Removal of Chromium(VI) by Chitosan Beads Modified with Sodium Dodecyl Sulfate (SDS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of the Adsorbent
2.2. Characterization of the Adsorbent
2.3. Adsorption Experiments
2.4. Adsorption Isotherm
2.5. Kinetic Studies
2.6. Adsorption Thermodynamics
2.7. Effect of Competitive Anions (Cl−, NO2−, NO3−, and PO43−) on the Sorption of Cr(VI)
2.8. Desorption Experiments
3. Results and Discussion
3.1. Adsorption Experiment
3.1.1. Effect of SDS Loading on the Adsorption of Cr(VI)
3.1.2. Effect of pH on the Adsorption of Cr(VI)
3.1.3. Effect of Contact Time on the Adsorption of Cr(VI)
3.1.4. Effect of the Adsorbent Dosage on the Adsorption of Cr(VI)
3.1.5. Effect of Coexisting Ions on the Adsorption of Cr(VI)
3.1.6. Estimation of Partition Coefficient (PC)
3.2. Characterization of SDS Modified Chitosan
3.3. Adsorption Isotherms
3.4. Kinetic Studies
3.5. Thermodynamic Study
3.6. Desorption Study
3.7. Comparison with Other Adsorbents
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Madala, S.; Nadavala, S.K.; Vudagandla, S.; Boddu, V.M.; Abburi, K. Equilibrium, kinetics and thermodynamics of cadmium (II) biosorption on to composite chitosan biosorbent. Arab. J. Chem. 2017, 10, 1883–1893. [Google Scholar] [CrossRef] [Green Version]
- Han, S.L.; Zang, Y.A.; Gao, Y.; Yue, Q.Y.; Zhang, P.; Kong, W.J.; Jin, B.; Xu, X.; Gao, B.Y. Co-monomer polymer anion exchange resin for removing Cr (VI) contaminants: Adsorption kinetics, mechanism and performance. Sci. Total Environ. 2020, 709, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pietrelli, L.; Francolini, I.; Piozzi, A.; Sighicelli, M.; Silvestro, I.; Vocciante, M. Chromium (III) Removal from Wastewater by Chitosan Flakes. Appl. Sci. 2020, 10, 1925. [Google Scholar] [CrossRef] [Green Version]
- Pietrelli, L.; Ippolito, N.M.; Reverberi, A.P.; Vocciante, M. Heavy Metals Removal and Recovery from Hazardous Leather Sludge. Chem. Eng. Trans. 2019, 76, 1327–1332. [Google Scholar]
- Rajapaksha, A.U.; Alam, M.S.; Chen, N.; Alessi, D.S.; Igalavithana, A.D.; Tsang, D.C.W.; Ok, Y.S. Removal of hexavalent chromium in aqueous solutions using biochar: Chemical and spectroscopic investigations. Sci. Total Environ. 2018, 625, 1567–1573. [Google Scholar] [CrossRef]
- Shi, S.; Yang, J.; Liang, S.; Li, M.; Gan, Q.; Xiao, K.; Hu, J.P. Enhanced Cr (VI) removal from acidic solutions using biochar modified by Fe3O4@SiO2-NH2 particles. Sci. Total Environ. 2018, 628, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, N.; Chen, D.; Ma, D.; Liu, G.; Zou, X.; Chen, Y.; Shu, R.; Song, Q.; Lv, W. Facile synthesis of acid- modified UiO-66 to enhance the removal of Cr (VI) from aqueous solutions. Sci. Total Environ. 2019, 682, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Fendorf, S.E. Surface reactions of chromium in soils and waters. Geoderma 1995, 67, 55–71. [Google Scholar] [CrossRef]
- Yamada, K.; Ishiguro, Y.; Kimura, Y.; Asamoto, H.; Minamisawa, H. Two-step grafting of 2-hydroxyethyl methacrylate (HEMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) onto a polyethylene plate for enhancement of Cr (VI) ion adsorption. Environ. Technol. 2019, 40, 855–869. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewater: A Review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Rahmati, M.M.; Rabbani, P.; Abdolali, A.; Keshtkar, A.R. Kinetics and Equilibrium Studies on Biosorption of Cadmium, Lead and Nickel Ions from Aqueous Solutions by Intact and Chemically Modified Brown Algae. J. HazardA. Mater. 2011, 185, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Chour, Z.; Laubie, B.; Morel, J.L.; Tang, Y.; Qiu, R.L.; Simonnot, M.O.; Muhr, L. Recovery of rare earth elements from Dicranopteris dichotoma by an enhanced ion exchange leaching process. Chem. Eng. Process. 2018, 130, 208–213. [Google Scholar] [CrossRef]
- Yang, M.J.; Liang, X.L.; Ma, L.Y.; Huang, J.; He, H.P.; Zhu, J.X. Adsorption of REEs on kaolinite and halloysite: A link to the REE distribution on clays in the weathering crust of granite. Chem. Geol. 2019, 525, 210–217. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, H.; Shi, J.X.; Langrish, T.S.G. Adsorption of Chromium (VI) from Aqueous Solutions Using Cross-Linked Magnetic Chitosan Beads. J. Ind. Eng. Chem. Res. 2009, 48, 2646–2651. [Google Scholar] [CrossRef]
- Ngah, W.S.; Ghani, S.A.; Kamari, A. Adsorption Behaviour of Fe (II) and Fe (III) Ions in Aqueous Solution on Chitosan and Cross-linked Chitosan Beads. Bioresour. Technol. 2005, 96, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Liu, J.; Wang, X.; Xie, Z.Y.; Deng, N. Adsorption of Uranium (VI) from Aqueous Solution onto Cross-Linked Chitosan. J. Hazard. Mater. 2009, 168, 1053–1058. [Google Scholar] [CrossRef]
- Inoue, K.; Fingerman, M.; Nagabhushanam, R.; Thompson, M. Application of chitosan in separation and purification of metals. Recent Adv. Mar. Biotechnol. Environ. Mar. Biotechnol. 1998, 2, 63–97. [Google Scholar]
- Guibal, E.; Larkin, A.; Vincent, T.; Tobin, J.M. Chitosan sorbents for platinum sorption from dilute solutions. Ind. Eng. Chem. Res. 1999, 38, 4011–4022. [Google Scholar] [CrossRef]
- Guzman, J.; Saucedo, I.; Revilla, J.; Navarro, R.; Guibal, E. Vanadium interactions with chitosan: Influence of polymer protonation and metal speciation. Langmuir 2002, 18, 1567–1573. [Google Scholar] [CrossRef]
- Ng, J.C.Y.; Cheung, W.H.; McKay, G. Equilibrium Studies of the Sorption of Cu (II) Ions onto Chitosan. J. Colloid Interface Sci. 2002, 255, 64–74. [Google Scholar] [CrossRef]
- Arrascue, M.L.; Garcia, H.M.; Horna, O.; Guibal, E. Gold sorption on chitosan derivatives. Hydrometallurgy 2003, 71, 191–200. [Google Scholar] [CrossRef]
- Gerente, C.; Lee, V.C.; Cloirec, P.L.; McKay, G. Application of Chitosan for the Removal of Metals from Wastewaters by Adsorption-Mechanisms and Models Review. Crit. Rev. Environ. Sci. Technol. 2007, 37, 41–127. [Google Scholar] [CrossRef]
- Repoa, E.; Warchoł, J.K.; Bhatnagar, A.; Sillanpää, M. Heavy metals adsorption by novel EDTA-modified chitosan–silica hybrid materials. J. Colloid Interface Sci. 2011, 358, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Varma, A.J.; Deshpande, S.V.; Kennedy, J.F. Metal complexation by chitosan and its derivatives: A review. Carbohydr. Polym. 2004, 55, 77–93. [Google Scholar] [CrossRef]
- Dutta, P.K.; Dutta, J.; Chattopadhyaya, M.C.; Tripathi, V.S. Chitin and chitosan: Novel biomaterials waiting for future developments. J. Polym. Mater. 2004, 21, 321–333. [Google Scholar]
- Kyzas, G.Z.; Bikiaris, D.N. Recent modifications of chitosan for adsorption applications: A critical and systematic review. Mar. Drugs 2015, 13, 312–337. [Google Scholar] [CrossRef]
- Bois, L.; Bonhommé, A.; Ribes, A.; Pais, B.; Raffin, G.; Tessier, F. Functionalized silica for heavy metal ions adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2003, 221, 221–230. [Google Scholar] [CrossRef]
- Jal, P.K.; Patel, S.; Mishra, B.K. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta 2004, 62, 1005–1028. [Google Scholar] [CrossRef]
- Gandhi, M.R.; Meenakshi, S. Preparation and characterization of silica gel/chitosan composite for the removal of Cu (II) and Pb (II). Int. J. Biol. Macromol. 2012, 50, 650–657. [Google Scholar] [CrossRef]
- Deng, Y.; Kano, N.; Imaizumi, H. Adsorption of Cr (VI) onto Hybrid Membrane of Carboxymethyl Chitosan and Silicon Dioxide. J. Chem. 2017, 2017, 1–8. [Google Scholar] [CrossRef]
- Mishima, K.; Du, X.; Sekiguchi, S.; Kano, N. Experimental and theoretical studies on the adsorption and desorption mechanisms of chromate ions on cross-linked chitosan. J. Funct. Biomater. 2017, 8, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, D.; Pal, A. Adsolubilization phenomenon perceived in chitosan beads leading to a fast and enhanced malachite green removal. J. Chem. Eng. 2016, 290, 371–380. [Google Scholar] [CrossRef]
- Bolto, B.; Gregory, J. Organic polyelectrolytes in water treatment. Water Res. 2007, 41, 2301–2324. [Google Scholar] [CrossRef] [PubMed]
- Gregory, J.; Barany, S. Adsorption and flocculation by polymers and polymer mixtures. Adv. Colloid Interface Sci. 2011, 169, 1–12. [Google Scholar] [CrossRef]
- Nasser, M.S.; James, A.E. The effect of polyacrylamide charge density and molecular weight on the flocculation and sedimentation behaviour of kaolinite suspensions. Sep. Purif. Technol. 2006, 52, 241–252. [Google Scholar] [CrossRef]
- Mathieu, L.; Benoit, B. Understanding the roles and characterizing the intrinsic properties of synthetic vs. natural polymers to improve clarification through interparticle Bridging: A review. Sep. Purif. Technol. 2020, 231, 115893–115917. [Google Scholar]
- Pal, P.; Pal, A. Surfactant-modified chitosan beads for cadmium ion adsorption. Int. J. Biol. Macromol. 2017, 104, 1548–1555. [Google Scholar] [CrossRef]
- Pal, P.; Pal, A. Treatment of real wastewater: Kinetic and thermodynamic aspects of cadmium adsorption onto surfactant-modified chitosan beads. Int. J. Biol. Macromol. 2019, 131, 1092–1100. [Google Scholar] [CrossRef]
- Ayawei, N.; Ekubo, A.T.; Wankasi, D.; Dikio, E.D. Synthesis and Application of Layered Double Hydroxide for the removal of Copper in Wastewater. Int. J. Chem. 2015, 7, 122–132. [Google Scholar]
- Ayawei, N.; Ekubo, A.T.; Wankasi, D.; Dikio, E.D. Adsorption Dynamics of Copper Adsorption by Zn/Al-CO3. IJACSA 2015, 3, 57–64. [Google Scholar]
- Nešić, A.R.; Veličković, S.J.; Antonović, D.G. Modification of chitosan by zeolite A and adsorption of Bezactive Orange 16 from aqueous solution. Compos. Part B 2013, 53, 145–151. [Google Scholar] [CrossRef]
- Dolatyari, L.; Yaftian, M.R.; Rostamnia, S. Adsorption characteristics of Eu (III) and Th (IV) ions onto modified mesoporous silica SBA-15 materials. J. Taiwan Inst. Chem. Eng. 2016, 60, 174–184. [Google Scholar] [CrossRef]
- Khan, A.A.; Singh, R.P. Adsorption thermodynamics of carbofuran on Sn (IV) arsenosilicate in H+, Na+ and Ca2+ forms. Colloid Surf. 1987, 24, 33–42. [Google Scholar] [CrossRef]
- Farouq, R.; Yousef, N.S. Equilibrium and Kinetics Studies of adsorption of Copper (II) Ions on Natural Biosorbent. Int. J. Chem. Eng. Appl. 2015, 6, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Ayawei, N.; Ekubo, A.T.; Wankasi, D.; Dikio, E.D. Adsorption of Congo Red by Ni/Al-CO3: Equilibrium, Thermodynamic and Kinetic Studies. Orient. J. Chem. 2015, 31, 1307–1318. [Google Scholar] [CrossRef]
- Guibal, E.; Roussy, J. Coagulation and flocculation of dye-containing solutions using a biopolymer (Chitosan). React. Funct. Polym. 2007, 67, 33–42. [Google Scholar] [CrossRef]
- Bolto, B. Soluble polymers in water purification. Prog. Polym. Sci. 1995, 20, 987–1041. [Google Scholar] [CrossRef]
- Wu, Y.; Luo, H.J.; Wang, H.; Wang, C.; Zhang, J.; Zhang, Z.L. Adsorption of Hexavalent Chromium from Aqueous Solutions by Graphene Modified with Cetyltrimethylammonium Bromide. J. Colloid Interface Sci. 2013, 394, 183–191. [Google Scholar] [CrossRef]
- Gupta, V.K.; Nayak, A. Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. J. Chem. Eng. 2012, 180, 81–90. [Google Scholar] [CrossRef]
- Khobragade, M.U.; Pal, A. Adsorptive removal of Mn (II) from water and wastewater by surfactant-modified alumina. Desalin. Water Treat. 2016, 57, 2775–2786. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Z.; Li, R.; Wang, J.J.; Ali, A. Removal of Pb (II) and Cd (II) ions from aqueous solution by thiosemicarbazide modified chitosan. Int. J. Biol. Macromol. 2016, 86, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Vikrant, K.; Kim, K.H. Nanomaterials for the adsorptive treatment of Hg (II) ions from water. Chem. Eng. J. 2019, 358, 264–282. [Google Scholar] [CrossRef]
- Na, C.J.; Yoo, M.J.; Tsang, D.C.W.; Kim, H.W.; Kim, K.H. High-performance materials for effective sorptive removal of formaldehyde in air. J. Hazard. Mater. 2019, 366, 452–465. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Kano, N.; Mishima, K.; Okawa, H. Adsorption and Desorption Mechanisms of Rare Earth Elements (REEs) by Layered Double Hydroxide (LDH) Modified with Chelating Agents. Appl. Sci. 2019, 9, 4805. [Google Scholar] [CrossRef] [Green Version]
- Motawie, A.M.; Mahmoud, K.F.; El-Sawy, A.A.; Kamal, H.M.; Hefni, H.; Ibrahiem, H.A. Preparation of chitosan from the shrimp shells and its application for pre-concentration of uranium after cross-linking with epichlorohydrin. J. Egypt. J. Pet. 2014, 23, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Ngah, W.W.; Endud, C.S.; Mayanar, R. Removal of Copper (II) Ions from Aqueous Solution onto Chitosan and Cross-linked Chitosan Beads. React. Funct. Polym. 2002, 50, 181–190. [Google Scholar] [CrossRef]
- Cestari, A.R.; Vieira, E.F.S.; Oliveira, I.A.; Bruns, R.E. The removal of Cu (II) and Co (II) from aqueous solutions using cross-linked chitosan-evaluation by the Factorial Design Methodology. J. Hazard. Mater. 2007, 143, 8–16. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Q.; Lin, D.; Yao, S. Effect and mechanism of sodium chloride on the formation of chitosan–cellulose sulfate-tripolyphosphate crosslinked beads. Soft Matter 2013, 9, 10354–10363. [Google Scholar] [CrossRef]
- Wang, W.; Lu, H.; Liu, Y.; Leng, J. Sodium dodecyl sulfate/epoxy composite: Water-induced shape memory effect and its mechanism. J. Mater. Chem. A 2014, 2, 5441–5449. [Google Scholar] [CrossRef]
- Antony, N.; Sherine, H.B.; Rajendran, S. Inhibition and biocide actions of sodium dodecyl sulfate-Zn2+ system for the corrosion of carbon steel in chloride solution. Port. Electrochim. Acta 2010, 28, 1–14. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, X.; Cao, Z.; Zhan, Y.; Shi, X.D.; Yang, Y.; Zhou, J.L.; Xu, J. Adsorption behavior and mechanism of chloramphenicols sulfonamides, and non- antibiotic pharmaceuticals on multi-walled carbon nanotubes. J. Hazard. Mater. 2016, 310, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Langmuir, I. The constitution and fundamental properties of solids and liqiuds. Part I. Solids. J. Am. Chem. Soc. 1917, 38, 102–105. [Google Scholar]
- Freundlich, H.M.F. Uber die adsorption in lunsungen. J. Phys. Chem. 1985, 57, 387–470. [Google Scholar]
- Chakraborty, P.; Nagarajan, R. Efficient adsorption of malachite green and congo red dyes by the surfactant (DS) intercalated layered hydroxide containing Zn2+, and Y3+ ions. Appl. Clay Sci. 2015, 118, 308–315. [Google Scholar] [CrossRef]
- Yu, S.; Wang, X.; Chen, Z.; Wang, J.; Wang, S.; Hayat, T.; Wang, X. Layered double hydroxide intercalated with aromatic acid anions for the efficient capture of aniline from aqueous solution. J. Hazard. Mater. 2017, 321, 111–120. [Google Scholar] [CrossRef]
- Xiao, L.; Ma, W.; Han, M.; Cheng, Z. The influence of ferric iron in calcined nano-Mg/Al hydrotalcite on adsorption of Cr (VI) from aqueous solution. J. Hazard. Mater. 2011, 186, 690–698. [Google Scholar] [CrossRef]
- Lazaridis, N.K.; Asouhidou, D.D. Kinetics of sorptive removal of chromium (VI) from aqueous solutions by calcined Mg-Al-CO3 hydrotalcite. Water Res. 2003, 37, 2875–2882. [Google Scholar] [CrossRef]
- Ho, Y.S.; Mckay, G. The sorption of lead (II) ions on peat. Water Res. 1999, 33, 578–584. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Kinetics of adsorption on carbon from solution. Asce Sanit. Eng. Div. J. 1963, 1, 1–2. [Google Scholar]
- Yan, L.G.; Yang, K.; Shan, R.R.; Yan, T.; Wei, J.; Yu, S.H.; Yu, H.Q.; Du, B. Kinetic isotherm and thermodynamic investigations of phosphate adsorption onto core-shell Fe3O4@LDHs composites with easy magnetic separation assistance. J. Colloid Interface Sci. 2015, 448, 508–516. [Google Scholar] [CrossRef]
- Lv, L.; He, J.; Wei, M.; Evans, D.G.; Duan, X. Uptake of chloride ion from aqueous solution by calcined layered double hydroxides: Equilibrium and kinetic studies. Water Res. 2006, 40, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.S.; Zheng, T.; Wang, P.; Jiang, J.P.; Li, N. Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. J. Chem. Eng. 2010, 157, 348–356. [Google Scholar] [CrossRef]
- Jaycock, M.J.; Parfitt, G.D. Chemistry of Interfaces; Ellis Horwood: Chichester, UK, 1981; Volume 85. [Google Scholar] [CrossRef]
- Nithya, R.; Gomathi, T.; Sudha, P.N.; Venkatesan, J.; Anil, S.; Kim, S.K. Removal of Cr (VI) from aqueous solution using chitosan-g-poly (butyl acrylate)/silica gel nanocomposite. Int. J. Biol. Macromol. 2016, 7, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Yang, B.; Zhang, L.; Huang, R. Adsorptive removal of Cr (VI) from aqueous solutions by cross-linked chitosan/bentonite composite. Korean J. Chem. Eng. 2015, 32, 1314–1322. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, H.; Liu, P.; Fang, W.; Geng, J. Anovelmodified graphene oxide/chitosan composite used as an adsorbent for Cr (VI) in aqueous solutions. Int. J. Biol. Macromol. 2016, 87, 586–596. [Google Scholar] [CrossRef]
- Hu, X.J.; Wang, J.S.; Liu, Y.G.; Li, X.; Zeng, G.M.; Bao, Z.L.; Zeng, X.X.; Chen, A.W.; Long, F. Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics. J. Hazard. Mater. 2011, 185, 306–314. [Google Scholar] [CrossRef]
Parameter | Condition |
---|---|
Plasma Conditions | |
RF frequency | 27.1 MHz |
RF power | 1400 W |
Gas conditions | |
Plasma gas flow | 15 L · min−1 |
Carrier gas flow | 1.2 L · min−1 |
Sample conditions | |
Sampling depth | 6.5 mm |
Sample uptake rate | 0.5 mL · min−1 |
Measurement point | 3 points/peak |
Integration time | 1.0 sec/point |
Measured isotope | 52Cr |
Target Ions | Adsorbent | Effect Factor | Final Concentration (μg·L−1) | Adsorption Capacity (μg·g−1) | Adsorption Capacity/ Final Concentration(PC) (μg·g−1·μM−1) | |
---|---|---|---|---|---|---|
Cr(VI) | pH | 4 | 966.69 | 1665.39 | 0.034 | |
5 | 966.37 | 1681.62 | 0.035 | |||
6 | 970.3 | 1484.99 | 0.031 | |||
7 | 970.24 | 1488.23 | 0.031 | |||
8 | 977.8 | 1114.81 | 0.022 | |||
9 | 993.55 | 322.60 | 0.0065 | |||
10 | 999.29 | 35.87 | 0.00071 | |||
SDS | Contact time (h) | 3 | 982.28 | 354.31 | 0.018 | |
9 | 974.53 | 509.35 | 0.026 | |||
12 | 969.69 | 606.23 | 0.031 | |||
24 | 957.04 | 859.12 | 0.045 | |||
48 | 948 | 1039.91 | 0.055 | |||
72 | 945.51 | 1089.86 | 0.058 | |||
96 | 945.50 | 1090.21 | 0.058 | |||
Initial | 0 | 985 | 300 | 0.015 | ||
10 | 955.93 | 881.49 | 0.046 | |||
20 | 954.67 | 906.69 | 0.047 | |||
40 | 952.63 | 947.37 | 0.050 | |||
Concentration | 80 | 954.25 | 915.02 | 0.048 | ||
of SDS | 100 | 955.20 | 896.11 | 0.047 | ||
(mg·L−1) | 200 | 957.41 | 851.81 | 0.044 | ||
600 | 962.73 | 745.33 | 0.039 | |||
1000 | 963.44 | 731.16 | 0.038 | |||
Dose (mg·L−1) | 0.4 | 800 | 500 | 0.4 | ||
0.6 | 646.6 | 589 | 0.86 | |||
0.8 | 434.4 | 707 | 1.93 | |||
1.0 | 292 | 708 | 2.42 |
Name Atomic% | Chitosan | SDS100 -Chitosan | SDS600 -Chitosan | SDS6000 -Chitosan |
---|---|---|---|---|
Si 2p | 4.41 | 2.06 | 0.81 | |
S 2p | 2.78 | 6.85 | ||
C 1s | 77.1 | 76.52 | 75.91 | 67.66 |
Cl 2p3 | 3.94 | 3.55 | ||
Ca 2p | 0.27 | 0.33 | 1.1 | |
N 1s | 1.75 | 1.69 | ||
O 1s | 14.27 | 15.78 | 14.34 | 20.19 |
Metal | T (℃) | Langmuir Isotherm | Freundlich Isotherm | ||||
---|---|---|---|---|---|---|---|
Qmax(mg/g) | RL | R2 | KF(mg/g) | 1/n | R2 | ||
Cr(VI) | 25 | 3.23 | 0.308×10−4 | 0.960 | 3.01 | 0.700 | 0.921 |
Adsorbent | qe (P-mg/g) | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|---|
qe (P-mg/g) | k1 (min−1) | R2 | qe (P-mg/g) | k2 (g/mg·min−1) | R2 | ||
SDS40 | 1.09 | 1.04 | 0.0610 | 0.997 | 1.26 | 0.0718 | 0.994 |
T(K) | ΔH(kJ/mol) | ΔS(J/mol) | ΔG(kJ/mol) | |
---|---|---|---|---|
288 | 80.70 | 288.18 | −2.34 | |
298 | - | - | −5.22 | |
308 | - | - | −8.10 | |
318 | - | - | −10.98 |
Adsorbents | Final Concentration (mg·L−1) | Adsorption Capacity (mg·g−1) | Partition Coefficient (mg·g−1·mM−1) | Reference |
---|---|---|---|---|
Magnetic Chitosan | 30.6 | 69.4 | 2.3 | [14] |
Carboxymethyl Chitosan-Silicon Dioxide | 39.9 | 80.7 | 2.1 | [30] |
Chitosan-g-poly/silica | 44.3 × 10−3 | 55.7 × 10−3 | 1.3 | [74] |
Crosslinked chitosan bentonite composite | 210.87 | 89.1 | 0.42 | [75] |
Graphene oxide/chitosan | 13.8 | 86.2 | 6.2 | [76] |
Ethylenediamine-magnetic chitosan | 148.2 | 51.8 | 0.35 | [77] |
SDS-chitosan | 0.34 | 3.23 | 9.5 | This study |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Kishima, C.; Zhang, H.; Miyamoto, N.; Kano, N. Removal of Chromium(VI) by Chitosan Beads Modified with Sodium Dodecyl Sulfate (SDS). Appl. Sci. 2020, 10, 4745. https://doi.org/10.3390/app10144745
Du X, Kishima C, Zhang H, Miyamoto N, Kano N. Removal of Chromium(VI) by Chitosan Beads Modified with Sodium Dodecyl Sulfate (SDS). Applied Sciences. 2020; 10(14):4745. https://doi.org/10.3390/app10144745
Chicago/Turabian StyleDu, Xiaoyu, Chihiro Kishima, Haixin Zhang, Naoto Miyamoto, and Naoki Kano. 2020. "Removal of Chromium(VI) by Chitosan Beads Modified with Sodium Dodecyl Sulfate (SDS)" Applied Sciences 10, no. 14: 4745. https://doi.org/10.3390/app10144745
APA StyleDu, X., Kishima, C., Zhang, H., Miyamoto, N., & Kano, N. (2020). Removal of Chromium(VI) by Chitosan Beads Modified with Sodium Dodecyl Sulfate (SDS). Applied Sciences, 10(14), 4745. https://doi.org/10.3390/app10144745