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Abstract: Chitosan is an innate cationic biological polysaccharide polymer, naturally obtained from
chitin deacetylation, that possesses broad-spectrum properties such as antibacterial, biodegradability,
biocompatibility, non-toxic, non-immunogenicity, and so on. Chitosan can be easily modified owing
to its molecular chain that contains abundant active amino and hydroxyl groups, through various
modifications. Not only does it possess excellent properties but it also greatly accelerates its solubility
and endows it with additional special properties. It can be developed into bioactive materials with
innovative properties, functions, and multiple uses, especially in the biomedical fields. In this
paper, the unique properties and the relationship between the molecular structure of chitosan and its
derivatives are emphasized, an overview of various excellent biomedical properties of chitosan and
its current progress in the pharmaceutical and nutraceutical field have prospected, to provide the
theoretical basis for better development and utilization of new biomedical materials of chitosan and
its derivatives.
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1. Introduction

Only by tracing back the history, we can look forward to the future. In 1811, chitin was first
discovered in mushrooms and named fungi by French scholar Brano [1]. Chitin is the second largest
natural biopolymer only after cellulose and exists extensively in marine organisms (Figure 1), such as
the shells of shrimp and crab, bacterial and algal cell membranes, shells and skeletons of mollusks and
cell walls of higher plants. It is a recyclable, renewable and inexhaustible resource, mainly distributed
in coastal areas [2]. It is reported that there are about 10 billion tons of chitin biosynthesis each year,
more than 150,000 tons of chitin are available for commercial purposes [3]. Chitin constitutes a major
component of arthropod exoskeletons, tendons and the linings of their excretory, respiratory and
digestive systems. It is also found in the eye iridophores and epidermis of cephalopods and molluscan
arthropods and the cuticle of vertebrates [4], up to now, its commercial sources are mainly crabs, shrimp,
krill shells, fungi, etc. The crustacean shell is composed of 30–40% protein, 30–50% calcium carbonate
and calcium phosphate and 20–30% chitin. The ratio of chitin obtained from dried shrimp and crab
processing waste was 14–27% and 13–15% respectively [5]. Due to the intractable molecular structure
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of chitin, it is still the main underutilized resource despite its easy availability and huge annual output.
It has vital research significance as a biomaterial with potential activity in different fields.

1 
 

 Figure 1. Overview of production and structure of chitosan.

In 1894, the German scientist Hopper Seyler [6] used potassium hydroxide solution to boil chitin for
modification and obtained deacetylated chitin, which was named chitosan. Chitosan is a high molecular
weight compound with a deacetylation degree higher than 55% of chitin, the deacetylation degree or
degree of acetylation (DA) is derived from the amount of the acetamido-2-deoxy-d-glucopyranose
monomeric unit that exists in the polymer chain. The deacetylated chitin (chitosan) is the only natural
basic polysaccharide, soluble in aqueous solutions of inorganic or organic acids, with more than 90%
glucosamine content, which is found in large quantities in the biological world.

Chitosan is structurally similar to mucopolysaccharide, which is widely distributed in tissues,
and is one of the organic components of cell membranes. It possesses excellent biological activities,
such as biocompatibility, biodegradability, film-forming, bacteriostaticity and non-toxicity, and can
resist inflammation and bacteria, promote wound healing and has acid resistance, is anti-ulcer, reduces
lipids and reduces the cholesterol effect [7,8]. Furthermore, chitosan demonstrates anticancer activity
via activating the immune system and promotes it when applied to combine with existing anticancer
drugs. It has become a research hotspot in the field of biomaterials in recent years owing to containing
safe and reliable natural bioactive activities [9–11].

Since 1970, the use of this natural polymer has been accelerated in many countries. Several
international symposiums have been held and several academic monographs on chitosan have been
published. Besides, the number of papers and patents published each year also shows a significant
growth trend. This fully reflects that people are more and more interested in the application value of
chitosan with abundant resources. Biomaterials are natural or synthetic special functional materials
used to contact and interact with living systems to diagnose, repair, replace or induce regeneration
of cells, tissues and organs. It usually consists of living cells or biological tissues combined with
inanimate materials to form a single, composite or hybrid material. Biomaterials interact with
biological organisms, and the direct combination is a characteristic of their therapeutic method [12].
Compared with non-pharmaceutical natural polymers, the biocompatibility and biodegradability
of synthetic polymers are limited. Nevertheless, the reactivity and capacity for further application
of extensive materials found in nature are limited. Due to the similarity between natural polymers
and biomolecules, natural polymers are easy to be recognized by the biological environment and
thus easy to be metabolized into non-toxic residues for natural elimination, which has attracted wide
attention [13]. In this regard, aments of scientific literature showed that natural and abundant chitosan
with biocompatibility, biodegradability and non-immunogenic properties could be the smart polymers
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for numerous biomedical purposes such as drugs and gene delivery vehicles, permeable membranes,
tissue engineering scaffolds and so on [14].

Chitosan can be biodegraded in the human body, so it is not accumulated in the body, and there is
no toxicity, irritation and antigen immunity. It is generally considered to have good biocompatibility
and plays a very important role in human physiological activities. Although chitosan has superior
biological activity, biocompatibility, biodegradability, antibacterial, antiseptic, hemostatic and wound
healing and other special functions, its application is limited to a certain extent by its poor water
solubility and mechanical properties [15]. In a practical application, due to the molecular chain of
chitosan containing a large amount of amino and hydroxyl groups, the chemical modification of
chitosan, such as acylation, carboxylation and etherification, especially graft copolymerization and
blending modification, can change the molecular structure of chitosan, generating a series of chitosan
derivatives, which can improve its water solubility, biological activity and mechanical properties,
and endow on it some special properties, extending the application of chitosan in various fields.

A variety of polymer materials can be grafted on the primary, secondary hydroxyl and amino
groups of chitosan. The graft copolymer of chitosan not only has the original biocompatibility and
degradability of chitosan but also improves its solubility and endows it with other special properties.
However, due to the small reactivity difference between the three functional groups, it is difficult to
introduce a side chain at a fixed point and quantitatively, and it is difficult to separate and purify
the intermediate product or the final product of the reaction, which limits the study on the chitosan
grafting reaction to some extent. The research focuses on finding the appropriate reaction reagent, mild
experimental conditions and efficient separation methods. At present, the application of the chitosan
graft copolymer in medicine is still under continuous exploration. With the development of the research,
the application of the chitosan graft copolymer in pharmacy will become more extensive. Blending
modification is a common method of polymer modification. It is easy to give full play to the advantages
of two or more kinds of polymers and effectively expand the application range of polymer materials.
When the compatibility of components is good, a thermodynamic stable system can be formed to
achieve the synergetic effect. Poor compatibility results in the separation of components. To avoid
this disadvantage, a proper amount of cross-linking agents can be added to make the components
cross-linked or the blends cross-linked through a hydrogen bond. The blend of chitosan with other
natural or synthetic polymer materials can synthesize the excellent properties of each component to
produce functional materials suitable for various fields.

A large number of studies have proved that the unique biomedical characteristics of chitosan
and its derivatives are closely related to their structure. In this paper, the molecular structure and
properties of chitosan are reviewed, and the modification of chitosan and its application as biomedical
materials in recent years are summarized.

2. Production

Shell wastes of crab and shrimp are the main sources of commercial manufacturing of chitosan.
The seafood waste production is reprocessed to achieve environmentally friendly biomaterial stability.
A crustacean shell contains mainly chitin, proteins, minerals and lipids. In industrial processing,
it is dissolved in calcium carbonate by acid treatment and then dissolved by alkali extraction,
after deproteinization, decolorization and deacetylation, colorless products are obtained, and the
process is shown in Figure 1. Firstly, shells are crushed to tiny sized minerals, mainly extracted with
dilute hydrochloric acid to remove calcium carbonate followed by calcium chloride precipitation
through stirring at ambient temperature. The next step is deproteinization, proteins are dissolved with
dilute sodium hydroxide, and the N-acetyl backbone of the polymer is hydrolyzed randomly in this
process. The following decolorization step aims to remove color. Chitosan was deacetylated in 40–45%
sodium hydroxide without oxygen at 120 ◦C for 1–3 h. The degree of deacetylation is determined
by three parameters: alkali concentration, time and temperature. To get 1 kg of 70% of deacetylated
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chitosan, shrimp shells should be treated with 1.8 kg of NaOH and 6.3 kg of HCl along with 1.4 tons of
nitrogen and water [16].

At present, chitosan mainly comes from the shrimp and crab shell, which is rich in resources, high
in yield and low in price. However, there are two disadvantages of this method: first, limited in the
collection by seasons and high in production cost and second, the quality and quantity of chitosan
are not stable due to different types of raw materials, production areas and production processes.
The method of producing chitosan by fermentation has been studied since the 1990s. For example,
the technology of producing chitosan by fermentation was successfully developed by the Beijing
University of Chemical Technology in 2000 [17]. This method can greatly reduce the production cost
of chitosan and make it possible to replace the production method with the shrimp shell or crab
shell as the raw material. The continuing increase in global marine biological resources associated
with the production of processing wastes and byproducts makes it necessary to find new ways of
utilization. The viable economical production of chitosan can promote its utilization effectively in
numerous applications.

3. Structure of Chitosan

Chitin is a partially crystalline mono-polymer and consists of more than 5000 β-(1,4)-linked
N-acetyl-d-glucosamine with over 106 molecular weight (MW). Chitosan is a partially
or totally deacetylated product of chitin comprising of β-(1→4)-2-amino-d-glucose and
β-(1→4)-2-acetamido-d-glucose units with the latter typically above 80% [18]. The basic components
of chitosan are glucosamine and chitobiose and it owns a double helix structure comprising of six
sugar residues that form a spiral plane with a pitch of 0.515 nm. The structure of chitosan is depicted
schematically in Figure 1, where “n” specifies the degree of polymerization of glucosamine and
N-acetylglucosamine units.

The secondary structure of chitosan is formed by a hydroxyl group, amino group and N-acetyl
group on the molecular chain, which is involved in the formation of intra-molecular and inter-molecular
hydrogen bonds of chitosan [19]. In the chair-like structure of chitosan glucosamine residues, there are
two intramolecular hydrogen bonds, one of which forms C3-OH with the glycoside group on another
adjacent chitosan molecular chain, and the other forms C3-OH with the oxygen atom on the adjacent
chitosan furan ring. The C2-NH2, C3-OH and C6-OH functional groups of chitosan can form
intramolecular and intermolecular hydrogen bonds, so that it has the physicochemical properties of
swelling, water retention and adsorption, and therefore is hard to be digested and absorbed [20].

The single-chain is linear, every 10.1–10.5 Å along the chain axis undergoes one full twist [21].
Linear aggregates and rigid crystalline domains are formed since abundant hydroxyl groups, highly
reactive amino groups and N-acetyl counterparts have strong intramolecular and intermolecular
hydrogen bonding tendencies. According to the different biological functions and natural sources,
and the different structural forms of chitosan are differentiated by the different arrangements of
carbohydrate chains [22]. Nuclear magnetic resonance spectroscopy (NMR) and X-ray model are
helpful to clarify the three crystal types of chitosan: α, β and γ chitosan, each of which has diverse
natural sources and biological functions.

The α conformation is the most common heteromorphic conformation, consisted of two reverse
parallel chains, where the units are orthogonal, and has high thermodynamic stability due to the
hydrogen interaction between the chains probably, usually separated from the exoskeleton of the
crustacean, cell wall of yeast and cuticle of the arthropod. It is generally deposited with minerals
to form a hard shell and compact structure. The β-conformation is the second common allomorph,
composed of two parallel chains, where the units are monoclinic, and has weaker intermolecular forces
perhaps owning to the polymer chains arranged in a parallel fashion, demonstrating a certain degree
of hardness, flexibility and fluidity, usually combined with collagen, reside in squid cartilage [23].
The γ-form rarely has been seen and possesses two identical chains in association with one reverse and
top-down chain, which seems to be a combination of α and β forms rather than a different variant,
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existing in the thick epithelium of the squid stomach [24]. Chitin and chitosan both contain active
hydroxyl and amino groups, however, chitin is usually more crystalline than chitosan, so chitosan
may be more suitable for the preparation of reagents and biomaterials. The crystallinity of chitosan is
affected by the degree of deacetylation. The completely deacetylated chitosan has the characteristics of
a uniform molecular chain, good regularity and high crystallinity. As shown in Figure 2, the crystal
structure of α-chitosan, β-chitosan and γ-chitosan are respectively matched to anti-parallel, parallel
and alternated arrangements of polymer chains.
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4. Factors Influencing Chitosan Properties

Chitosan has a complex double helix structure, its final structural unit after enzymatic hydrolysis
of chitosan is chitobiose, which usually contains two structural units, 2-acetylaminoglucan and
2-glucosamine, and the ratio of two units varies with the degree of deacetylation. Chitosan possesses
many active groups such as the amino group and a hydroxyl group, which has high reactivity and can
be chemically modified, to obtain unique physical, chemical properties and physiological functions [25].
Chitosan properties are highly influenced by their degree of deacetylation and molecular weight.
Different reaction settings like temperature, time, concentration and types of reagents may affect the
efficiency of the final product of chitosan. However, both degrees of deacetylation and molecular
weight can be lowered by reacetylation and acidic or enzymatic polymerization, respectively [26].

4.1. Molecular Weight (MW)

The physicochemical properties (viscosity, solubility, adsorption on solids, elasticity, tear strength,
bio-functional activities, crystal size and morphological character) are affected by the MW of
chitosan [27–29]. The crystallinity of the membrane could be decreased by increasing MW. The MW of
chitosan plays an important role in its performance as a polymer flocculant. The larger the relative
MW is the smaller the solubility and greater the degree of entanglement between molecules.

The relative MW of chitin in marine organisms is 1 × 106–2 × 106, after extraction,
about 3 × 105–7 × 105. The relative MW of chitosan is lower, about 2 × 105–5 × 105. Chitin,
chitosan and chitosan oligosaccharide are all called chitin substances [30]. Chitin is not soluble in alkali,
water, general acid and organic solvent and is only partially soluble in concentrated acid. It can be



Appl. Sci. 2020, 10, 4719 6 of 24

partially decomposed by chitinase and lysozyme in the human gastrointestinal tract, so its absorption
rate is low, the dosage is large and the taking reaction is over 70%. Chitosan can be dissolved in
dilute acid, which is better than chitin. However, chitosan is still a large molecule and insoluble in
water, degraded into small molecule chitosan oligosaccharide (Figure 1), which can be directly soluble
in water, thus the absorption rate is greatly increased, the dosage and the reaction after taking are
greatly reduced. Chitosan with MW 10,000 possesses many excellent functions, such as inhibiting
the growth of tumor cells, reducing cholesterol, blood sugar and blood lipids in serum and liver,
enhancing body immunity, strengthening liver function, promoting the generation of spleen antibodies,
promoting the proliferation of Bifidobacterium, inhibiting the growth of Escherichia coli and absorbing
and resenting moisture.

The deacetylation process of chitosan brings about the change of MW. In the manufacturing
process, the relative MW of chitosan is generally expressed by the value of viscosity, and the products
with different viscosity have different purposes. A high concentration and degree of deacetylation
increase the viscosity, whereas high temperature decreases it. It is used as a tackifier because of its high
molecular weight and linear and unbranched structure [31].

4.2. Degree of Deacetylation (DDA)

The deacetylation degree is calculated by the amount of deacetylated glucosamine units present
in the total glucosamine units. It is one of the most basic structural parameters to investigate
chitin/chitosan. The degree of deacetylation (DDA) has a great influence on the solubility, viscosity,
crystallinity, ion exchange capacity and flocculation of chitosan. Generally, chitin with more than 55%
N-acetyl can be dissolved in 1% acetic acid or hydrochloric acid, which is called chitosan, the DDA
varies from 60% to 100% due to different preparation conditions and requirements, but only the
chitosan with more than 70% DDA can be used as industrial products, the completely deacetylated
chitosan is extremely difficult to prepare. The deacetylation degree classification standard of chitosan
is shown in Figure 3.
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N-deacetylation degree is the basis for determining the chitosan solubility. The charge density on
the carbon chain increases with the increase of DDA, and the -NH2 group in the chitosan molecule
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will be protonated to form the NH3
+ ion in the acid environment, so it will dissolve in the acid

condition. The higher the deacetylation degree is, the more free-amino groups are on the molecular
chain and the better the solubility is in the acid. The chain elasticity of chitosan can be changed
by changing DDA, with the increase of deacetylation, a more flexible chitosan chain is produced,
consequently forming a random spiral structure in the chain and more intramolecular hydrogen bonds.
The mechanical properties of the microspheres are generally weaker than those of the deacetylated
microspheres. The weaker the interaction between molecules, the less tangled the chitosan chain.
The preparation of chitosan with high DDA is very important in the process of developing chitosan
products, because the DDA can determine the chitosan solubility, and it is also the precondition for
its chemical modification and functional modification. Chitosan with high DDA and low molecular
weight and low viscosity usually need to be further hydrolyzed and degraded. By the X-ray diffraction
test, with the increase of the deacetylation degree, the X-ray diffraction peak becomes sharper and the
crystallinity is higher. Furthermore, acetylation regulates cell proliferation and adhesion, however
not altering the cytocompatibility of chitosan. It was reported that decreased DDA is beneficial to cell
growth and adhesion [32–35].

5. Solubility of Chitosan

Pure chitosan is a white or gray transparent flake or solid powder, tasteless, odorless, non-toxic
and stable at room temperature. There is a strong hydrogen bond between chitin molecules, forming a
highly crystalline structure, so chitin is highly insoluble in dilute alkali, dilute acid, water and most
organic solvents, only soluble in concentrated acid and some solvents. The solubility of chitosan is
better than that of chitin because the active group of chitosan molecules is an amino group rather than
the acetyl group. Chitosan can be soluble in dilute acid, formic acid and acetic acid, but not in water
and most organic solvents. It is easy to react with acid to generate salt due to the existence of an amino
group in the structural unit of chitosan, forming a positive cationic group.

Chitosan solubility is related to the degree of deacetylation, relative molecular weight and viscosity.
The higher degree of deacetylation leads to reducing relative molecular weight and makes it easier to
be soluble in water, whereas the lower degree of deacetylation leads to an increase in relative molecular
weight and high viscosity. Chitosan is soluble in dilute acid and presents a viscous shape, with strong
adsorption capacity. Chitosan contains hydroxyl, amino and other polar groups, hygroscopicity is very
strong and can be used as a humectant. Chitosan, a high-performance metal ion collector, can chelate
the heavy metal ions in vivo because the ortho of the free amino group of chitosan is hydroxyl, which
can chelate the divalent metal ions.

Chitosan, as a solution, needs to be stored and used in an acidic environment, but because of the
presence of acetal structure, the glucose ring is opened and degraded when it is placed in an acidic
solution for a long time, the β-1,4-glycoside bond of chitosan will be hydrolyzed slowly to form low
molecular weight chitosan. Chitosan can be developed as the immobilized carrier of antigen, antibody,
enzyme and other physiologically active substances due to the presence of the free amino group,
and has a broad application prospect because of its good physical, chemical and biological properties,
excellent stability to organic solvents and convenience for secondary processing [36].

The active adsorption center of chitosan is a surface free amino group. Many inorganic acids,
organic acids and acid compounds, even amphoteric compounds, can be adsorbed by chitosan.
The adsorption rate decreases with the decrease of the dielectric constant of the adsorption medium.
The surface energy of the chitosan solution first decreases with the increase of the solubility parameter
and then increases rapidly. The dissociation constant pKa of chitosan is not significantly related to
the change of deacetylation degree, but the ionic strength and species in the solution. A cationic
polyelectrolyte (pKa 6.5) produced by amino groups of chitosan. The dissolution of chitosan in the
acidic-aqueous solution produces a proton, which led the soluble polysaccharide to become positively
charged, especially a more positive charge on amino groups. Chitosan aggregates and chelates with
polyanionic compounds and heavy metal ions, respectively. Both the aggregation with polyanions
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and solubility in acidic solution produce chitosan with admirable gelling properties [37]. Under the
same hydrolysis time, the reciprocal of the relative molecular weight of the hydrolysate is directly
proportional to the temperature. Chitosan emerges as an obvious self-polymerization phenomenon in
0.1 mmol/L acetic acid solution. With the increase of chitosan concentration, the molecular chain of
chitosan changes from self-polymerization of the stretch chain structure to the single-chain coil group
structure, and the single-chain coil group structure was further transformed into an intertwined coil
group structure.

6. Modifications of Chitosan

Although chitosan owns exceptional biological activity, such as biodegradability, hemostasis,
antiseptic, antibacterial, biocompatibility and promoting wound treatment and so on, its poor water
solubility and mechanical properties greatly limit its application in biomedicine. Improving the
solubility of chitosan is the key factor for the rational utilization of its various uses.

To improve the water-insoluble defects of chitosan, by hydrolysis of the main chain, it was
degraded into chitosan oligosaccharide, which has good water solubility, is easy to disperse and
absorb and has many unique physicochemical properties and biological activities. The most suitable
hydrolytic enzyme of chitosan is chitosanase. Chitosanase from different microbial sources hydrolyzes
different substrates. According to the action model of chitosanase, it can be divided into two types:
endo- and exo-type. The endo chitosanase mainly releases a dimer, trimer or oligosaccharide, while the
exo chitosanase produces a monosaccharide residue, namely glucosamine, from the non-reducing end
of chitosan or chitooligosaccharide [38]. Both chitosan and cellulose are polysaccharide compounds
formed by D2 glucose linked and polymerized by glycosidic bonds. Due to the structural similarity,
cellulase should also have a similar degradation effect on chitosan [39]. The acetylated amino group
in chitosan can also be modified by chitinase, lysozyme, tyrosinase, laccase and peroxidase, which
can effectively improve the biological properties of chitosan, such as antioxidant and antibacterial
properties [40–42].

Chitosan can be modified by acylation, carboxylation and etherification to produce a series of
chitosan derivatives with different properties, which can improve its water solubility, biological activity
and mechanical properties, and expand the application of chitosan in various fields because the basic
unit of chitosan is glucosamine, which contains a lot of active amino and hydroxyl groups. Modified
chitosan derivatives have attracted more and more attention because they are superior to unmodified
chitosan in chemical, biological and functional aspects such as solubility and gelation. As shown in
Figure 4, previous studies also extensively reported the chemical modification of chitosan, such as
acylation, carboxylation, etherification, etc. [43,44]. The present review only focuses on the study of
graft copolymerization and the blending modification of chitosan in recent years.

(1) Carboxylation: chitosan molecules contain more free -NH2 and -OH, introducing carboxyl
functional groups, among which carboxymethyl is the most common, that replace the side chain
ammonium salt, can obtain water-soluble, alcohol soluble, organic solvent-soluble, surface-active
and fibrous polymer derivatives. Dumont et al. [45] suspended the chitosan powder in isopropanol,
added isopropanol chloroacetate solution to the solution, reacted at room temperature and
continuously stirred with magnetic force to obtain carboxymethyl chitosan with a high degree of
protonation. Feng et al. [46] successfully prepared N,O-carboxymethyl chitosan from chitosan
and chloroacetic acid under alkaline condition. The obtained carboxymethyl chitosan not only
retains the original superior properties, but also improves the solubility more effectively, and has
the function of moisturizing.

(2) Etherification: the hydroxyl of chitosan can react with methyl ether, ether, benzyl ether and other
alkylating agents to form an ether. By the way of cellulose modification, hydroxyalkyl chitin and
carboxyalkyl chitin can be obtained by the reaction of basic chitin and etherification reagent.

(3) Crosslinking: chitosan can be crosslinked in or between molecules through -OH and -NH2 with
aldehydes, anhydrides or epoxides with two functional groups, and grafted to form network
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polymers to obtain crosslinked products with improved mechanical properties, providing
conditions for further grafting modification.

(4) Chelation: -OH and -NH2 have coordination and chelation. They can form complexes with
transition metal ions first, and then cross-linked with the cross-linking agent. Chitosan with
template memory and selective adsorption can be prepared.

(5) Acylation: the hydroxyl group and amino group on the sugar residue of the chitosan molecular
chain can react with some derivatives of organic acids, such as anhydrides and acyl hydrides,
including O-acylation to form esters and N-acylation to form amides. N-acylation products are
obtained usually after the introduction of aliphatic or aromatic acyls with different molecular
weights, whose solubility in organic solvents is greatly improved.

(6) Oxidation: the -OH of chitosan can be oxidized, among which H2O2 is the most widely used
method to degrade chitosan. The C6 hydroxyl group can be oxidized to the aldehyde or carboxyl
group, and the C3 hydroxyl group can be oxidized to a carbonyl group. If CrO3 is used as an
oxidant in the perchlorate suspension of chitosan, C6 hydroxy can be oxidized to carboxyl.

(7) Alkylation: the hydroxyl and amino groups on chitosan form respective water-soluble derivatives
through alkylation. Hydroxypropyl chitosan can be obtained by the reaction of chitosan and
propylene oxide on the hydroxyl group in the basic condition, and N-alkylated chitosan can be
obtained in an acid condition.
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Figure 4. Chemical structure of different types of chemical modification of chitosan.
The information obtained from the literature such as quaternary ammonium, acetylation, N-succinyl
chitosan [40], N-carboxymethyl and N-carboxybutyryl chitosan [47], glutaraldehyde cross-linked
chitosan [48], alkylation [49], Au-chitosan nanocomposite [50], chitosan aerogels modifications [51],
and N,O-/N-/O-substituted chitosan [52].
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6.1. Graft Copolymerization of Chitosan

Grafting copolymerization, which can change the physicochemical properties of chitosan, is an
effective method to broaden the practical use of chitosan. The molecular structure, number and length
mainly affect the properties of the final graft copolymerization products. These methods include free
radical graft copolymerization, condensation copolymerization, oxidative coupling copolymerization,
ring-opening copolymerization of ring mounted monomers, polymer grafting, etc. Chitosan C6
primary hydroxyl, C3 secondary hydroxyl and C2 amino groups can all be grafted points. The side
chain of chitosan C6 can be grafted selectively to obtain the branched polysaccharide with unique
immuno promoting activity, that is, the polysaccharide with the side chain of α-(1→6) on the main chain
of α-(1→4). Glycosyl, polypeptide, polyester and alkyl chain can be introduced into chitosan by the
grafting reaction, which can improve the affinity of chitosan to the solvent, as well as the antibacterial
and immune activity. They are mainly used as drug membranes, gelatin, microspheres (microcapsules),
nanoparticles, slow-release materials, gene delivery vectors, polymer drugs, drug-loaded micelles, etc.

Kweon et al. [53] reported the synthesis of chitosan grafted polyvinyl alcohol (PVA) and its release
of prednisolone. As a drug release coating, chitosan has some disadvantages, such as poor solubility,
too strong dependence on pH and poor mechanical properties, but grafting PVA with good water
solubility and biocompatibility can greatly improve the drug release behavior.

Panda et al. [54] prepared chitosan with three different molecular weights through the p-coumaric
acid method to improve their antioxidant property and water solubility. Further, they reported
that the water solubility and antioxidant property of modified products decrease with an increased
molecular weight of corresponding native chitosan. Liu et al. [55] used chitosan alkalization and
carboxymethylation reactions to prepare carboxymethyl chitosan followed by polyethyleneimine (PEI)
grafting through an amidation reaction. Figure 5 shows the steps involved in carboxymethylation–PEI
copolymer synthesis. The carboxymethylation–PEI copolymer formed nanoparticles through high
complexation capability with DNA and attained high transfection efficiency and minimum cytotoxicity
than 25 kDa PEI against 3T3 and 293T cells. Furthermore, the carboxymethylation–PEI copolymer with
<0.05 mg/mL concentration showed a minimum effect on the morphology, lysis of human red blood
cells or aggregation or on blood coagulation, demonstrating excellent blood compatibility. Therefore,
the copolymer serves as an alternative, safe and effective non-viral vector for practical application.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 24 

Figure 4. Chemical structure of different types of chemical modification of chitosan. The information 
obtained from the literature such as quaternary ammonium, acetylation, N-succinyl chitosan [40], N-
carboxymethyl and N-carboxybutyryl chitosan [47], glutaraldehyde cross-linked chitosan [48], 
alkylation [49], Au-chitosan nanocomposite [50], chitosan aerogels modifications [51], and N,O-/N-
/O-substituted chitosan [52]. 

6.1. Graft Copolymerization of Chitosan 

Grafting copolymerization, which can change the physicochemical properties of chitosan, is an 
effective method to broaden the practical use of chitosan. The molecular structure, number and length 
mainly affect the properties of the final graft copolymerization products. These methods include free 
radical graft copolymerization, condensation copolymerization, oxidative coupling 
copolymerization, ring-opening copolymerization of ring mounted monomers, polymer grafting, etc. 
Chitosan C6 primary hydroxyl, C3 secondary hydroxyl and C2 amino groups can all be grafted 
points. The side chain of chitosan C6 can be grafted selectively to obtain the branched polysaccharide 
with unique immuno promoting activity, that is, the polysaccharide with the side chain of α-(1→6) 
on the main chain of α-(1→4). Glycosyl, polypeptide, polyester and alkyl chain can be introduced 
into chitosan by the grafting reaction, which can improve the affinity of chitosan to the solvent, as 
well as the antibacterial and immune activity. They are mainly used as drug membranes, gelatin, 
microspheres (microcapsules), nanoparticles, slow-release materials, gene delivery vectors, polymer 
drugs, drug-loaded micelles, etc. 

Kweon et al. [53] reported the synthesis of chitosan grafted polyvinyl alcohol (PVA) and its 
release of prednisolone. As a drug release coating, chitosan has some disadvantages, such as poor 
solubility, too strong dependence on pH and poor mechanical properties, but grafting PVA with good 
water solubility and biocompatibility can greatly improve the drug release behavior. 

Panda et al. [54] prepared chitosan with three different molecular weights through the p-
coumaric acid method to improve their antioxidant property and water solubility. Further, they 
reported that the water solubility and antioxidant property of modified products decrease with an 
increased molecular weight of corresponding native chitosan. Liu et al. [55] used chitosan alkalization 
and carboxymethylation reactions to prepare carboxymethyl chitosan followed by polyethyleneimine 
(PEI) grafting through an amidation reaction. Figure 5 shows the steps involved in 
carboxymethylation–PEI copolymer synthesis. The carboxymethylation–PEI copolymer formed 
nanoparticles through high complexation capability with DNA and attained high transfection 
efficiency and minimum cytotoxicity than 25 kDa PEI against 3T3 and 293T cells. Furthermore, the 
carboxymethylation–PEI copolymer with <0.05 mg/mL concentration showed a minimum effect on 
the morphology, lysis of human red blood cells or aggregation or on blood coagulation, 
demonstrating excellent blood compatibility. Therefore, the copolymer serves as an alternative, safe 
and effective non-viral vector for practical application. 

 
Figure 5. Scheme of the preparation of the CMCS–PEI copolymer [55]. 

Two varying forms of nanostructured carbon were grafted by functionalized single-walled 
carbon nanohorns to the amine group of chitosan and covalently linking the carboxylic group existing 
on graphene oxide, respectively (Figure 6). Compared to unmodified chitosan, the nanostructured 
carbon significantly accelerated the biological functions using a comparative analysis of substrate-
osteoblast cell line (MC3T3-E1) communication. Moreover, protein adsorption and nanostructured 

Figure 5. Scheme of the preparation of the CMCS–PEI copolymer [55].

Two varying forms of nanostructured carbon were grafted by functionalized single-walled carbon
nanohorns to the amine group of chitosan and covalently linking the carboxylic group existing on
graphene oxide, respectively (Figure 6). Compared to unmodified chitosan, the nanostructured carbon
significantly accelerated the biological functions using a comparative analysis of substrate-osteoblast
cell line (MC3T3-E1) communication. Moreover, protein adsorption and nanostructured carbon have a
synergistic effect to create favorable modulating biological functions such as cell proliferation, viability
and adhesion, with a pronounced effect on nanostructured carbon-modified scaffolds. A study also
highlighted that nanostructured carbon-modified scaffolds favored protein adsorption, bioactivity and
other biological tasks [56].
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Figure 6. Schematic representation of subsequent covalent reaction between single-walled
carbon nanohorns (SWCNH) and the amine group of chitosan (CS) during CS-SWCNH hybrid
scaffolds fabrication.

In a word, various side chains can be grafted on the primary, secondary hydroxyl and amino
groups of chitosan and new properties endowed. However, because the reactivity of the three functional
groups is a little different, it is not easy to introduce the side chain in the fixed point and quantity,
and it is difficult to separate and purify the intermediate or end product of the reaction, which limits
the study of the chitosan grafting reaction to a certain extent. The research focuses on finding the
appropriate reaction reagent, mild experimental conditions and efficient separation methods.

6.2. Blending Modification of Chitosan

The blending modification is a common method of polymer modification. Through some physical
and chemical methods, chitosan is blended with other natural polymer materials or synthetic polymer
materials, including starch, glucomannan capsule, gelatin, glycerin, cellulose, polyvinyl alcohol,
polyacrylonitrile, polyacrylamide, etc., which can synthesize the excellent characteristics of each
component to prepare for the needs of various fields, expanding the application range of polymer
materials effectively. The blending modification of chitosan can not only give new excellent properties
to new materials but also greatly reduces the cost of polymer materials. It is extensively used in
adsorption of heavy metal ions, biomedical membrane materials, biological tissue functional materials,
environmental protection fresh-keeping materials and other fields.

Du et al. [57] fabricated chitosan biomaterials with collagen using a cross-linker alginate dialdehyde
(ADA) that has been presented in Figure 7. Intact retaining of the classical triple-helical structure after
crosslinking was confirmed by in vitro fiber formation and FTIR analysis. More compact microfibril
structural interactions of collagen side-chains established by SEM analysis. Crosslinking of chitosan and
collagen could improve the thermostability of final products. There was no significant effect of ADA in
chitosan/collagen scaffolds on antibacterial activity. Accordingly, the fabrication of chitosan/collagen
composites crosslinked with ADA improves stabilization, conserves the standard triple-helical structure,
sustains good biocompatibility and discloses the new medical uses.
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Figure 7. The diagram of the reaction for possible crosslinking between collagen and alginate
dialdehyde (ADA).

Chitosan and carboxymethyl glucomannan are two kinds of polyelectrolytes with an opposite
charge, which can form the polyelectrolyte complex and cross-linked membrane with the network
structure in the process of film formation. Sun et al. [58] prepared the chitosan carboxymethyl
glucomannan blend film by solution blending (Figure 8). The results showed that there was durable
communication and better compatibility between chitosan and carboxymethyl glucomannan in the
blend membrane and the mechanical properties of the blend membrane increased with the increase
of the carboxymethyl glucomannan content. Liu et al. [59] reported that collagen, glucomannan
and chitosan have good compatibility, and there are strong interactions among the three polymers,
such as an electrostatic attraction and hydrogen bond. It is precise because of this interaction that
the membrane has a uniform and smooth cross-section, high transmittance and better mechanical
properties than a single polymer and binary blend membrane, the adsorption and permeability were
also significantly lower than that of the glucomannan collagen binary membrane. The blend membrane
containing glucomannan has good compatibility with endothelial cells and can be used as the carrier
of endothelial cells. These characteristics indicated that the blend membrane of glucomannan collagen
and chitosan has broad prospects as a potential scaffold material for tissue engineering, membrane
carrier for cell transplantation, or biomaterial for organ damage repair.

Although chitosan has outstanding advantages such as non-toxicity, degradability,
biocompatibility, does little damage to the drug and is suitable for drug release, it also has disadvantages
such as poor solubility, poor mechanical properties and too much dependence on pH. Blending with
PVA can improve these disadvantages of chitosan. Chitosan was easy to accumulate on the surface of
the airside when it was blended into the film, which indicated that chitosan was more hydrophobic
than PVA. The results showed that this blend film is more beneficial to the adhesion and growth of the
slender runner compared with PVA due to the surface of the blend membrane being porous and the
inner part being dendritic, while the surface of the PVA membrane is almost porous and the inner
part is a sponge. More detailed studies on the surface state of the membrane showed that a hydrogen
bond interaction between the -NH2 or -OH of chitosan and -OH of PVA when chitosan and PVA are
blended. Compared with PVA, fewer hydrogen bonds formed when blended with chitosan because
PEO has less hydroxyl, resulting in poor compatibility. When the PEO content was lower than 20%,
it was amorphous, and when PEO content was higher than 20%, it was easy to form crystal [60].
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7. Biological Properties

Chitosan, because of the strong hydrogen bond between molecules, possesses a regular molecular
chain, good crystallinity and other properties such as adsorption, moisture retention, a film-forming
ability, etc. It is a naturally available alkaline polysaccharide, while others like pectin, dextran, cellulose,
starch, agar–agar, carrageenan, alginic acid, etc., are either acidic or neutral. It is a biocompatible
substance that gradually breaks down to safe products like amino sugars, which absorbed completely in
the body. The enzyme lysozyme hydrolyzed chitosan in vivo into oligomers that trigger macrophages
to release N-acetyl-d-glucosamidase for catalyzation of oligomers to produce substituted glucosamines
and d-glucosamine [61]. Several studies reported that MW, DDA, active groups and the bonding mode
of chitosan and its derivatives are vital factors for their marvelous biomedical properties. The biological
properties and corresponding biomedical applications of chitosan are shown in Figure 9.

(1) Antibacterial. Chitosan is an only natural weak alkaline polysaccharide that easily dissolves
in a dilute acid solvent. The dissolved chitosan contains an amino group (NH3

+), which can
inhibit bacteria by binding negative electrons and its antibacterial activity may enhance with
concentration. Chitosan with different molecular weight can stop several bacteria growths,
and has a strong inhibitory effect on Escherichia coli and Staphylococcus aureus, showing similar
characteristics with antibiotics [62]. The antibacterial mechanism of chitosan can be divided into
two ways: One is that chitosan forms a layer of the polymer by adsorbing on the cell surface.
The membrane prevents the transport of nutrients to the cells and plays the role of bacteriostasis
and decontamination; the second is that chitosan penetrates the cells through osmosis, adsorbs the
anionic cytoplasm in the cells and causes flocculation, which disrupts the normal physiological
activities of cells and kills bacteria [63–65]. When the molecular weight of chitosan is different and
the bacteria that act on it are different, the antibacterial mechanism of chitosan is different, but in
essence, its antibacterial property comes from the antibacterial factor NH3

+ [66,67]. Chitosan
has amino and acetyl groups on its molecular chain, so it is amphoteric. Its isoelectric point is
pH 6.2. When the pH of the solution is higher than this value, chitosan will not have a positive
charge and no bacteriostatic effect. If it is lower than this value, it will have a positive charge.
The degree of deacetylation of chitosan may also affect its antibacterial effect. The content of
the free amino group and the bacteriostatic rate increased with the increase of the deacetylation
degree [68]. The bacterial strains, pH, temperature, salinity, molecular weight, concentration
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and degree of deacetylation of chitosan may be closely related to the antibacterial effect of
chitosan. However, considering the high number of bacteria strains and the complexity of the
bio environment generated, it is not clear the specific interaction between these factors [69,70].
The latest studies have enforced an investigation of the inhibitory activity of biofilm production
of chitosan and its derivatives as prominent agents and diminish virulence properties by several
pathogenic bacteria. Conjugation of chitosan with other bioactive materials can further promote its
antimicrobial activity [71]. Ionic gelation was used to produce chitosan nanoparticles (CNP) and
a different concentration of CNP (0–20% w/w) was used to prepare starch-based nanocomposite
films. An in vitro and in vivo study proved the antimicrobial characteristics of CNP-starch films.
For instance, the growth of tested pathogens such as Salmonella typhimurium, Escherichia coli,
Staphylococcus aureus and Bacillus cereus were inhibited by CNP-starch films about 15–20%.

(2) Adsorption. Chitosan has forceful adsorption function and can selectively adsorb heavy metal
ions, cholic acid, cholesterol, triglyceride and grease [72–75]. It cannot be digested and absorbed in
the gastrointestinal tract in a short time, on the contrary, it can absorb the fat that can significantly
prevent the digestive system from absorbing cholesterol and triglycerides, avoiding the excessive
accumulation of cholesterol and fatty acids. Eating 2 g of chitosan every day can effectively
absorb the fat in the food, which is beneficial to losing weight [76]. Researchers try to find out
the relationship between the structure of chitosan and the lowering of blood lipids and blood
glucose, which is mainly due to the amino group of chitosan itself, which makes chitosan a
poly ionomer. One possible way is that the chitosan catabolic compound can be adsorbed with
negatively charged fatty acids and cholesterol. The simple chitosan can adsorb many times of its
weight of oil, which can effectively prevent the digestive system from absorbing cholesterol and
triglycerides, prevent the accumulation of cholesterol and fatty acids in the body and promote its
excretion from the body. By reducing intestinal lipid absorption, the levels of cholesterol and
triglycerides in plasma were reduced. Another possibility is that chitosan combines with negative
bile acids to reduce the amount of bile in the liver and empty the gallbladder. There must be a
certain amount of bile acid reserve in the gallbladder, so that the cholesterol in the plasma or liver
can be converted into bile acid to maintain the bile acid reserve, thus reducing the cholesterol
concentration in the plasma or liver [77].

(3) Moisture retention. The molecular chains of chitosan and its derivatives contain numerous active
hydrophilic polar groups, such as -OH, -NH2, -COOH, etc. [78]. The content of the carboxyl group
in carboxylated chitosan is far more than other derivatives, and the repulsion of the negative charge
on the carboxyl group makes the polymer chain space to be extended especially large, even at
a lower concentration, there is a strong interaction between molecules. The force on the water
molecule is strengthened due to the hydrophilicity of the carboxyl group and the large extension
of the molecular chain so that it has better moisture absorption and retention performance.

(4) Film forming. Chitosan has stable physicochemical properties and outstanding film-forming
performance, its film-forming ability is closely related to the internal structure. The higher the
deacetylation degree of chitosan, the lower the swelling and tensile strength of the membrane
and the more difficult the degradation of the corresponding chitosan membrane in vitro and
in vivo [79]. Since there are more crystal structures in chitosan with a high degree of deacetylation,
the molecular rigidity is stronger and the water absorption is lower. The film formation and
its characteristics are greatly regulated by the relative molecular weight of chitosan. The lower
the molecular weight is the lower the tensile strength and the stronger the permeability of the
membrane. The larger the molecular weight is, the more the crystal structure is, and the higher the
molecular entanglement is. Therefore, the flexibility of the molecule is poor, the tensile strength is
high and the permeability of the membrane is poor [80]. Since chitosan is degradable, the changes
in the molecular weight might affect the properties of the membrane; the chitosan crosslinking
degree also affects the properties of the membrane. With the increase of the crosslinking degree,
the spatial network structure formed between the molecules increases, the tensile strength of
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the membrane increases and the water permeability decrease. Chitosan membrane biomedical
materials are widely used, such as preventing postoperative abdominal adhesions, purifying
drugs and serum antibodies, manufacturing artificial renal membrane, artificial skin, contact lens
membrane, drug sustained-release, dental surgery and nerve repair materials, etc. [81].

(5) Regulatory. Chitosan can activate lymphocytes with the immune function, distinguish normal
cells from cancer cells and kill cancer cells [82]. Besides, it also has the function of regulating
the endocrine system, regulating the pH value of the body to weak alkaline, improving the
utilization rate of insulin, making the insulin secretion normal, inhibiting the rise of blood
sugar, reducing blood lipid and helping to prevent and treat diabetes [83]. Many researchers
have found that chitin, chitosan and chitosan oligosaccharide have immunomodulatory effects.
The molecular weight of chitin and chitosan is more than 1 million, so its immunogenicity
is very weak or almost negligible [84]. The immune response mediated by chitosan and its
derivatives is closely related to its chemical structure. After deacetylation, chitin has -NH2 on
the chitosan molecule, which can combine with H+, enhance affinity, chemotactic leukocyte and
induce a local macrophage. Macrophages play an important role in the immune response and
regulation [85]. There are receptors of bacterial polysaccharides on the surface of macrophages.
Chitosan, as a bacterial polysaccharide like substance, can stimulate the activation of macrophages,
thus promoting the phagocytic ability and enhancing the activity of hydrolase secreted by
macrophages [86]. As a natural high molecular material, chitosan with unique structure presents
natural physiological activity in vivo, which can stimulate local tissues, promote cell proliferation
and then evolve into macrophages, produce inflammatory mediators and improve the body’s
resistance to inflammation.

(6) Biodegradability. Chitosan is a kind of natural medical polymer material with excellent
biodegradability, which is determined by its chemical structure. Chitosan has obvious degradation
under the action of a lysozyme in vitro or in body fluid [87]. Degradation products are methyl
sugar and oligosaccharide, which are safe for the body and can be decomposed, absorbed and
metabolized. N-acetylglucosamine, one of the degradation products, is very important for scar
repair of tissues and is toxic to some malignant tumors in vivo, so it can be utilized as cancer
chemotherapy drugs [88]. Its degradation products are generally non-toxic to the human body,
no accumulation in the body, no immunogenicity, so it can be used to manufacture artificial skin,
surgical suture, bone repair materials, contact glasses, artificial dialysis membrane, anticoagulant
materials, etc., carried a very broad application prospect in the medical field.
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8. Application of Chitosan Biomaterials

According to the Pharmacopoeia of the people’s Republic of China (Volume 4), chitosan is used
for pharmaceutical excipients, disintegrants, thickeners, etc. [89]. Chitosan has a variety of biomedical
properties and is widely used in wound dressings, orthopedics, dentistry, antitumor therapy, vascular
repair and other fields [90,91]. Aments of studies have confirmed that the unique biomedical properties
of chitosan and its derivatives are closely related to its structure.

Chitosan and its derivatives act as wound healing materials with a broad application prospect,
which is attributed to their advantages of promoting wound healing, unique bactericidal and
biodegradable properties and providing certain nutrients for cell growth. In the process of wound
healing, chitosan can regulate the function of macrophages and the secretion of cytokines such as
interleukin and tumor necrosis factor. Aamna et al. [92] synthesized silver nanoparticles in-situ in
chitosan sericin composite to prepare chitosan sericin silver nanocomposite film by solvent casting
technology and studied its antibacterial activity. The composite films were tested in Sprague Dawley
male rats burn wound model for 7 days and confirmed a remarkable wound-healing ability with
complete neovascularization, fibrosis, epidermal regeneration and collagen reorganization. Ouyang [93]
constructed a new composite sponge by using chitosan/tilapia peptides microspheres as fillers and
chitosan as a matrix and proposed for hemorrhage regulation. The findings indicated that by absorbing
a high amount of water, the composite scaffolds accelerate platelet adhesion, speed up blood clotting,
and stimulate the fibrin formation from fibrinogen. The bleeding volume was significantly reduced
by decreasing bleeding time. Chitosan can accelerate the regeneration of epithelial cells, promote
wound healing through cell proliferation and attract a large number of polymorphonuclear cells and
macrophages through mild acute inflammatory response to remove tissue debris and blood clots.
Chitosan can promote the chemotaxis, migration and activation of stromal fibroblasts and accelerate
cell proliferation and tissue remodeling. It can also promote the formation of granulation and epithelial
tissue, reduce the contraction of the wound surface, thus reducing scar formation.
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Chitosan and its derivatives are also widely used in tissue engineering, especially as biological
scaffolds of skin and bone, due to its ability of no expansion in water, high porosity and water absorption,
interconnecting pores and uniform pore size, which are suitable for material exchange and growth
metabolism of cells [94–98]. Chitosan scaffolds degrade without toxicity or inflammatory reactions
eventually for the formation of the new tissue [99]. So, many porous chitosan scaffolds have been used
for skin fibroblasts, keratinocytes and bone osteoblasts [100]. Yeh, et al. [101] synthesized chitosan
cellulose scaffolds, grafted with sodium tripolyphosphate and polymethyl methacrylate, and finally
were coated with gelatin, Schwann cells and fibroblasts. Chitosan provides a growth scaffold for
cells, adheres to cells on the surface and makes cells grow rapidly. Shaltookia et al. [102] prepared
porous nanocomposite scaffolds containing polycaprolactone and 45s bioactive glass nanoparticles
with different nanoparticles (about 40 nm in diameter) by solvent casting technology. This material can
play a good role in bone tissue engineering. Many kinds of chitosan composites such as thin film, gel,
sponge and granule have been produced [103,104]. Chitosan-based systems for soft tissues like skin,
adipose tissue, cornea, liver, nerve, CNS and blood vessel reengineering have been reviewed [105,106].
In skin tissue engineering, the rigid structure of chitosan fibers can enhance the mechanical resistance
of the dermal matrix and prolong the degradation of the dermal matrix by wound cell collagenase [107].
In cartilage tissue engineering, chitosan sustained-release microspheres have good drug loading and
drug-releasing properties. Microsphere scaffolds can well maintain the phenotype of chondrocytes,
promote their adhesion and proliferation, and have a good application prospect in the construction of
cartilage and repair of cartilage damage as a carrier of chondrocytes. Chitosan and its derivatives have
been extensively applied in the study of artificial nerves because of their excellent biodegradability and
biocompatibility. During the construction of artificial nerves, the function of normal peripheral nerves
was not affected, which could promote nerve regeneration and provide conditions for the attachment,
migration and proliferation of Schwann cells to play their normal functions.

Gels, nanoparticles, films, compressed tablets, beads and microspheres are currently used as
potential drug delivery systems [108–110]. Chitosan has excellent biological activities as mentioned
before and has been widely used in the study of the drug carrier systems as drug conjugates,
hydrogel systems and biodegradable release systems [111–113]. It is mainly used in gene therapy,
biological imaging, delivery of proteins/peptides, anti-inflammatory drugs, growth factors, antibiotics
and vaccines. Drug delivery routes include oral administration, nose, eye and percutaneous
administration [114,115]. The ionic interaction between the negatively charged sialic acid substructure
in the mucus and the positively charged primary amino group of chitosan polymer could offer
adhesion and permeability properties of chitosan. Self-assembled nanospheres were prepared by
chemically-linked active amino groups on the chitosan backbone, which can circulate in the blood for a
long time without being engulfed and can be transplanted to the target ligand, which is easy to deposit
in the designated lesion site for treatment. Kim [116] used carbodiimide to connect the bile acid to the
glycolytic chitosan skeleton so that the chitosan had strong hydrophilicity, and the nano-microspheres
circulated in the blood for a long time and could be loaded with doxorubicin, paclitaxel, doxycycline
and other anticancer drugs to effectively treat tumors.

Chitosan can attach nucleic acids via electrostatic bonding and also could be used to create
non-viral gene delivery vectors, which enter into the cells without alienation of the DNA-chitosan
complex [117–120]. It shows the main part in both lysosomal escape and membrane adhesion of
the encapsulated DNA for effective cell transfection. Garcia et al. [121] prepared siRNA/folate poly-
chitosan lactate nanoparticles by ionic gelation, showing the potential of effective gene therapy for
ovarian cancer.

Song [122] investigated the antitumor activities of chitosan with a molecular weight of 3 K, 65 K
and 600 kda and the zero-valent selenium (Se0) nanoparticles stabilized by oligosaccharides. High
molecular weight chitosan stabilized nanoparticles are easier to release selenium than low molecular
weight chitosan, and to be absorbed by HepG2 cells through electrostatic action. Additionally, they are
more effective in inhibiting the activity of HepG2 cells. These nanoparticles could produce highly
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toxic Se4+ from the less toxic Se0 and release selenium upon high ROS production by cancer cells.
This high toxic Se4+ causes apoptosis and mitochondrial dysfunction via consuming antioxidant
enzymes. Chitosan and its derivatives can regulate the immune system through molecular mediation,
enhance the body’s resistance to various pathogenic microorganisms, and show antitumor activity.
The antitumor activity of chitosan varies with the molecular weight and the substituted functional
groups. Additionally, there are more negative charges on the surface of tumor cells, and chitosan and
its derivatives are polycationic electrolytes, which are easy to adsorb to the surface of cancer cells
and neutralize the charges, which can inhibit the growth and metastasis of tumor cells and even kill
cancer cells.

In a word, the research and application of chitosan and its derivatives are the important direction
of biomedical materials research in recent years, which deliver new materials for the development of
biomedicine. At present, the research on chitosan is far more than the above-mentioned applications.
With the continuous update of science and technology, chitosan and its derivatives in biological
medicine are reported quite more every year, including anticancer, antiviral drugs, wound healing
promoting materials, implants or blood components, substitutes of tissue components and applications
in biotechnology as carriers of biological separators, fermentation industry, biomacromolecules and
biosensors. This explains its importance in various fields, especially as biomedical materials. Although
chitosan and its derivatives have a significant effect in biomedicine, due to the shortcomings of poor
solubility and mechanical properties of chitosan, which limits the development of pure chitosan in
the medical field. Additionally, there are still some key scientific problems to be solved, such as the
uneven particle size, the deactivation of entrapped drugs, the inability to entrap hydrophobic drugs,
and the difficult regulation of release. Therefore, the modification of chitosan, grafting with other
materials and strengthening the development of drug loading system, design and construction of safe
and efficient granules for protein-peptide sustained release, antitumor drug targeting, intraocular drug
delivery and therapeutic vaccine adjuvant are the research hotspot of chitosan as biomedical materials.

9. Conclusions and Perspectives

Chitosan has good histocompatibility, biodegradability and excellent biomedical properties such
as improving immune activity, antitumor, antibacterial, hemostasis and promoting wound healing.
These properties are influenced by the degree of deacetylation, molecular weight and groups, especially
amino groups of chitosan. To find out the relationship between these properties and its molecular
structure has become the focus of many researchers, which provides a theoretical basis for the better
development of new materials of chitosan and its derivatives, and makes it have a better application
prospect in the field of biomedicine.

The research on the characteristics and application of chitosan in biomedicine has developed
rapidly and become one of the hot research fields. Compared with α-chitosan, β-chitosan has weaker
binding force, better solubility and biological activity. However, there are a few kinds of research on it
at present. Therefore, exploring the economic and environmental protection of β-chitosan production
process and modification research may become one of the research hotspots of potential biomedical
materials in the future.

With the rapid development of biomaterials, higher requirements and challenges have been put
forward for scaffold materials and drug carries. However, chitosan and its derivatives limit their
application to some extent due to their defects, which need further study. At the same time, it is also
necessary to strengthen the research of composite with other biomaterials to form new functional
materials of marine organisms with multiple advantages, which should be one of the research hotspots
of biomaterials in tissue engineering.
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