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Abstract: The Coulomb focusing effect on the electron–atom bremsstrahlung spectrum is investigated
in nonthermal Lorentzian plasmas. The universal expression of the cross section of nonrelativistic
electron–atom bremsstrahlung process is obtained by the solution of the Thomas-Fermi equation with
the effective atomic charge. The effective Coulomb focusing for the electron–atom bremsstrahlung cross
section near the threshold domain is also investigated by adopting the modified Elwert-Sommerfeld
factor with the mean effective charge for the bremsstrahlung process. In addition, the bremsstrahlung
emission rates are obtained by considering encounters between nonthermal electrons and atoms such
as Fe and W atoms. We found that the bremsstrahlung emission rates for nonthermal electron–atoms
are lower than those for thermal plasmas. Various nonthermal effects on the bremsstrahlung emission
rates in Lorentzian plasmas are also discussed.
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1. Introduction

The bremsstrahlung processes [1–12] in thermal and nonthermal plasmas have received
considerable attention in astrophysics and plasma physics since the continuum X-ray spectra due to
the electron–nucleus and electron–atom bremsstrahlung processes have long been used for plasma
diagnostics in various weakly coupled astrophysical plasmas. Most research papers have considered the
bremsstrahlung process for the electron-ion collision rather than for the electron–atom process, because
of the smaller population of neutral atoms in highly ionized plasmas. Especially the electron–nucleus
bremsstrahlung cross section [13] in weakly coupled plasmas has been extensively investigated by
using the Yukawa-type Debye-Hückel potential. The electron–atom bremsstrahlung process [9,14,15]
is quite important in weakly ionized plasmas, i.e., where the scattering of electrons by neutral atoms is
important. In the electron–atom bremsstrahlung or scattering case, the screening [1,9] by the bound
atomic electrons plays a crucial role in the cross section and the spectrum of the bremsstrahlung
process. The influence of atomic screening on the electron–atom bremsstrahlung cross section can be
studied with the Thomas-Fermi statistical model [16] for many-electron atoms. In addition, the doubly
differential electron–atom bremsstrahlung cross section with form factor based on the approximate
self-consistent Dirac-Hartree-Fock-Slater calculations has been obtained at high energies [15]. It is
obvious that the Coulomb focusing factor for the electron-ion bremsstrahlung process is not the same
with the electron–atom bremsstrahlung process because the effective charge of the bound atomic
electrons is different from the total charge of the nucleus. However, the influence of Coulomb focusing
on the electron–atom bremsstrahlung cross section and the radiation spectrum has not been investigated
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yet. In many plasmas, the coupling of the thermal plasma with the external radiation field produces
the nonthermal plasma whose distribution is quite different from that of a Maxwellian plasma [17,18].
It has also been shown that the plasma electrons that deviated from the Maxwellian distribution
are well represented by the Lorentzian distribution since the interaction potential in nonthermal
plasmas cannot be appropriately obtained by using the conventional Debye-Hückel potential [18–21].
Therefore, we are motivated to study the bremsstrahlung process for electron–atom collision under
the influence of atomic screening and Coulomb focusing correction in nonthermal plasmas. In this
work, we derive the bremsstrahlung cross section for the electron–atom system by employing the
Thomas-Fermi method with the effective charge of the atom. The Coulomb focusing correction for the
electron–atom bremsstrahlung cross section near the threshold domain is also obtained by the modified
Elwert-Sommerfeld factor with the mean effective charge for the electron–atom interaction based on the
Thomas-Fermi solution. In addition, we obtain the Coulomb focused bremsstrahlung emission rates
by encounters of nonthermal electrons and neutral atoms such as Fe (iron) and W (tungsten) atoms.

This paper is composed as follows: in Section 2, we introduce the Thomas-Fermi model for
atoms and discuss the solution of the Thomas-Fermi model. We also obtain the mean effective charge
based on the Thomas-Fermi method. In Section 3, we discuss the nonrelativistic electron–atom
bremsstrahlung process and the Elwert-Sommerfeld Coulomb focusing factor. In Section 4, we
obtain the modified electron–atom bremsstrahlung cross section by using the Thomas-Fermi solution
including the Coulomb focusing factor with the mean effective charge of many-electron atoms. In
Section 5, we obtain the closed form of the bremsstrahlung emission rates in nonthermal plasmas
using the Lorentzian distribution function. In Section 6, the influence of nonthermal plasma on the
electron–atom bremsstrahlung spectrum is investigated in nonthermal plasmas represented by the
Lorentzian distribution function. Finally, the conclusions are given in Section 7.

2. Mean Effective Charge

The electron–atom interaction potential Ve−a(r) for the electron–atom bremsstrahlung process is
represented by:

Ve−a(r) = −
Ze2

r
−

∫
d3r′

eρe(r′)
| r − r′ |

, (1)

where r and r′ denote the position of the projectile electron with respect to the center of the target atom
and the position of the bound electron, respectively, Z is the charge number of the nucleus, e is the
electron charge, and ρb(r′)[ = − enb(r′)] is the bound electron density of the target atom with nb(r′)
being the bound electron number density. Then, the Fourier transformation Ṽe−a(q) of Equation (1) is
obtained as:

Ṽe−a(q) =
∫

d3r e− i q · r Ve−a(r)

= − 4πe2

q2 [Z − Fa(q)] ,
(2)

where Fa(q) denote the atomic form factor due to the distribution of bound atomic electrons given by
Fa(q) =

∫
d3r′ e− i q · rnb(r′). It is obvious that Fa(q) is zero in the electron-ion bremsstrahlung process

since there are no atomic electrons in the target ion. The Thomas-Fermi model [22] is very useful to
study the process in the many-electron atoms and the collision dynamics in the neutral atoms. Using
the typical parameters in the Thomas-Fermi model, Fa(q) is represented by:

Fa(q) = 4π
q

b2

Z2/3

∫
∞

0 dx x sin(qx) nb(x)

= Z[1 − q H(q)] ,
(3)

where the parameter b = (1/2)(3π/4)2/3a0, a0( = }2/me2) is the Bohr radius of the hydrogen atom,
} is the Planck constant divided by 2π, m is the electron mass, q (≡ qb/Z1/3) is the dimensionless
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momentum transfer, x (≡ r′Z1/3/b) is the dimensionless distance, and nb(x) is the Thomas-Fermi
number density given by:

nb(x) =
Z2

4πb3

[
X(x)

x

]3/2

, (4)

with X(x) being the solution of the Thomas-Fermi equation, d2X/dx2 = X3/2/x1/2 (with the boundary
condition X(0) = 1), and H(q) is the screening function of the atomic electrons in the Thomas-Fermi
scheme defined by:

H(q) =

∫
∞

0
dx sin(qx)X(x) . (5)

The approximate Thomas-Fermi solution can be often given in the form of single-exponential
Mott-Massey solution [9,16], such as:

XMM(x) � e− sx , (6)

where s � 0.66. Since the boundary conditions [16] for the Thomas-Fermi equation, d2X/dx2 =

X3/2/x1/2, are known as X(0) = 1 and X(∞) = 0, the single-exponential approximate Mott-Massey
solution, XMM(x) � e− sx , would be reasonably reliable to investigate the atomic collision and radiation
processes including many-electron neutral atoms. By taking of the Mott-Massey’s Thomas-Fermi
solution given by Equation (6), the atomic form factor is obtained as:

Fa(q) = Z

1 −
q2

q2 + s2

 . (7)

Now, Equation (2) based on Mott-Massey’s single-exponential Thomas-Fermi solution becomes:

Ṽ′e−a(q) = −
4πZe2

q2

(
b

Z1/3

)2 q2

q2 + s2
. (8)

Hence, the effective charge of the target atom can take the form:

Ze f f (q) = Z − Fa(q)

= Z q2

q2 + s2
.

(9)

The mean effective charge Ze f f for the electron–atom bremsstrahlung process is then given by:

Ze f f (qm) = Z q2
m

q2
m + s2

=
Z q2

m
q2

m + s2Z2/3/b2 ,
(10)

where qm is defined by qm( = qmb/Z1/3) = (1/2)(3π/4)2/3Z2/3 and qm is the maximum momentum
transfer given by qm ≈ 1/aZ, with aZ( = a0/Z) being the Bohr radius of the hydrogenic ion and Ze
being the nuclear charge. Here, it is expected that Equation (10) is the universal expression of the mean
effective charge Ze f f for the bremsstrahlung and collision processes with many electron atoms since
the effective charge is obtained by the Thomas-Fermi solution and the maximum momentum transfer
is given by the main contribution region for the binary-encounter. Since the mean effective charge
Ze f f has a universal expression, Equation (10) can be the general expression of the effective charge for
collision and radiation processes including neutral atoms with nuclear charge Ze.
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3. Electron–Atom Bremsstrahlung and Coulomb Focusing

Using the second-order nonrelativistic perturbation analysis [8,14], the differential electron-ion
bremsstrahlung cross section d2σb can be written as:

d2σb = dσC·dWω , (11)

where dσC(q) is the differential elastic scattering cross section:

dσC(q) =
1

2π}v2
0

∣∣∣ Ṽ(q)
∣∣∣2q dq , (12)

v0 is the initial velocity of the projectile electron, Ṽ(q) is the Fourier transformation of the
interaction potential V(r):

Ṽ(q) =

∫
d3r e− iq · r V(r) , (13)

where q( = k0 − k f ) is the momentum transfer, and k0 and k f are the wave vectors of the initial
and final states of the projectile electron, respectively. Here, dWω/dΩ is the differential probability of
emitting a photon of frequency between ω and ω + dω in the solid angle dΩ:

dWω

dΩ
=

α

4π2 Λ2
∑

ê

∣∣∣ ê ·q ∣∣∣2 dω
ω

, (14)

where Λ is the Compton wave number given by Λ = }/mc, α is the fine structure constant, and ê
is the unit photon polarization vector. By integrating over the directions of the radiation photon in
Equation (14), we obtain the bremsstrahlung cross section in the form:

d2σb(q) =
1

3π2β2
0

α

(mc2)2

∣∣∣ Ṽ(q)
∣∣∣2q3 dq

dω
ω

, (15)

since the summation over polarizations gives the angular distribution factor sin2 θ, where θ is the angle
between k0 and q. In Equation (15), the quantity β0 is defined as β0 = v0/c. In the nonrelativistic Born
approximation, it is known that the domain of applicability is v0 > Zαc since the projectile energy
E0(≡ mv2

0/2) is greater than Z2Ry, where Ry( = me4/2}2
∫
≈ 13.6 eV) is the Rydberg constant. It

has been also known that the nonrelativistic Bethe-Heitler formula is invalid for the final state of
the projectile electron near the cutoff region mv2

0/2
∫
≈ }ω owing to the inaccuracy of the Born

approximation for v0 ≈ Zαc. Therefore, the nonrelativistic Bethe-Heitler formula must be corrected
for hard spectral photon energies. In order to correct the Bethe-Heitler cross section, we must consider
the motion of the initial and final states of the projectile electron in the external field of the target ion
using a continuum wave function for the Coulomb potential since the final Coulomb wave function
must be different from the initial Coulomb wave function due to the momentum transfer and the
energy loss of the initial projectile electron. It has been shown that the Coulomb correction to the
nonrelativistic Bethe-Heitler bremsstrahlung formula [1,3] using the Born approximation is obtained by
the Elwert-Sommerfeld factor which is given by the ratio of the absolute square of the Coulomb wave
functions at infinity (r → ∞) and at the origin (r = 0). The Coulomb correction in the Hamiltonian
transition matrix element can be well approximated by the ratio of the absolute square of the final

Coulomb s-wave function [22]
∣∣∣ Ψ f (0)

∣∣∣2[ = πη f eπη f /sinh(πη f )] to the initial Coulomb s-wave wave

function
∣∣∣ Ψi(0)

∣∣∣2[ = πηieπηi /sinh(πηi)] at the origin, since l = 0 survives for r → 0 and the mutual
Coulomb interaction between the electron and the target ion is quite effective for the small separation
due to the Coulomb focusing effect, where η f = Ze2/}v f and ηi = Ze2/}v0. Therefore, the square of
the Coulomb wave function at the origin, r = 0, when the incident amplitude of the wave normalized

to unity at infinity, r → ∞ , is given by
∣∣∣ Ψ(0)

∣∣∣2[ = πηeπη/sinh(πη)]. It is quite obvious that the main
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contribution to emission due to the bremsstrahlung process comes from the wave near the center of
the scattering system since the acceleration of the projectile electron is largest near the scattering center.
Hence, the Coulomb correction known as the Elwert-Sommerfeld Coulomb focusing factor [3,14,23] is
represented by:

fCF(ηi, η f ) =

∣∣∣ Ψ f (0)
∣∣∣2∣∣∣ Ψi(0)
∣∣∣2 =

η f

ηi

1 − exp(− 2πηi)

1 − exp(− 2πη f )
, (16)

and fCF(ηi, η f ) → 1 in the Born limit, i.e., ηi >> 1 and η f >> 1. It has been also shown that the
Elwert-Sommerfeld factor can correctly modified the electron-impact excitation cross section near the
threshold domain [23]. As we see in Equation (15), the Coulomb focusing factor diverges at the spectral
cutoff. However, this divergence compensates for the vanishing of the nonrelativistic Bethe-Heitler
cross section at the cutoff, correctly resulting in a finite Bethe-Heitler cross section at the cutoff spectrum.
The detailed discussion of the Coulomb correction using the Elwert-Sommerfeld Coulomb focusing
factor is given in a recent work of Gould [14]. In the nonrelativistic electron–atom bremsstrahlung
process, the charge number Z can be replaced by the effective charge number Ze f f [Equation (10)],
including the influence of screening by bound electrons.

4. Coulomb Focused Bremsstrahlung Cross Section

Using Equations (4) and (15) with the integration over the momentum transfer q for the domain
qmin[ = (k0 − k f )] ≤ q ≤ qmax[ = (k0 + k f )], the electron–atom bremsstrahlung cross section [9]
(dσb/dε)MM

e−a per photon energy using Mott-Massey’s single-exponential Thomas-Fermi solution
XMM(x) is given by:

( dσb
dε

)MM

e−a
= 16

3
Z2αr2

0c2

εv2
0

{
1
2 ln

[
ξ

2
+ (
√

E0 +
√

E0 − ε)
2

ξ
2
+ (
√

E0 −
√

E0 − ε)
2

]
+

2ξ
2√

E0

√
E0 − ε

[ξ
2
+ (
√

E0 +
√

E0 − ε)
2
][ξ

2
+ (
√

E0 −
√

E0 − ε)
2
]

}
,

(17)

where ε( = }ω) is the bremsstrahlung photon energy, r0( = e2/mc2) is the classical electron radius,
ξ = ξZ1/3, ξ( = sa0/b) = 0.7455, E0 ≡ E0/Ry, and ε ≡ ε/Ry. For the electron-ion bremsstrahlung
process [14], the expression of the bremsstrahlung cross section (dσb/dε)e−i is rather simple due to the
omission of the screening effects:

(
dσb
dε

)
e−i

=
16
3

Z2αr2
0c2

εv2
0

ln


√

E0 +

√
E0 − ε√

E0 −

√
E0 − ε

 . (18)

However, the Coulomb focusing effect in the electron–atom bremsstrahlung process has not been
investigated in the previous work of Jung and Lee [9], thus, the electron–atom bremsstrahlung cross
section has to be corrected in the low-energy region. It is expected that Equations (6) and (15) provide
the Coulomb focusing for the bremsstrahlung with neutral atoms since Ze f f describes the effective
charge of the neutral atom by the electron-encounter since the Coulomb focusing factor is needed
for the modification of the bremsstrahlung cross section near the threshold region. The modified
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Elwert-Sommerfeld Coulomb focusing factor fCF(E0, ε, Ze f f ) for the electron–atom bremsstrahlung
process is then given by:

fCF(E0, ε, Ze f f ) = v0
v f

1− exp(− 2πZe f fαc/v0)

1− exp(− 2πZe f fαc/v f )

=

√
E0√

E0 − ε

1− exp

− 2π√
E0

Z3

Z2 + ξ
2


1− exp

− 2π√
E0 − ε

Z3

Z2 + ξ
2

 ,
(19)

since the expression of the standard Elwert-Sommerfeld factor [14] is given by fCF(ηi, η f ) =

(η f /ηi)[1 − exp(− 2πηi)]/[1 − exp(− 2πη f )]. Hence, Equation (19) is the universal formula for
the Coulomb focusing factor for the bremsstrahlung process with neutral atoms. The scaled form
of the Coulomb focused nonrelativistic electron–atom bremsstrahlung cross section (dσb/dε)CF

e−a[ =

(dσb/dε)MM
e−a fCF(E0, ε, Ze f f )/(πa2

0/Ry)] per photon energy in units of πa2
0/Ry including the influence

of bound atomic electrons and Coulomb focusing at the spectral cutoff is then represented by:

( dσb
dε

)CF

e−a
= 16

3π
Z2α3

ε
√

E0

√
E0 − ε

{
1
2 ln

[
ξ

2
+ (
√

E0 +
√

E0 − ε)
2

ξ
2
+ (
√

E0 −
√

E0 − ε)
2

]
−

2ξ
2√

E0

√
E0 − ε

[ξ
2
+ (
√

E0 +
√

E0 − ε)
2
][ξ

2
+ (
√

E0 −
√

E0 − ε)
2
]

}

×

1− exp

− 2π√
E0

Z3

Z2 + ξ
2


1− exp

− 2π√
E0 − ε

Z3

Z2 + ξ
2

 .

(20)

Since the electron–atom bremsstrahlung cross section [Equation (20)] has been obtained by
the Thomas-Fermi solution XMM(x) and the modified Elwert-Sommerfeld Coulomb focusing factor
fCF(E0, ε, Ze f f ) with the mean effective charge Ze f f for the electron–atom interaction, the modified

electron–atom bremsstrahlung cross section (dσb/dε)CF
e−a would be quite reliable for investigating the

physical properties of atomic bremsstrahlung spectra over wide range of electron energy including
the spectral cutoff region. The bremsstrahlung emission rates in nonthermal Lorentzian astrophysical
plasmas will also be discussed in the following section.

5. Bremsstrahlung Emission Rates in Lorentzian Kappa Plasmas

In most astrophysical and space plasmas, the external disturbances in thermal plasmas would
produce the high-energy tail in the distribution of plasma electrons so that the deviations from the
thermal Maxwellian distribution is expected due to the interaction between the plasma and the
external perturbations. A pioneering work by Hasegawa, Mima, and Duong-van [17] showed that
the nonthermal distribution due to the entropy generalization mechanism in the presence of external
radiation field in astrophysical plasmas obeys the Lorentzian (kappa) velocity distribution function
fL(v) [17,18,24] in the form:

fL(v) = ne

( m
2πκEκ

)3/2 Γ(κ+ 1)
Γ(κ− 1/2)

(
1 +

mv2

2κEκ

)− (κ+ 1)

, (21)

where v and ne are the velocity and the density of electron, κ(> 3/2) is the spectral index in the
Lorentzian distribution, Eκ[≡ (κ − 3/2)EM/κ] is the effective energy of the Lorentzian electrons,
EM ≡ kBT, kB is the Boltzmann constant, T is the electron temperature, and Γ(z) represents the
gamma function with the argument z. Then, the differential Lorentzian electron distribution function
can be represented by dnL(v) = 4πv2 fL(v)dv. It has been also shown that the radiation interaction
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modifies the conventional diffusion process in astrophysical plasmas so that the correction on the
total diffusion coefficient can be represented by the factor (1 + αRv2

)
, where αR is a constant related

to the external radiation field intensity, since the non-Coulombic diffusion coefficient is found to
be proportional to the square of the electron velocity v and can be also induced by the interaction
with the field [17]. It is also interesting to note that the Lorentzian distribution acquiesces a simple

power-law form at high energies, i.e., we have fL(v) ∝ (mv2/2κEκ)
− (κ+ 1) when mv2/2 >> κEκ.

Moreover, the nonthermal astrophysical Lorentzian distribution with the infinity spectral index κ,
equivalent to the absence of the external interaction, turns out to be the thermal distribution for all
velocities such as fL(κ → ∞) ∝ exp(−mv2/2Eκ→∞) owing to the mathematical limiting relation:
lim

t→∞
(1 + x/t)t = ex, where Eκ→∞ corresponds to the thermal energy in the Maxwellian plasmas,

i.e., kBT( = EM) [17]. Hence, we have found that the Lorentzian distribution fL(v) encompasses a
wide range of plasma velocity distributions from the Maxwellian distribution to the inverse power
law distribution. In addition, the effective Debye length λκ in nonthermal Lorentzian plasmas can be
represented by λκ = λDµκ [18] where λD is the conventional Debye length in Maxwellian plasmas
and µκ[≡

√
(κ − 3/2)/(κ − 1/2)] stands for the fractional measure of the nonthermal population in

astrophysical Lorentzian plasmas. Hence, the bremsstrahlung emission rate Pε for a given differential
Lorentzian electron density distribution dnL(v0) can be written by:

Pε =
dErad

dVdtdε
=

∫
dnL(v0) na v0 ε

(
dσb
dε

)MM

e−a
fCF(E0, ε, Ze f f ) , (22)

where Erad is the bremsstrahlung radiation energy and na is the atom density. Then, the scaled
bremsstrahlung emission rate Pε( = Pε/P0) in units of P0[ = (32/3π1/2)r2

0cnena] is represented by:

Pε = Z2

(κEκ)
3/2

Γ(κ+ 1)
Γ(κ− 1/2)

∫
∞

ε
dE0

(
1 +

E
2
0

2κEκ

)− (κ+ 1)

×

√
E0√

E0 − ε

1− exp

− 2π√
E0

Z3

Z2 + ξ
2


1− exp

− 2π√
E0 − ε

Z3

Z2 + ξ
2


×

{
1
2 ln

[
ξ

2
+ (
√

E0 +
√

E0 − ε)
2

ξ
2
+ (
√

E0 −
√

E0 − ε)
2

]
+

2ξ
2√

E0

√
E0 − ε

[ξ
2
+ (
√

E0 +
√

E0 − ε)
2
][ξ

2
+ (
√

E0 −
√

E0 − ε)
2
]

}
,

(23)

where ε in the lower bound of the integral represents the cutoff, i.e., mv2
0/2 ≈ }ω, Eκ ≡ Eκ/Ry[ =

T(κ − 3/2)/κ], and T ≡ kBT/Ry. The nonthermal effects on the bremsstrahlung emission rate as well
as the electron–atom bremsstrahlung cross sections will be discussed in the following section.

6. Nonthermal and Coulomb Focusing Effects in Lorentzian (Kappa) Plasmas

The neutral elements in a plasma can be detected by using spatially resolved plasma
spectroscopy [25]. Since Fe and W atoms are important elements in astrophysical and laboratory
plasmas, we shall consider the electron–atom bremsstrahlung process with those elements in nonthermal
Lorentzian plasmas. In order to investigate the behavior of the electron–atom bremsstrahlung in wide
spectral ranges such as the soft- and hard-photon ranges, we choose E0 = 15 (>> 1), i.e., E0 >> Ry.

Figure 1 shows the electron-ion bremsstrahlung cross sections (dσb/dε)e−i and the electron–atom
bremsstrahlung cross sections (dσb/dε)e−a per photon energy in units of πa2

0/Ry as functions of the
scaled photon energy ε for W and Fe atoms. In this figure, we see that the electron–atom bremsstrahlung
cross section is quite different from the electron-ion bremsstrahlung cross section due to the screening
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effect caused by the bound electrons in the atom. We also see that the bremsstrahlung cross section
is suppressed by the influence of bound atomic electrons. Figure 2 represents the scaled form of the
electron–atom bremsstrahlung cross sections (dσb/dε)e−a per photon energy in units of πa2

0/Ry as
functions of the scaled photon energy ε for W and Fe atoms. As shown in this figure, the Coulomb
focusing enhances the bremsstrahlung cross section, especially for high-energy photons, for example,
about 30% at ε = 6. In addition, we see that the Coulomb focusing effect on the electron–atom
bremsstrahlung cross section increases with an increase of the radiation photon energy. Hence, the
Coulomb focused electron–atom bremsstrahlung cross sections including the influence of Coulomb
focusing would be especially accurate for high-energy photons since the Coulomb focusing effect is
significant near the cutoff spectral domain. Figure 3 shows the bremsstrahlung emission rate Pε in
units of P0[ = (32/3π1/2)r2

0cnena] as a function of ε for W atom with different values of κ when the
Coulomb focusing is not considered. Figure 4 shows the Coulomb focused bremsstrahlung emission
rate Pε, CF in units of P0[ = (32/3π1/2)r2

0cnena] as a function of ε for W atom with different κ including
the Coulomb focusing effect. Figure 5 shows Pε as a function of ε for Fe atom with different κ excluding
the Coulomb focusing effect. Figure 6 shows Pε, CF as a function of ε for Fe atom with different κ
including the effect of Coulomb focusing. As shown in Figures 3–6, the bremsstrahlung emission rates
for the electron–atom bremsstrahlung process in Maxwellian plasmas are always greater than those
in nonthermal plasmas. In addition, the nonthermal effects on the bremsstrahlung emission rate for
the soft photon case are found to be more significant than those for the hard photon case. Moreover,
the influence of Coulomb focusing on the bremsstrahlung emission rate decreases with a decrease
of the spectral index κ. Therefore, the Coulomb focusing effect on the bremsstrahlung emission rate
is more significant in thermal plasmas and in hard spectral ranges. As shown in these figures, the
nonthermal effect on Pε, CF decreases with decreasing ε. Hence, the classification of the nonthermal
character of plasmas by using the bremsstrahlung spectrum would be quite significant in hard spectral
regions. It is known that the states of free-electron in a dense plasma would be blocked by electrons
occupying a quantum state by using the blocking factor [26,27]. The quantum blocking effect on the
bremsstrahlung spectrum in dense quantum plasmas will be treated elsewhere.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 16 
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Figure 1. The scaled form of the bremsstrahlung cross section per photon energy in units of πa2
0/Ry

as a function of the scaled photon energy ε for W and Fe atoms when E0 = 15. The black solid line
is the electron-ion bremsstrahlung cross section (dσb/dε)e−i for the W atom. The blue dashed line is
the electron–atom bremsstrahlung cross section (dσb/dε)CF

e−a for the W atom including the influence
of Coulomb focusing. The green dot-dashed line is the electron-ion bremsstrahlung cross section
(dσb/dε)e−i for the Fe atom. The red dotted line is the electron–atom bremsstrahlung cross section
(dσb/dε)CF

e−a for the Fe atom including the influence of Coulomb focusing.
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Figure 2. The scaled form of the electron–atom bremsstrahlung cross section (dσb/dε)e−a per photon
energy in units of πa2

0/Ry as a function of the scaled photon energy ε for W and Fe atoms when E0 = 15.

The black solid line is the Coulomb focused electron–atom bremsstrahlung cross section (dσb/dε)CF
e−a

for the W atom including the influence of Coulomb focusing. The blue dashed line is the electron–atom
bremsstrahlung cross section (dσb/dε)e−a for the W atom without the Coulomb focusing effect. The
green dot-dashed line is the Coulomb focused electron–atom bremsstrahlung cross section (dσb/dε)CF

e−a
for the Fe atom including the influence of Coulomb focusing. The red dotted line is the electron–atom
bremsstrahlung cross section (dσb/dε)e−a for the Fe atom without the Coulomb focusing effect.
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Figure 3. The bremsstrahlung emission rate Pε in units of P0[ = (32/3π1/2)r2
0cnena] as a function of

the scaled photon energy ε for the W atom when E0 = 15 without the Coulomb focusing effect. The
solid line is the case of the thermal case, i.e., κ → ∞ . The dotted line is the case of κ = 3. The dashed
is the case of κ = 2.
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Figure 4. The Coulomb focused bremsstrahlung emission rate Pε in units of P0[ = (32/3π1/2)r2
0cnena]

as a function of the scaled photon energy ε for the W atom when E0 = 15 including the influence of
Coulomb focusing. The solid line is the case of the thermal case, i.e., κ → ∞ . The dotted line is the
case of κ = 3. The dashed is the case of κ = 2.
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Figure 5. The bremsstrahlung emission rate Pε in units of P0[ = (32/3π1/2)r2
0cnena] as a function of

the scaled photon energy ε for the Fe atom when E0 = 15 without the Coulomb focusing effect. The
solid line is the case of the thermal case, i.e., κ → ∞ . The dotted line is the case of κ = 3. The dashed
is the case of κ = 2.
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Figure 6. The Coulomb focused bremsstrahlung emission rate Pε, CF in units of P0[ = (32/3π1/2)r2
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as a function of the scaled photon energy ε for the W atom when E0 = 15 including the influence of
Coulomb focusing. The solid line is the case of the thermal case, i.e., κ → ∞ . The dotted line is the
case of κ = 3. The dashed is the case of κ = 2.

7. Conclusions

In this work, we have investigated the Coulomb focused bremsstrahlung spectrum due to the
electron–atom bremsstrahlung process in nonthermal plasmas. We derived the universal expression
of the electron–atom bremsstrahlung cross section by using the Thomas-Fermi model with the
effective charge method. We also derived the effective Coulomb focusing factor for the electron–atom
bremsstrahlung process by using the modified Elwert-Sommerfeld factor with the mean effective charge
for the binary-encounter. The Coulomb focused electron–atom bremsstrahlung cross section and the
Coulomb focused bremsstrahlung emission rates in Lorentzian plasmas with Fe and W atoms were also
obtained. The Coulomb focusing is found to increase the bremsstrahlung cross section. The effect of the
Coulomb focusing on the electron–atom bremsstrahlung cross section becomes bigger with an increase
of the radiation photon energy. Moreover, the bremsstrahlung emission rates for the electron–atom
bremsstrahlung process in thermal Maxwellian plasmas are always greater than those in nonthermal
Lorentzian plasmas. The nonthermal effect on the bremsstrahlung emission rate for the soft photon case
is more significant than those for the hard photon case. Hence, it is expected that the hard-photon X-ray
spectroscopy of the electron–atom bremsstrahlung process would be useful to explore the physical
properties of nonthermal plasmas. In addition, we have found that the Coulomb focusing effect on
the bremsstrahlung emission rate is important in thermal plasmas and in hard spectral ranges. It was
shown that the synchrotron radiation image would be important for the investigation of the degree of
anisotropy in fusion plasmas [28]. It was also shown that the screening effect plays a significant role in
the photoionization process in weakly coupled plasmas [29,30]. Hence, the Coulomb focusing effects
on the bremsstrahlung process in magnetized plasmas and on the photoionization process will also be
investigated elsewhere by using the modified effective charge method [31,32]. Recently, the physical
significance of dusty plasmas has received a considerable attention since the dusty plasmas can be
found in various astrophysical complex plasmas as well as in laboratory plasma devices [33–38]. The
investigation of the influence of Coulomb focusing on the bremsstrahlung process in dusty plasmas will
also be treated elsewhere since the charging of the dust grains takes a crucial role in the bremsstrahlung
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spectrum. It is quite obvious that the simple universal theoretical model such as the Thomas-Fermi
model [39] provides a necessary intellectual framework for the collision and radiation processes as well
as the geometrical configurations of the physical system. In addition, the simple analytical model can
be used to understand simulations and experiments [40,41], and to extract more physical information
from them. Hence, our results for the analytic expressions of the Coulomb focused electron–atom
bremsstrahlung cross section and the Coulomb focused bremsstrahlung emission rates in Lorentzian
plasmas would provide the useful information on the astrophysical and laboratory nonthermal X-ray
radiations. In this work, we have found that the nonthermal character of the plasma as well as the
Coulomb focusing effect plays a very important role in the electron–atom bremsstrahlung process
in Lorentzian plasma. These results should be useful for the investigation of radiation processes in
nonthermal plasmas.
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