Spatial Variations in Microbial Compositions in a Karst Critical Zone in Samcheok, Republic of Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Geology
2.1.2. Hydrogeology
2.2. Water Sampling and Chemical Analysis
2.3. DNA Extraction, PCR and Pyrosequencing Analysis
2.4. Pyrosequencing Data Processing and Statistical Analysis
3. Results and Discussion
3.1. Water Characteristics
3.2. Microbial Composition
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Giese, M.; Reimann, T.; Bailly-Comte, V.; Maréchal, J.-C.; Sauter, M.; Geyer, T. Turbulent and Laminar Flow in Karst Conduits Under Unsteady Flow Conditions: Interpretation of Pumping Tests by Discrete Conduit-Continuum Modeling. Water Resour. Res. 2018, 54, 1918–1933. [Google Scholar] [CrossRef]
- Ćuk, M.; Jemcov, I.; MladenoviĆ, A.; Ilić, M. Čokorilo Hydrochemical impact of the hydraulic tunnel on groundwater in the complex aquifer system in Pirot, Serbia. Carbonates Evaporites 2020, 35, 1–17. [Google Scholar] [CrossRef]
- White, W.B. Geomorphology and Hydrology of Karst Terrains; Oxford University Press: Oxford, UK; New York, NY, USA, 1988; pp. 406–445. [Google Scholar]
- Williams, P.N.; Islam, M.R.; Adomako, E.; Raab, A.; Hossain, S.A.; Zhu, Y.-G.; Feldmann, J.; Meharg, A.A. Increase in Rice Grain Arsenic for Regions of Bangladesh Irrigating Paddies with Elevated Arsenic in Groundwaters. Environ. Sci. Technol. 2006, 40, 4903–4908. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.; Coniglio, M.; Gautrey, S. The roloe of buried bedrock valleys on the development of karstic aquifers in flat-lying carbonate bedrock: Insights from Guelph Ontario, Canada. Hydrogeol. J. 2009, 17, 1411–1425. [Google Scholar] [CrossRef]
- Ryu, H.-S.; Lee, J.-Y.; Lim, C.-W.; Kim, K. Hydrochemical characteristics of groundwater and stream water in a karst area of Samcheok, Korea. J. Geol. Soc. Korea 2019, 55, 117–129. [Google Scholar] [CrossRef]
- Korea Ministry of Environment. Water Resources Basic Investigation Report. Available online: https://www.kwater.or.kr/eng/main.do (accessed on 22 May 2020).
- Duran, L.; Massei, N.; Lecoq, N.; Fournier, M.; Labat, D. Analyzing multi-scale hydrodynamic processes in karst with a coupled conceptual modeling and signal decomposition approach. J. Hydrol. 2020, 583, 124625. [Google Scholar] [CrossRef]
- Jiang, G.; Guo, F.; Wei, M. Hydrogeological characteristics of foot caves in a karst peak-forest plain in South China. Hydrogeol. J. 2020, 28, 535–548. [Google Scholar] [CrossRef]
- Ollivier, C.; Mazzilli, N.; Olioso, A.; Chalikakis, K.; Carrière, S.D.; Danquigny, C.; Emblanch, C. Karst recharge-discharge semi distributed model to assess spatial variability of flows. Sci. Total. Environ. 2020, 703, 134368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banks, V.; Jones, P. Hydrogeological Significance of Secondary Terrestrial Carbonate Deposition in Karst Environments. In Hydrogeology—A Global Perspective; IntechOpen: Rijeka, Croatia, 2012; pp. 43–78. [Google Scholar]
- Eisenlohr, L.; Bouzelboudjen, M.; Király, L.; Rossier, Y. Numerical versus statistical modelling of natural response of a karst hydrogeological system. J. Hydrol. 1997, 202, 244–262. [Google Scholar] [CrossRef]
- Eisenlohr, L.; Király, L.; Bouzelboudjen, M.; Rossier, Y. Numerical simulation as a tool for checking the interpretation of karst spring hydrographs. J. Hydrol. 1997, 193, 306–315. [Google Scholar] [CrossRef] [Green Version]
- Peterson, E.; Wicks, C.M. Characterization of the physical and hydraulic properties of the sediment in karst aquifers of the Springfield Plateau, Central Missouri, USA. Hydrogeol. J. 2003, 11, 357–367. [Google Scholar] [CrossRef]
- Upchurch, S.; Scott, T.M.; Alfieri, M.C.; Fratesi, B.; Dobecki, T.L. Hydrogeochemistry of Florida Karst Waters. In The Karst Systems of Florida; Upchurch, S., Scott, T.M., Alfieri, M.C., Fratesi, B., Dobecki, T.L., Eds.; Springer: Cham, Switzerland, 2019; pp. 145–206. [Google Scholar]
- Wicks, C.M.; Engeln, J.F. Geochemical evolution of a karst stream in Devils Icebox Cave, Missouri, USA. J. Hydrol. 1997, 198, 30–41. [Google Scholar] [CrossRef]
- Cao, J.-H.; Wu, X.; Huang, F.; Hu, B.; Groves, C.; Yang, H.; Zhang, C.-L. Global significance of the carbon cycle in the karst dynamic system: Evidence from geological and ecological processes. China Geol. 2018, 1, 17–27. [Google Scholar] [CrossRef]
- Guo, Y.; Wen, Z.; Zhang, C.; Jakada, H. Contamination and natural attenuation characteristics of petroleum hydrocarbons in a fractured karst aquifer, North China. Environ. Sci. Pollut. Res. 2020, 27, 22780–22794. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.; Wu, Z.; Li, W.; Gu, Y.; Situ, Y.; Xu, Y.; Mu, L. 2018 Annual Report: China National Committee for IGCP. Acta Geol. Sin. 2019, 93, 86–89. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Zhang, C.; Qin, X.; Pu, J.; Bai, B. Structural Features and Function of the Karst Critical Zone. Acta Geol. Sin. 2019, 93, 109–112. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.K.; Cao, J.H.; Hu, M.Y.; Bai, B.; Zhong, L. Introduction of International Research Center on Karst under the auspices of UNESCO. China Geol. 2018, 1, 574–576. [Google Scholar]
- Zeyan, W.; Cheng, Z.; Zhongcheng, J.; Weiqun, L.; Faming, Z. Advance of karst critical zone and its carbon cycle. Adv. Earth Sci. 2019, 34, 488–498. [Google Scholar]
- Andreo, B. Introductory editorial: Advances in karst hydrogeology. Environ. Earth Sci. 2012, 65, 2219–2220. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Auler, A.S.; Bakalowicz, M.; Drew, D.; Griger, F.; Hartmann, J.; Jiang, G.; Moosdorf, N.; Richts, A.; Stevanovic, Z.; et al. The World Karst Aquifer Mapping project: Concept, mapping procedure and map of Europe. Hydrogeol. J. 2017, 25, 771–785. [Google Scholar] [CrossRef] [Green Version]
- Daoxian, Y. On the karst environmental system. In Proceedings of the IAH 21st Congress, Guilin, China, 10–15 October 1988; Volume 21, pp. 30–46. [Google Scholar]
- Fiorillo, F.; Stevanovic, Z. Introductory editorial thematic issue: Mediterranean karst hydrogeology. Environ. Earth Sci. 2015, 74, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Goldscheider, N. Methods in Karst Hydrogeology; CRC Press: London, UK, 2014. [Google Scholar]
- Guo, F.; Jiang, G.; Yuan, D.; Polk, J.S. Evolution of major environmental geological problems in karst areas of Southwestern China. Environ. Earth Sci. 2012, 69, 2427–2435. [Google Scholar] [CrossRef]
- Kim, H. Book Review: Life and Water on Karst: Monitoring of transboundary water resources of Northern Istria. Episodes 2020, 43, 845–846. [Google Scholar] [CrossRef]
- Woo, K.S.; Choi, D.W. Calcitization of aragonite speleothems in limestone caves in Korea: Diagenetic process in a semiclosed system. In Perspectives on Karst Geomorphology, Hydrology, and Geochemistry—A Tribute Volume to Derek C. Ford and William B. White; Geological Society of America: Boulder, CO, USA, 2006; Volume 404, pp. 297–306. [Google Scholar]
- Woo, K.S.; Won, J.K.; Lee, G.C.; Namkoong, C.; Choi, Y.K. Comprehensive Investigation Report of Chodang Cave; Samcheok City Hall: Samcheok, Korea, 2000; p. 202. [Google Scholar]
- Geyer, G. A comprehensive Cambrain correlation chart. Episodes 2019, 42, 321–332. [Google Scholar]
- Won, J.K.; Park, B.K.; Lee, S.H. Geological Report on Samcheock-Gosari Sheet; KIGAM: Daejeon, Korea, 1994. [Google Scholar]
- Lee, S.M.; Kim, H.S.; Oh, I.S. Metamorphic petrology of Precambrian gneisses in Samcheok-Jukbyeon area. J. Geol. Soc. Korea 1986, 22, 257–277. [Google Scholar]
- Kim, Y.H.; Kim, G.B.; Choi, S.G.; Kim, C.S. SWIR application for the identification of high-grade lime stones from the Upper Pungchon formation. Econ. Environ. Geol. 2016, 49, 335–347. [Google Scholar] [CrossRef] [Green Version]
- Noh, J.H.; Oh, S.J. Hydrothermal alteration of the Pungchon limestone and the formation of high-Ca limestone. J. Geol. Soc. Korea 2005, 41, 175–197. [Google Scholar]
- Ha, K.-J.; Park, S.-K.; Kim, K.-Y. On interannual characteristics of Climate Prediction Center merged analysis precipitation over the Korean peninsula during the summer monsoon season. Int. J. Clim. 2005, 25, 99–116. [Google Scholar] [CrossRef]
- Lee, H.; Song, H.-J.; Sohn, B.-J. Possible Mechanisms of Long-Term Trend of June Rainfall over the Korean Peninsula. Asia-Pac. J. Atmos. Sci. 2020, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Kaown, D.; Mayer, B.; Lee, J.-Y.; Hyun, Y.; Lee, K.-K. Identifying the sources of nitrate contamination of groundwater in an agricultural area (Haean basin, Korea) using isotope and microbial community analyses. Sci. Total. Environ. 2015, 533, 566–575. [Google Scholar] [CrossRef]
- Lee, K.S.; Lee, C.B. Oxygen and hydrogen isotope composition of precipitation and river waters in South Korea. J. Geol. Soc. Korea 1999, 35, 73–84. [Google Scholar]
- Kim, H.; Lee, K.-K.; Heejung, K.; Kang-Kun, L. Effect of vertical flow exchange on microbial community distributions in hyporheic zones. Episodes 2019, 42, 1–16. [Google Scholar] [CrossRef]
- Kim, H.; Kawon, D.; Kim, J.; Park, I.-W.; Joun, W.-T.; Lee, K.-K. Impact of earthquake on the communities of bacteria and archaea in groundwater ecosystems. J. Hydrol. 2020, 583, 124563. [Google Scholar] [CrossRef]
- Kim, H.; Kaown, D.; Mayer, B.; Lee, J.Y.; Lee, K.K. Combining pyrosequencing and isotope approaches to access denitrification in a hyporheic zone. Sci. Total Environ. 2018, 631–632, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera, S.F.; Vasselon, V.; Bouchez, A.; Rimet, F. Diatom metabarcoding applied to large scale monitoring networks: Optimization of bioinformatics strategies using Mothur software. Ecol. Indic. 2020, 109, 105775. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozupone, C.; Knight, R. UniFrac: A New Phylogenetic Method for Comparing Microbial Communities. Appl. Environ. Microbiol. 2005, 71, 8228–8235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schloss, P.D. Evaluating different approaches that test whether microbial communities have the same structure. ISME J. 2008, 2, 265–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pu, J.; Yuan, D.; Xiao, Q.; Zhao, H. Hydrogeochemical characteristics in karst subterranean streams: A case history from Chongqing, China. Carbonates Evaporites 2015, 30, 307–319. [Google Scholar] [CrossRef]
- Buczyński, S.; Rzonca, B. Influence of geologic structure on the presence, discharge and physical and chemical properties of springs in the Muszynka catchment (Carpathian flysch). Episodes 2018, 41, 89–96. [Google Scholar] [CrossRef]
- Canfield, D.E.; Berner, R.A. Dissolution and pyritization of magnetite in anoxie marine sediments. Geochim. Cosmochim. Acta 1987, 51, 645–659. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Debruyn, J.M.; Nixon, L.T.; Fawaz, M.N.; Johnson, A.M.; Radosevich, M. Global Biogeography and Quantitative Seasonal Dynamics of Gemmatimonadetes in Soil. Appl. Environ. Microbiol. 2011, 77, 6295–6300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wani, A.A.; Surakasi, V.P.; Siddharth, J.; Raghavan, R.G.; Patole, M.S.; Ranade, D.; Shouche, Y.S. Molecular analyses of microbial diversity associated with the Lonar soda lake in India: An impact crater in a basalt area. Res. Microbiol. 2006, 157, 928–937. [Google Scholar] [CrossRef] [PubMed]
Parameter | Hamaengbang Area | Kyogok Area | Yeosam Area | Sajik Area | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Max. | Min. | Mean | SD * | CV ** | n | Max. | Min. | Mean | SD * | CV ** | n | Max. | Min. | Mean | SD * | CV ** | n | Max. | Min. | Mean | SD * | CV ** | ||
Temp. (°C) | 17 | 29.8 | 5.0 | 17.5 | 6.6 | 37.8 | 17 | 29.8 | 5.0 | 17.5 | 6.6 | 37.8 | 5 | 17.5 | 7.7 | 13.1 | 4.2 | 31.9 | 6 | 12.3 | 8.9 | 10.5 | 1.4 | 13.5 | |
pH | 17 | 8.7 | 6.1 | 8.1 | 0.6 | 7.6 | 17 | 8.7 | 6.1 | 8.1 | 0.6 | 7.6 | 5 | 8.7 | 8.1 | 8.4 | 0.2 | 2.8 | 6 | 8.5 | 7.7 | 8.0 | 0.3 | 4.3 | |
EC (μS/cm) | 17 | 504.0 | 170.2 | 309.6 | 78.1 | 25.2 | 17 | 504.0 | 170.2 | 309.6 | 78.1 | 25.2 | 5 | 305.0 | 81.7 | 244.3 | 92.8 | 38.0 | 6 | 14,850.0 | 464.0 | 5,513.7 | 6,244.8 | 113.3 | |
DO (mg/L) | 17 | 9.2 | 5.1 | 6.8 | 1.3 | 18.6 | 17 | 9.2 | 5.1 | 6.8 | 1.3 | 18.6 | 5 | 8.1 | 5.4 | 6.7 | 1.3 | 19.4 | 6 | 7.6 | 5.9 | 6.8 | 0.8 | 11.3 | |
ORP (mV) | 17 | 261.0 | 83.0 | 192.7 | 46.4 | 24.1 | 17 | 261.0 | 83.0 | 192.7 | 46.4 | 24.1 | 5 | 241.0 | 176.0 | 200.8 | 24.5 | 12.2 | 6 | 197.0 | 95.0 | 142.7 | 37.9 | 26.5 | |
Turbidity (NTU) | 17 | 892.0 | 1.0 | 123.8 | 242.1 | 195.6 | 17 | 892.0 | 1.0 | 123.8 | 242.1 | 195.6 | 5 | 37.6 | 0.5 | 16.4 | 15.0 | 91.8 | 6 | 217.0 | 0.6 | 41.5 | 86.2 | 207.9 | |
Ca2+ (mg/L) | 15 | 76.6 | 26.0 | 57.8 | 14.8 | 25.5 | 15 | 76.6 | 26.0 | 57.8 | 14.8 | 25.5 | 4 | 62.3 | 49.9 | 55.8 | 6.0 | 10.8 | 3 | 75.1 | 66.4 | 70.2 | 4.5 | 6.4 | |
Mg2+ (mg/L) | 15 | 6.4 | 3.8 | 5.0 | 0.8 | 15.7 | 15 | 6.4 | 3.8 | 5.0 | 0.8 | 15.7 | 4 | 9.7 | 4.9 | 6.4 | 2.2 | 35.1 | 3 | 99.6 | 7.3 | 38.7 | 52.8 | 136.5 | |
Na+ (mg/L) | 15 | 9.5 | 4.8 | 6.1 | 1.3 | 22.0 | 15 | 9.5 | 4.8 | 6.1 | 1.3 | 22.0 | 4 | 5.4 | 4.7 | 5.1 | 0.3 | 6.3 | 3 | 837.0 | 9.5 | 287.6 | 475.8 | 165.4 | |
K+ (mg/L) | 15 | 3.0 | 0.8 | 1.7 | 0.6 | 36.0 | 15 | 3.0 | 0.8 | 1.7 | 0.6 | 36.0 | 4 | 1.0 | 0.7 | 0.8 | 0.1 | 13.1 | 3 | 37.3 | 3.0 | 14.9 | 19.5 | 131.0 | |
HCO3− (mg/L) | 15 | 155.9 | 38.4 | 79.9 | 28.0 | 35.1 | 15 | 155.9 | 38.4 | 79.9 | 28.0 | 35.1 | 4 | 135.3 | 70.5 | 103.8 | 36.2 | 34.9 | 3 | 72.2 | 37.6 | 59.3 | 18.9 | 31.8 | |
SO42− (mg/L) | 15 | 12.5 | 6.2 | 8.6 | 1.8 | 21.2 | 15 | 12.5 | 6.2 | 8.6 | 1.8 | 21.2 | 4 | 7.0 | 5.4 | 6.5 | 0.7 | 11.2 | 3 | 257.0 | 37.9 | 122.0 | 118.1 | 96.8 | |
Cl− (mg/L) | 15 | 70.2 | 4.9 | 35.2 | 21.0 | 59.7 | 15 | 70.2 | 4.9 | 35.2 | 21.0 | 59.7 | 4 | 8.3 | 6.3 | 7.6 | 0.9 | 12.1 | 3 | 18.1 | 8.9 | 15.0 | 5.3 | 35.5 | |
NO3− (mg/L) | 15 | 41.2 | 5.5 | 13.6 | 11.8 | 86.9 | 15 | 41.2 | 5.5 | 13.6 | 11.8 | 86.9 | 4 | 12.9 | 7.7 | 10.5 | 2.4 | 22.7 | 3 | 1,652.1 | 20.9 | 566.8 | 939.9 | 165.8 | |
δ13C (‰) | 15 | −9.4 | −14.3 | −11.5 | 1.3 | −11.1 | 15 | −9.4 | −14.3 | −11.5 | 1.3 | −11.1 | 4 | −10.5 | −13.8 | −12.1 | 1.8 | −14.8 | 3 | −8.8 | −11.2 | −9.7 | 1.3 | −13.6 | |
δ18O (‰) | 15 | −7.2 | −8.5 | −8.0 | 0.3 | −3.9 | 15 | −7.2 | −8.5 | −8.0 | 0.3 | −3.9 | 4 | −8.2 | −8.7 | −8.5 | 0.2 | −2.5 | 3 | −8.1 | −8.5 | −8.3 | 0.2 | −2.2 | |
δ2D (‰) | 15 | −45.1 | −54.1 | −49.8 | 2.4 | −4.8 | 15 | −45.1 | −54.1 | −49.8 | 2.4 | −4.8 | 4 | −52.2 | −55.0 | −53.4 | 1.2 | −2.2 | 3 | −51.5 | −55.5 | −52.9 | 2.2 | −4.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Jang, J.; Park, S.; Kim, C.-S.; Ryu, H.-S.; Lee, J.-Y. Spatial Variations in Microbial Compositions in a Karst Critical Zone in Samcheok, Republic of Korea. Appl. Sci. 2020, 10, 4714. https://doi.org/10.3390/app10144714
Kim H, Jang J, Park S, Kim C-S, Ryu H-S, Lee J-Y. Spatial Variations in Microbial Compositions in a Karst Critical Zone in Samcheok, Republic of Korea. Applied Sciences. 2020; 10(14):4714. https://doi.org/10.3390/app10144714
Chicago/Turabian StyleKim, Heejung, Jiwook Jang, Sangwook Park, Chang-Seong Kim, Han-Sun Ryu, and Jin-Yong Lee. 2020. "Spatial Variations in Microbial Compositions in a Karst Critical Zone in Samcheok, Republic of Korea" Applied Sciences 10, no. 14: 4714. https://doi.org/10.3390/app10144714
APA StyleKim, H., Jang, J., Park, S., Kim, C. -S., Ryu, H. -S., & Lee, J. -Y. (2020). Spatial Variations in Microbial Compositions in a Karst Critical Zone in Samcheok, Republic of Korea. Applied Sciences, 10(14), 4714. https://doi.org/10.3390/app10144714