytica G. lamblia | 96.4 µg/mL 79.3 µg/mL | |
Cesalpinia pulcherrima | Methanolic extract | E. histolytica G. lamblia | 182.2 µg/mL 49.9 µg/mL | |
Carica papaya | Methanolic extract | E. histolytica G. lamblia | 153.0 µg/mL 128.8 µg/mL | |
Cocos nucifera | Methanolic extract | E. histolytica G. lamblia | 59.6 µg/mL 44.1 µg/mL | |
Chenopodium ambrosioides | Methanolic extract (Green plant) Methanolic extract (Red Plant) | E. histolytica G. lamblia | 45.2 µg/mL 106.5 µg/mL | |
Chenopodium murale | Methanolic extract | E. histolytica G. lamblia | 90.3 µg/mL 99.8 µg/mL | |
Chiranthodendron pentadactylon | Methanolic extract | E. histolytica G. lamblia | 2.5 µg/mL 44.2 µg/mL | |
Chrysactinia mexicana | Methanolic extract | E. histolytica G. lamblia | 45.3 µg/mL 106.5 µg/mL | |
Dorstenia contrajerva | Methanolic extract | E. histolytica G. lamblia | 47.1 µg/mL 23.3 µg/mL | |
Dichondra argentea | Methanolic extract | E. histolytica G. lamblia | 38.3 µg/mL 284.7 µg/mL | |
Geranium mexicanum | Methanolic extract | E. histolytica G. lamblia | 139.9 µg/mL 267.1 µg/mL | |
Hippocratea excelsa | Methanolic extract | E. histolytica G. lamblia | 233.2 µg/mL 72.7 µg/mL | |
Lippia alba | Methanolic extract | E. histolytica G. lamblia | 58.1 µg/mL 109.4 µg/mL | |
Lygodium venustum | Methanolic extract | E. histolytica G. lamblia | 178.4 µg/mL 74.3 µg/mL | |
Matricaria recutita | Methanolic extract | E. histolytica G. lamblia | 102.1 µg/mL 67.1 µg/mL | |
Ocimum basilicum | Methanolic extract | E. histolytica G. lamblia | 41.7 µg/mL 79.4 µg/mL | |
Punica granatum | Methanolic extract | E. histolytica G. lamblia | 29.5 µg/mL 198.5 µg/mL | |
Ruta chalepensis | Methanolic extract | E. histolytica G. lamblia | 61.9 µg/mL 37.8 µg/mL | |
Schinus molle | Methanolic extract | E. histolytica G. lamblia | 82.4 µg/mL 154.7 µg/mL | |
Senna villosa | Methanolic extract | E. histolytica G. lamblia | 133.1 µg/mL 32.1 µg/mL | |
Thymus vulgaris | Methanolic extract | E. histolytica G. lamblia | 90.9 µg/mL 68.7 µg/mL | |
Sophora flavescens Torilis japonica, Ulmus macrocarpa, Sinomenium acutum Pulsatilla koreana | Alcoholic extracts | T. gondii | 99.7% 99.9% 99.8% 99.7% 99.6% | [259] |
Sophora flavescens Meliae cortex Acorus gramineus Dryopteris crassirhizoma Glycyrrhiza glabra Zingiber officinale | Methanolic extracts | T. gondii | 0.20 0.77 0.11 0.15 0.13 0.18 | [261] |
Brucea javanica Simarouba amara | Ailanthinone Bruceantin Bruceine A Bruceine B Bruceine C Bruceine D Brusatol Glaucarubinone Quassin | T. gondii | 0.02 µM 0.01 µM NT 0.75 µM 0.84 µM 7.56 µM 0.17 µM 0.37 µM 11 µM | [260] |
Ailanthinone Bruceantin Bruceine A Bruceine B Bruceine C Bruceine D Brusatol Glaucarubinone | E. histolytica | 0.13 µM 0.03 µM 0.22 µM 0.63 µM 0.49 µM 0.06 µM 0.32 µM 1130 µM | [260] | |
Ailanthinone Bruceantin Bruceine A Bruceine B Bruceine C Bruceine D Brusatol Glaucarubinone | G. intestinalis | 45.44 µM 1.20 µM 8.84 µM NT NA NA 6. I7 µM 12.42 µM | [260] | |
Brucea antidysenterica | Bruceantin | E. histolytica | 0.01 µg/mL | [243] |
Brucea javanica, Simarouba amara | Bruceantin | E. histolytica | 0.01 µg/mL | [245] |
Glaucarubol | 5 µg/mL | |||
Morinda morindoides | Quercetin | E. histolytica | 105.2 µg/mL | [247] |
Quercetin-7,4-dimethylether | 70.3 µg/mL | |||
Quercetin-3-O-rutinoside | 120.7 µg/mL | |||
Quercetin-3-O-rhamnoside | 93.2 µg/mL | |||
Kempferol-3-O-rhamnoside | 64.7 µg/mL | |||
Kempferol-3-O-rutinoside | 72.5 µg/mL | |||
Kempferol-7-O-rhamnosyl- sophoroside | >125 µg/mL | |||
Chrysoeriol-7-O-neohesperidoside | >125 µg/mL | |||
Apigenin-7-O-glucoside | 22.3 µg/mL | |||
Luteolin-7-O-glucoside | 37.4 µg/mL | |||
Kempferol | 10.3 µg/mL | |||
Apigenin | 12.7 µg/mL | |||
Luteolin | 17.8 µg/mL | |||
Gaertneroside | 4.3 µg/mL | |||
Gaertneric acid | 7.1 µg/mL | |||
Methoxygaertneroside | 2.3 µg/mL | |||
Epoxygaertneroside | 1.3 µg/mL | |||
Justicia insularis | Leaves water extract | E. histolytica | >500 µg/mL | [248] |
Draceana reflexa | Leaves water extract | E. histolytica | 62.5 µg/mL | |
Costus afer | Juice | E. histolytica | 125 µg/mL | |
Vitex madiensis | Leaves water extract | E. histolytica | >500 µg/mL | |
Cissius areloides | Leaves water extract | E. histolytica | >500 µg/mL | |
Datura arborea | Leaves water extract | E. histolytica | 125 µg/mL | |
Morinda morindoides | Leaves water extract | E. histolytica | 15.62 µg/mL | |
Nauclea latifolia | Root-bark water extract Laves water extract | E. histolytica | 125 µg/mL >500 µg/mL | |
Heinsia pulchella | Root-bark water extract | E. histolytica | 15.62 µg/mL | |
Crossopteryx febrifuga | Laves water extract | E. histolytica | 125 µg/mL | |
Pteridium aquilinum | Twigs water extract | E. histolytica | >500 µg/mL | |
Phytollaca dodecandra | Laves water extract | E. histolytica | >500 µg/mL | |
Mangifera indica | Stem-bark water extract | E. histolytica | 7.81 µg/mL | |
Rauwolfia obstura | Root-bark water extract | E. histolytica | 31.5 µg/mL | |
Voacanga africana | Root-bark water extract | E. histolytica | 62.5 µg/mL | |
Tithonia diversifolia | Leaves water extract | E. histolytica | 62.5 µg/mL | |
Ceiba pentandra | Stem-bark water extract | E. histolytica | 125 µg/mL | |
Dialum englerianum | Stem-bark water extract | E. histolytica | 62.5 µg/mL | |
Carica papaya | Immature seeds water extract Mature seeds water extract | E. histolytica | 62.5 µg/mL <7.81 µg/mL | |
Garcinia kola | Stem-bark water extract | E. histolytica | 125 µg/mL | |
Tetracera poggei | Leaves water extract | E. histolytica | >500 µg/mL | |
Alchornea cordifolia | Leaves water extract | E. histolytica | 125 µg/mL | |
Bridelia ferruginea | Root-bark water extract | E. histolytica | 62.5 µg/mL | |
Euphorbia hirta | Leaves water extract | E. histolytica | 250 µg/mL | |
Hymenocardia acida | Stem-bark water extract Root-bark water extract | E. histolytica | 31.25 µg/mL 250 µg/mL | |
Jatropha curcas | Leaves water extract | E. histolytica | 31.25 µg/mL | |
Maprounea africana | Leaves water extract Root-bark water extract | E. histolytica | 62.5 µg/mL 31.25 µg/mL | |
Cajanus cajan | Leaves water extract | E. histolytica | >500 µg/mL | |
Paropsia brazzeana | Root-bark water extract | E. histolytica | <7.81 µg/mL | |
Harungana madagascariensis | Stem-bark water extract | E. histolytica | 62.25 µg/mL | |
Sida rhombifolia | Leaves water extract | E. histolytica | 62.5 µg/mL | |
Pentacletra macrophylla | Stem-bark water extract | E. histolytica | 250 µg/mL | |
Myrianthus arboreus | Leaves extract | E. histolytica | >500 µg/mL | |
Psidium guajava | Leaves extract Stem-bark water extract | E. histolytica | 62.5 µg/mL <7.815 µg/mL | |
Ongokea gore | Stem-bark water extract | E. histolytica | >500 µg/mL | |
Ryptolepis sanguinolenta | Root-Bark water extract | E. histolytica | <7.815 µg/mL | |
Zingiber officinale | Ethanolic extract | E. histolytica | >1000 µg/mL | [249] |
Boerhavia diffusa | Ethanolic extract | E. histolytica | >1000 µg/mL | |
Tinospora cordifolia | Ethanolic extract | E. histolytica | 1000 µg/mL | |
Terminalia chebula | Ethanolic extract | E. histolytica | >1000 µg/mL | |
Berberis aristata | Ethanolic extract | E. histolytica | 100 µg/mL | |
Salvia polystachya | Polystachyne A | E. histolytica G. lamblia | 153.8 µg/mL 134.7 µg/mL | [250] |
Polystachyne B | E. histolytica G. lamblia | 117.0 µg/mL 107.8 µg/mL | ||
Polystachyne D | E. histolytica G. lamblia | 160.6 µg/mL 107.5 µg/mL | ||
Linearolactone | E. histolytica Giardia lamblia | 22.9 µg/mL 28.2 µg/mL | ||
Kaempferol | E. histolytica G. lamblia | 27.7 µg/mL 30.5 µg/mL |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, F.; Ayaz, M.; Sadiq, A.; Ullah, F.; Hussain, I.; Shahid, M.; Yessimbekov, Z.; Adhikari-Devkota, A.; Devkota, H.P. Potential Role of Plant Extracts and Phytochemicals Against Foodborne Pathogens. Appl. Sci. 2020, 10, 4597. https://doi.org/10.3390/app10134597
Ullah F, Ayaz M, Sadiq A, Ullah F, Hussain I, Shahid M, Yessimbekov Z, Adhikari-Devkota A, Devkota HP. Potential Role of Plant Extracts and Phytochemicals Against Foodborne Pathogens. Applied Sciences. 2020; 10(13):4597. https://doi.org/10.3390/app10134597
Chicago/Turabian StyleUllah, Farhat, Muhammad Ayaz, Abdul Sadiq, Farman Ullah, Ishtiaq Hussain, Muhammad Shahid, Zhanibek Yessimbekov, Anjana Adhikari-Devkota, and Hari Prasad Devkota. 2020. "Potential Role of Plant Extracts and Phytochemicals Against Foodborne Pathogens" Applied Sciences 10, no. 13: 4597. https://doi.org/10.3390/app10134597
APA StyleUllah, F., Ayaz, M., Sadiq, A., Ullah, F., Hussain, I., Shahid, M., Yessimbekov, Z., Adhikari-Devkota, A., & Devkota, H. P. (2020). Potential Role of Plant Extracts and Phytochemicals Against Foodborne Pathogens. Applied Sciences, 10(13), 4597. https://doi.org/10.3390/app10134597