Model-Guided Manufacturing of Transducer Arrays Based on Single-Fibre Piezocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
2.2. PZT Fibre Disc
2.3. Transducer Assembly
2.4. Transducer Model
2.5. Initial Model Fit
- The series resonance of the thickness resonator resonance.
- The EMI magnitude at .
- The approximated parallel capacitance , calculated at 500 kHz. With phase angles close to −90, the transducers behave almost purely capacitive at this frequency.
- The maximum phase angle of the thickness resonator resonance.
3. Results
3.1. Model Predictions
3.2. Assembly Analysis
3.3. Quality Control
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
EMI | Electro-mechanical impedance |
KLM | Transducer network model developed by R. Krimholtz, D. Leedom and G. Matthaei |
PZT fibre disc | Single-fibre piezocomposite disc array |
PCB | Printed circuit board |
PZT | Lead zirconium titanate |
ROC | Receiver operating characteristic curve |
TAS | Transducer array system |
TMM4 | Thermoset microwave material, Rogers Corp. |
USCT | Ultrasound computer tomography |
Appendix A. KLM Model
Appendix B. Model Parameters
Parameter | Unit | Initial Step | Optimised |
---|---|---|---|
770 | 770 | ||
450 | 450 | ||
− | |||
− | 1880 | 1880 | |
130 | |||
− | |||
Parameter | Unit | Final Step | Optimised |
---|---|---|---|
60 | 60 | ||
298 | 298 | ||
2640 | 2640 | ||
430 | 430 | ||
157 | 471 * | ||
3280 | 3280 | ||
50 | 50 | ||
631 | 631 | ||
1700 | 1700 | ||
References
- Wellings, E.; Vassiliades, L.; Abdalla, R. Breast Cancer Screening for High-Risk Patients of Different Ages and Risk—Which Modality Is Most Effective? Cureus 2016, 8, e945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freer, P.E. Mammographic Breast Density: Impact on Breast Cancer Risk and Implications for Screening. RadioGraphics 2015, 35, 302–315. [Google Scholar] [CrossRef] [PubMed]
- Calderon, C.; Vilkomerson, D.; Mezrich, R.; Etzold, K.F.; Kingsley, B.; Haskin, M. Differences in the attenuation of ultrasound by normal, benign, and malignant breast tissue. J. Clin. Ultrasound 1976, 4, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.A.; Abbott, T.; Bell, R.; Berggren, M.; Borup, D.; Robinson, D.; Wiskin, J.; Olsen, S.; Hanover, B. Non-Invasive Breast Tissue Characterization Using Ultrasound Speed and Attenuation. In Acoustical Imaging; Springer: Dordrecht, The Netherlands, 2007; pp. 147–154. [Google Scholar]
- Greenleaf, J.F. Three-dimensional Imaging in Ultrasound. J. Med. Syst. 1982, 6, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Ruiter, N.V.; Göbel, G.; Berger, L.; Zapf, M.; Gemmeke, H. Realization of an Optimized 3D USCT. Proc. SPIE Med. Imaging 2011, 7961–7968. [Google Scholar] [CrossRef]
- Ruiter, N.V.; Schwarzenberg, G.F.; Zapf, M.; Gemmeke, H. Conclusions from an experimental 3D Ultrasound Computer Tomograph. IEEE Nucl. Sci. Symp. Conf. Rec. 2008, 4502–4509. [Google Scholar] [CrossRef]
- Gemmeke, H.; Ruiter, N.V. 3D Ultrasound Computer Tomography for Medical Imaging. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2007, 580, 1057–1065. [Google Scholar] [CrossRef]
- Ruiter, N.; Zapf, M.; Dapp, R.; Hopp, T.; Kaiser, W.A.; Gemmeke, H. First Results of a Clinical Study with 3D Ultrasound Computer Tomography. IEEE Int. Ultrason. Symp. 2013, 651–654. [Google Scholar] [CrossRef]
- Zapf, M.; Hohlfeld, K.; Ruiter, N.V.; Pfistner, P.; van Dongen, K.; Gemmeke, H.; Michaelis, A.; Gebhardt, S.E. Development of Single-Fiber Piezocomposite Transducers for 3-D Ultrasound Computer Tomography. Adv. Eng. Mater. 2018, 20, 1800423. [Google Scholar] [CrossRef]
- Günther, P.A.; Neumeister, P.; Neubert, H.; Gebhardt, S. Development of 40-MHz Ultrasonic Transducers via Soft Mold Process. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 66, 1497–1503. [Google Scholar] [CrossRef] [PubMed]
- Safari, A.; Janas, V.F.; Bandyopadhyay, A. Development of fine-scale piezoelectric composites for transducers. AIChE 1997, 43 (Suppl. 11), 2849–2856. [Google Scholar] [CrossRef]
- Gebhardt, S.E.; Hohlfeld, K.; Günther, P.; Neubert, H. Manufacturing Technologies for Ultrasonic Transducers in a Broad Frequency Range. In Proceedings of the International Workshop on Medical Ultrasound Tomography, Speyer, Germany, 1–3 November 2017; pp. 147–158. [Google Scholar]
- Park, G.; Inman, D.J. Structural Health Monitoring using Piezoelectric Impedance Measurements. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2007, 365, 373–392. [Google Scholar] [CrossRef] [PubMed]
- Cochran, S.; Demore, C.; Courtney, C. Modelling Ultrasonic-Transducer Performance: One-Dimensional Models; Woodhead Publishing: Cambridge, UK, 2012; pp. 187–219. [Google Scholar] [CrossRef]
- Krimholtz, R.; Leedom, D.A.; Matthaei, G.L. New Equivalent Circuits for Elementary Piezoelectric Transducers. Electron. Lett. 1970, 6, 2. [Google Scholar]
- Zapf, M.; Pfistner, P.; Liberman, C.I.; van Dongen, K.; Jong, N.d.; Leyrer, B.; Gemmeke, H.; Ruiter, N.V. Dice-and-fill single element octagon transducers for next generation 3D USCT. In Proceedings of the International Workshop on Medical Ultrasound Tomography, Speyer, Germany, 1–3 November 2017; pp. 159–177. [Google Scholar] [CrossRef]
- Kohout, B. Simulation, Analyse und Entwurf eines 3D Ultraschall-Computertomographen für Diagnose und Therapie. (German) [Simulation, Analysis and design of a 3D Ultrasound-Tomograph for Diagnosis and Therapy]. Ph.D. Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2014. [Google Scholar]
- Gemmeke, H.; Berger, L.; Hopp, T.; Zapf, M.; Tan, W.; Blanco, R.; Leys, R.; Peric, I.; Ruiter, N.V. The New Generation of the KIT 3D USCT. In Proceedings of the International Workshop on Medical Ultrasound Tomography, Speyer, Germany, 1–3 November 2017; pp. 271–281. [Google Scholar]
- Hohlfeld, K.; Gebhardt, S.; Schönecker, A.; Michaelis, A. PZT components derived from polysulphone spinning process. Adv. Appl. Ceram. 2015, 114, 231–237. [Google Scholar] [CrossRef]
- Birk, L. Aufbau und Charakterisierung einer Serie von Ultraschallwandlern fuer einen Ultraschall Computertomographen. (German) [Manufacturing and Characterization of a series of Ultrasound Transducers for Ultrasound Computer Tomography]. Master’s Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2019. [Google Scholar]
- Desilets, C.S.; Fraser, J.D.; Kino, G.S. The design of efficient broad-band piezoelectric transducers. IEEE Trans. Sonics Ultrason. 1978, 25, 115–125. [Google Scholar] [CrossRef]
- Castillo, M.; Acevedo, P.; Moreno, E. KLM model for lossy piezoelectric transducers. Ultrasonics 2003, 41, 671–679. [Google Scholar] [CrossRef]
- Van Kervel, S.J.H.; Thijssen, J.M. A calculation scheme for the optimum design of ultrasonic transducers. Ultrasonics 1983, 21, 134–140. [Google Scholar] [CrossRef]
- Selfridge, A.R. Approximate Material Properties in Isotropic Materials. IEEE Trans. Sonics Ultrason. 1985, 32, 381–394. [Google Scholar] [CrossRef]
- Wang, H.; Ritter, T.A.; Cao, W.; Shung, K.K. Passive Materials for High-Frequency Ultrasound Transducers. Proc. SPIE Med. Imaging 1999, 3664, 35–42. [Google Scholar] [CrossRef]
- Chevallier, G.; Ghorbel, S.; Benjeddou, A. A benchmark for free vibration and effective coupling of thick piezoelectric smart structures. Smart Mater. Struct. 2008, 17, 065007. [Google Scholar] [CrossRef]
- Fawcett, T. ROC Graphs: Notes and Practical Considerations for Researchers. Mach. Learn. 2004, 31, 1–38. [Google Scholar]
- Jain, A.K.; Murty, M.N.; Flynn, P.J. Data clustering. ACM Comput. Surv. 1999, 31. [Google Scholar] [CrossRef]
- Lenk, A.; Ballas, R.; Werthschützky, R.; Pfeifer, G. Electromechanical Systems in Microtechnology and Mechatronics; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
Assembly | ||||||||
---|---|---|---|---|---|---|---|---|
Step | meas. | mod. | meas. | mod. | meas. | mod. | meas. | mod. |
(1) Initial | ||||||||
(2) PCB | ||||||||
(3) Matching L. | ||||||||
(4) Final |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angerer, M.; Zapf, M.; Leyrer, B.; Ruiter, N.V. Model-Guided Manufacturing of Transducer Arrays Based on Single-Fibre Piezocomposites. Appl. Sci. 2020, 10, 4927. https://doi.org/10.3390/app10144927
Angerer M, Zapf M, Leyrer B, Ruiter NV. Model-Guided Manufacturing of Transducer Arrays Based on Single-Fibre Piezocomposites. Applied Sciences. 2020; 10(14):4927. https://doi.org/10.3390/app10144927
Chicago/Turabian StyleAngerer, Martin, Michael Zapf, Benjamin Leyrer, and Nicole V. Ruiter. 2020. "Model-Guided Manufacturing of Transducer Arrays Based on Single-Fibre Piezocomposites" Applied Sciences 10, no. 14: 4927. https://doi.org/10.3390/app10144927
APA StyleAngerer, M., Zapf, M., Leyrer, B., & Ruiter, N. V. (2020). Model-Guided Manufacturing of Transducer Arrays Based on Single-Fibre Piezocomposites. Applied Sciences, 10(14), 4927. https://doi.org/10.3390/app10144927