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Featured Application: Forensic analysis of occupational injuries for use in civil litigation.

Abstract: Background: Biomechanists are often asked to provide expert opinions in legal proceedings,
especially personal injury cases. This often involves using deterministic analysis methods, although
the expert is expected to opine using a civil standard of “more likely than not” that is inherently
probabilistic. Methods: A method is proposed for converting a class of deterministic biomechanical
models into hybrid Bayesian networks that produce a probability well suited for addressing the civil
standard of proof. The method was developed for spinal injury during lifting. Its generalizability
was assessed by applying it to slip and fall events based on the coefficients of friction at the shoe–floor
interface. Results: The proposed method is shown to be generalizable beyond lifting by applying it to
a slip and fall event. Both the lifting and slip and fall models showed that incorporating evidence of
injury could change the probabilities of critical quantities exceeding a threshold from “less likely than
not” to “more likely than not.” Conclusions: The present work shows that it is possible to develop
Bayesian networks for legal use based on laws of engineering mechanics and probabilistic descriptions
of measurement error and human variability.
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1. Introduction

Biomechanics has many applications, including litigation. Expert witnesses play an important
role in personal injury legal cases. In industries lacking workers’ compensation insurance (interstate
railroads and maritime in the United States), experts in biomechanics are often retained to analyze
workplace factors and opine on whether they were responsible for the injury central to a civil case
against the employer. Litigation can also extend to manufacturers of equipment in industries with
no-fault workers’ compensation. Low back injuries are well known to be sources of employee litigation.
Outside the workplace, injuries resulting from slips and falls lead to civil lawsuits against landlords,
businesses, and others responsible for maintaining walking surface conditions.

Biomechanists serving as expert witnesses rely on adaptations of the standard methods of forensic
engineering and applied research. Case materials are reviewed and site visits are made to make
workplace and environmental measurements. Literature reviews are performed, and engineering
analyses conducted. Analysis methods include mathematical and computational models. There are
typically two issues lawyer may ask a biomechanics expert to opine about: (1) causation, and (2)
negligence. For cases related to negligence, the retaining lawyer seeks an opinion about whether the
employer failed to meet a generally accepted standard.

The expert is expected to state an opinion that is held to a “reasonable scientific certainty” or a
“reasonable degree of engineering certainty” [1]. Since these phrases are not regularly used in science
and engineering, they can be challenging to operationalize for the expert. However, the U.S. Court of
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Appeals stated that “reasonable degree of scientific certainty” means “more likely than not” in Burke v.
Town of Walpole [2]. Unfortunately, traditional computational analysis methods used by biomechanists
are not well suited for addressing a probabilistic standard because they are deterministic.

The purpose of this project was to develop a methodology for creating hybrid Bayesian network
implementations of biomechanical models that can be used to develop an opinion on negligence
using the “more likely than not” interpretation of “reasonable scientific certainty” in civil litigation.
The manuscript is organized into three sections: (1) description of the general method, (2) application
of the general method to two examples (spinal injury during lifting and slip-induced fall injury
during gait), and (3) a discussion. The relevance to the theme of this special issue is that Bayesian
networks, which were developed in the artificial intelligence field, are applied to advance an area in
forensic biomechanics.

2. Materials and Methods

General Method

The scenario considered here is that the biomechanics expert has been asked to opine about whether
the defendant failed to meet a generally accepted standard, which may come from a government
regulator, voluntary standards organization, or other source. Suppose the standard is stated in terms of
acceptable and unacceptable ranges of some quantity that is expressed as a real number. The standard
may be that the quantity is above some threshold, and sometimes it must be below a threshold.
The proposed method for developing a Bayesian network to assist in developing the opinion has
six steps:

1. Identify the deterministic model based on principles of engineering mechanics. This step is
simply constructing a deterministic mathematical engineering mechanics model of the system
using established methods from biomechanics [3]. The model should be one that can be
represented with algebraic equations or inequalities.

2. Represent model as a directed acyclic graph. Nodes represent variables. Directed edges encode
the algebraic relationships between variables. The result should be a directed acyclic graph.
If it cannot be constructed as a directed acyclic graph, the method fails; if it can be, proceed to
step three.

3. Identify nodes that can be modeled as random variables. There are three obvious sources of
uncertainty suitable for inclusion in the model: (1) variability in anthropometric parameters,
(2) variability in human performance, and (3) measurement error of model inputs. People come
in many shapes and sizes, and statistical methods are commonly used to model anthropometric
variation. How a person moves, which drives the kinematic and kinetic inputs to biomechanical
models, can be highly variable due to a variety of reasons including noise in the motor control
system. Finally, empirical measurements have error and statistical methods are well established
for representing the error using probability distributions. Distributions must be selected and
parameters specified.

4. Extend the directed acyclic graph to a full Bayesian network. Identify all leaf nodes in the
directed acyclic graph that have an outdegree (number of edges directed out of a node) of one.
For all of the nodes identified in this step that correspond to variables in step two, apply the
corresponding probability distributions. At this point, the Bayesian network is a stochastic
implementation of a traditional biomechanical model. Note that, at this point, model inputs are
limited to traditional measurements made in biomechanics, and these do not include medical
data available in civil litigation case files.

5. Identify outcomes (events) that have occurred in the legal case of interest that are known in
hindsight. Civil injury litigation often arises because someone has been injured. Add nodes and
edges that model the relationship between variables already in the model and the injury event.
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6. Add node for the probability that a generally accepted standard was exceeded. This is the
node that will be used to address the “more likely than not” interpretation of “reasonable scientific
certainty” put forward in Burke v. Town of Walpole. For the node added in step five, add a node
representing a Boolean variable. Add an edge from the existing node to the new node that does
not transform the variable at all; it merely makes the variable available to the new node. Add a
node probability table to the new node, such that the Boolean variable takes on a value of true
when the variable associated with the incident edge is greater than—or less than, depending on
the context—the generally accepted standard for this variable (the direction should be selected so
that the variable takes on a value of true if the standard is not met).

3. Examples

The inspiration for this project was the realization that a previously published hybrid Bayesian
network model of spinal injury during lifting [4] could easily be extended to produce a probability of
whether the spinal compression force exceeded a generally accepted threshold. The extended model
produced a numerical result that could be directly used to determine if the “more likely than not” criteria
was met. Therefore, the first example will be how the model described in Hughes [4] was extended
for civil litigation. While this specific example suggests that hybrid Bayesian network modeling may
be useful in this context, there remains an open question: “Is the use of Bayesian network modeling
idiosyncratic to spinal modeling or can it be generalized for other applications in biomechanics?”
To address this, another common area of occupational biomechanics in civil injury litigation was
chosen to investigate: a slip resulting in a fall that injures someone. Therefore, a second example of a
slip-induced fall injury was selected for modeling and analysis using a hybrid Bayesian network.

3.1. Spinal Injury During Lifting

Attorneys seek biomechanics experts to opine about the forces acting on the internal biological
tissues associated with the injury involved in litigation. The request can be to opine on whether the
forces exceed some generally accepted threshold established by a government agency or consensus
standards organization. This is relevant to the question of negligence of the employer. The National
Institute for Occupational Safety and Health (NIOSH), which is part of the Centers for Disease Control
and Prevention in the United States, issued a guideline of 3400 N of spinal compression force at
the L5/S1 spinal level [5,6]. NIOSH stated this was the level at which jobs “are hazardous to all
but the healthiest of workers.” Therefore, the biomechanist would conduct an analysis of the lifting
task the plaintiff claimed caused the injury to determine if the spine experienced more than 3400 N
of compression force. NIOSH estimates of compression force used to develop this threshold were
computed using a deterministic static biomechanical model developed by Chaffin [7], which has
been nicely presented in a common textbook on occupational biomechanics [3]. The model was two
dimensional and had rigid body segments joined by hinges. The body segments were hand/forearm
(combined), upper arm, torso/head/neck (combined), pelvis, thigh, lower leg, and foot. Postures for all
segments, except the pelvis, were input by the user based on measurements made in the lab or field.
L5/S1 intervertebral disk orientation, which defined pelvic orientation, was estimated from the torso
and knee angle using a regression model [8]. The mechanical analysis was top–down, meaning that
it sequentially computed the moments and forces at the elbow, shoulder, L5/S1 disc, hip, knee, and
ankle. Erector spinae muscle force was computed using a simplified anatomic representation of the
lumbar region extensor musculature. The reaction force at L5/S1 was decomposed into orthogonal
components to get shear and compression.

Hughes [4] implemented Chaffin’s model [3] as a hybrid Bayesian network so that model inputs
could be treated as random variables. Following publication of the hybrid Bayesian network model,
it was observed that the model could easily be extended to directly address the “more likely than not”
criterion. The remainder of this subsection describes the method by which the model described in
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Hughes [4] was developed and extended to address the civil litigation “more likely than not” standard
of proof. It begins with the first five steps of the methodology proposed in Section 2:

1. Identify the deterministic model based on principles of engineering mechanics. The lifting
model described by Chaffin was selected for implementation (it is described above and presented
in more detail in [3,7]), but the effect of intra-abdominal pressure was not included because its
effectiveness depends on breath control [9].

2. Represent model as a directed acyclic graph. Nodes (written in italics) were made for input
variables (mass in hands and body angles), joint reaction forces and moments, included knee
angle, L5/S1 intervertebral disc angle, and erector spinae force. Directed edges were added to
indicate relationships between forces and moments at ends of body segments, static equilibrium
at the L5/S1 intervertebral disc, the regression equation relating included knee angle and torso
angle to L5/S1 disc angle, and the trigonometry required to decompose the L5/S1 reaction force into
L5/S1 shear force and L5/S1 compression force components. The disc injury portion of the model was
completed by adding directed edges from the L5/S1 compression force and disc compression strength
to disc injury nodes.

3. Identify nodes that can be modeled as random variables. Variables associated with input nodes
(mass in hands and joint angles) were considered to be appropriately modeled as random variables
because of measurement error. Normal probability distributions were selected to model these
quantities as well as disc compression strength.

4. Extend the directed acyclic graph to a full Bayesian network. The resulting directed acyclic
graph was entered into AgenaRisk software (Agena Ltd., Cambridge, UK). The deterministic
mathematical relationships associated with directed edges were also entered to complete the
hybrid Bayesian network.

5. Identify outcomes (events) that have occurred in the legal case of interest that are known in
hindsight. While workplace factors (weight lifted and body segment angles) can be known prior
to injury, the status of the disc injury node was something known in hindsight. By the time the
case file gets to the biomechanics expert, the injury had occurred and been documented in the
case file based on medical examination and possibly operative notes from the spinal surgery.

The model described in Hughes [4] was developed using these five steps. The model is contained
in the upper box (dotted) in Figure 1. The final step, which is the sixth in the process proposed in
Section 2, is contained in the lower box of Figure 1:

6. Add node for the probability that a generally accepted standard was exceeded. One node,
L5/S1 compression force > 3400 N, representing a Boolean variable was added. It took on a value of
true when the L5/S1 compression force exceeded 3400 N.
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Figure 1. A hybrid Bayesian network developed for computing the probability that L5/S1 compression
force exceeds 3400 N. The upper box (dotted) contains the model developed and described in Hughes [4].
This model was developed using steps two through five of the proposed method. The bottom box
(dotted) contains the extension made to make this model directly address the “more likely than
not” standard used in civil litigation (step six of the method). The Boolean random variable L5/S1
compression force > 3400 N was added to extend the model, and it takes on the value of true when the
variable defined by the node L5/S1 compression force > 3400 N and it is false otherwise.

3.2. Injury Resulting from a Slip-Induced Fall

The second hypothetical example, which was selected to investigate whether the modeling
approach described in Section 2 could be extended beyond lifting, involved an injury resulting from a
slip-induced fall. Assume that a person was injured in a fall that occurred as a result of a slip while
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walking on a flat surface, and these facts are undisputed. The plaintiff argues that someone or some
entity responsible for maintaining the walking surface failed to meet a generally accepted standard of
providing sufficient coefficient of friction to prevent a slip and fall. The actual coefficient of friction
(ACOF) is the tribological quantity that the expert will opine about. The ACOF is the ratio of the shear
force acting along the surface required to generate a slip to the normal force acting on the surface. It is
measured using a slip tribometer. The other quantity required in the analysis is the required coefficient
of friction (RCOF), which is the ratio of the shear force to normal force acting on the walking surface by
the shoe during gait. In engineering theory, a slip occurs when the RCOF exceeds the ACOF. The expert
is to opine about whether the ACOF failed to meet a generally accepted standard, suggesting whoever
was responsible for maintaining the walking surface was negligent in some fashion. In the United
States, a common threshold for the ACOF is 0.5, based on a proposal by the Occupational Health and
Safety Administration [10]. That value will be used here. Since it is impossible for the expert to go back
in time and measure the ACOF using a slip tribometer under the actual floor conditions present at the
time of the injury, analysis is required. There are models that relate the ACOF and the RCOF to the
probability of slipping [10–13], but they do not include the case file evidence that a slip occurred. They
produce prior probability estimates that do not account for the fact that a slip has occurred. Therefore,
the process described in Section 2 was applied to generate a hybrid Bayesian network that could
address the question of whether the ACOF exceeded 0.5 given that a slip occurred:

1. Identify the deterministic model based on principles of engineering mechanics. A simple
mechanical model of a slip was used, i.e., a slip occurs when the RCOF exceeds the ACOF.

2. Represent model as a directed acyclic graph. Three nodes were created: RCOF, ACOF, and slip.
Directed edges were added from ACOF and RCOF to slip.

3. Identify nodes that can be modeled as random variables. The ACOF can be affected by
contaminants on the walking surface [14], and uncertainty about the amount and distributions of
these contaminants can introduce uncertainly in estimates of the ACOF. Variation between strides
(and between people) also create uncertainty in the RCOF [15]. Authors have modeled both the
ACOF and the RCOF as random variables using a variety of distributions [10,13,16,17]. Therefore,
the nodes, ACOF and RCOF, can be modeled as random variables. Lognormal distributions were
selected and parameters obtained from Gragg and Yang [13].

4. Extend the directed acyclic graph to a full Bayesian network. The hybrid Bayesian network
was implemented in AgenaRisk software. It was completed by entering the nodes, directed edges,
probability distributions, and slip model. The slip model was implemented by setting the slip
Boolean node slip to take on a value of true if and only if the RCOF was greater than the ACOF.

5. Identify outcomes (events) that have occurred in the legal case of interest that are known in
hindsight. In this hypothetical example, the slip variable would be of direct interest to the expert
seeking to opine on the ACOF at the time of the slip.

6. Add node for the probability that a generally accepted standard was exceeded. A Boolean
node, the ACOF < 0.05 was added to complete the hybrid Bayesian network (Figure 2). It took on
a value of true if and only if the ACOF < 0.5.
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4. Results

4.1. Lifting Model

A hypothetical example was analyzed to illustrate the application of the model to developing an
opinion based on the NIOSH threshold of 3400 N for spinal compression force. A stoop lift was selected
for analysis. The lifting posture, which was defined as body segment relative to horizontal, was −68◦,
−120◦, 0◦, 121◦, and 83◦ for the elbow, shoulder, torso, knee, and ankle, respectively. The standard
deviations, which represent uncertainty in measurement from photographs [18], was 11.8◦, 7.9◦, 6.3◦,
9.4◦, and 9.4◦ for the elbow, shoulder, torso, knee, and ankle, respectively. The central element of this
simulation that illustrates its usefulness is demonstrated by setting the disc injury Boolean input node to
true. Prior to specifying that value, AgenaRisk computed the prior probability of the L5/S1 compression
force exceeding 3400 N (no injury specified condition); setting the value to true produced the posterior
probability that incorporated knowledge of disc status. For completeness, disc injury status was also
set to false. The mass in hands input mean was varied from 0 to 50 kg in 5 kg increments to demonstrate
the relationship between hand load and probability of the L5/S1 compression force exceeding 3400 N.

Including injury status in the hybrid Bayesian network analysis strongly affected the probability
of L5/S1 spinal compression force exceeding 3400 N (Figure 3). Although the largest difference in
probability predictions was between the disc injury node states of true and false, the most relevant
comparison is between the disc injury unspecified and true states because this represented the
comparison between what a traditional analysis would produce and an analysis that incorporated
information about the injury status of the plaintiff. At a hand load of 25 kg, for example, the probability
of exceeding 3400 N would be 0.40 and 0.61 for the unspecified and true disc injury conditions,
respectively. The former value of 0.40 meant that it was less likely than not that the force threshold was
exceeded; the probability of 0.61 indicated it was more likely than not. Thus, there was a region of hand
loads that lead to two different opinions depending on the disc injury status. However, there were also
levels of hand load that produced consistent results for all three disc injury conditions. The probability
of exceeding the threshold was less than 0.5 for all disc injury states (true, false, and unspecified) below
a hand load of 20 kg; similarly, above 35 kg, both disc injury states produced probability estimates
greater than 0.5 for all conditions.
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4.2. Slip and Fall Model

Numerical results of the model indicated the powerful effect of including the evidence that the
slip event occurred (Figure 4). Similar to other stochastic models of slips [13], the prior probability of
a slip occurring given the RCOF and the ACOF distributions was very small (2.7 × 10−7). The prior
probability of the ACOF being less than 0.5 was 0.01. After the slip node was set to true, the probability
of the ACOF being less than 0.5 increased to 0.68. The model demonstrated how evidence of a slip
occurring could change an expert’s opinion about whether the ACOF met the generally accepted
threshold. Unlike the lifting example, where a value above the threshold suggested negligence, in
this example, it was an ACOF value below 0.5 that suggested negligence. Thus, the expert would be
opining on whether the ACOF was less than 0.5 based on the “more likely than not” criterion. The
model showed how the opinion would change from a conclusion based on the prior probability (“no”)
to one based on the posterior probability (“yes”).
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5. Discussion

This work describes the experience of developing a hybrid Bayesian network model of lifting [4]
and extending it to directly address the “more likely than not” interpretation of “reasonable scientific
certainty” in civil litigation proposed in Burke v. Town of Walpole. Furthermore, the method was
successfully tested by applying it to another common cause of injury, slip-induced fall injury. Therefore,
it appears the proposed method can be useful for aligning deterministic biomechanical models with
the needs of an expert witness.

The modeling methodology proposed here can be used in two ways: (1) directly using the two
models (slip and fall and spinal injury) in conducting analyses for use in litigation, and (2) applying
the methodology to new kinds of injury scenarios. In the first instance, the models would be used
similarly to existing methods of biomechanical analyses. Field measurements would be collected,
computational analyses would be performed, and a report written. What would be different from
existing methods would be an emphasis on quantifying the variability of measurements taken in
the field. The variability data is necessary to describe the uncertainty in model parameters, which
is a key element of the Bayesian network modeling framework. In an evaluation of lifting, for
example, it is important to acknowledge and quantify the variability in estimating body posture from
photographs [18]. The second use of the work presented here is applying the methodology to novel
biomechanical models. The way to begin applying Bayesian network modeling is to determine the
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source of the uncertainty to be modeled. The uncertainty may be due to measurement error, such as
in the postural assessment of photographs made in the field, or from inherent variability in human
motor control. Once the source of the variability is known, the analyst can focus on choosing the model
variables to treat as random. Finally, it is important to remember that a major strength of this modeling
approach is that it can also incorporate information about the existence of an injury. In many personal
injury cases, medical details of the injury are not a topic for a biomechanist to opine about, as this has
already been addressed by depositions taken under oath by medical professionals. Therefore, the
modeler should include a node representing whether the injury occurred or not (Figure 3 illustrated
how important this can be for the lifting model).

The novelty of this work can be appreciated by comparing and contrasting it to the literature
on artificial intelligence in biomechanics, probabilistic biomechanical models, and Bayesian network
modeling in law. In a survey of machine learning papers in human movement biomechanics,
Halilaj et al. [19] showed that the number of publications appears to be increasing exponentially.
The most commonly used methods were support vector machines, artificial neural networks,
generalized linear models, and k-means clustering. Bayesian networks have also been used for
supervised machine learning in biomechanics [20–23]. However, the work described here takes a very
different approach than machine learning. It uses a tool (a Bayesian network) developed in artificial
intelligence in the 1980s by Judea Pearl [24] and others [25–27] to implement stochastic versions of
engineering mechanics models found in occupational biomechanics. Rather than relying on feature and
outcome data for training in a machine learning framework, it implements a mechanistic stochastically.

Parallel to the evolution of machine learning in biomechanics, stochastic biomechanical modeling
advanced from simple Monte Carlo simulations [28–31] to applications of the advanced mean value
theorem [32] and Markov chains [33]. However, these modeling approaches do not leverage the
power of Bayes Theorem. The Bayesian modeling approach described here allows for incorporating
injury status information, which is often a key part of the legal case file being examined by a forensic
expert, into the model. Knowing that an injury happened to the plaintiff is a key piece of additional
information that is not included in previous stochastic modeling work in biomechanics. Therefore, the
work described here extends the literature on stochastic biomechanical modeling.

The proposed modeling approach is also a contribution to the literature on Bayesian network
modeling in law because it is one of very few addressing civil litigation. Almost all Bayesian network
papers in law have focused on criminal law, with special emphasis on assessing evidence [34–52].
A major methodological difference is that much of the modeling in criminal cases is focused on
computing likelihood ratios for competing theories of a legal case [53], while the method proposed
here focuses on computing the probability of failing to meet a generally accepted standard.

The primary limitation of this work is that the deterministic models of engineering mechanics
analyzed could be represented using algebraic equations and inequalities. While this represents a
large class of models used in occupational biomechanics [3], there are biomechanical models that are
based on ordinary and partial differential equations. While differential equations can be simulated
using discrete time steps and nodes could be created for each state variable at each time step, it may be
challenging to compute probabilities using junction tree and dynamic discretization methods. Finite
element models require solving large systems of dense linear equations, which are not amenable to
hybrid Bayesian network modeling due to the lack of conditional independence between variables.
Response surface methods would need to be used to represent finite element model results before
implementing as hybrid Bayesian networks. Future work could investigate the application of the
method proposed here to these more computationally challenging biomechanical models.

6. Conclusions

The modeling work presented here was inspired by the task of biomechanics experts meeting
the norms and requirements of the United States legal system, but it generalized beyond the United
States. The modeling framework was developed to meet the “more likely than not” criteria because
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the “preponderance of evidence” standard of proof is used in civil cases where biomechanics opinions
are often given. The concept of the preponderance of evidence, which is also known as the “balance
of probabilities,” is also used in England and elsewhere. Therefore, this modeling approach has
international applicability.
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