
applied  
sciences

Article

Image-Based Feature Representation for Insider
Threat Classification

R. G. Gayathri, Atul Sajjanhar * and Yong Xiang

School of Information Technology, Deakin University, Geelong, VIC 3217, Australia;
gradhabaigopina@deakin.edu.au (R.G.G.); yong.xiang@deakin.edu.au (Y.X.)
* Correspondence: atuls@deakin.edu.au

Received: 20 May 2020; Accepted: 15 July 2020; Published: 18 July 2020
����������
�������

Abstract: Cybersecurity attacks can arise from internal and external sources. The attacks perpetrated
by internal sources are also referred to as insider threats. These are a cause of serious concern
to organizations because of the significant damage that can be inflicted by malicious insiders.
In this paper, we propose an approach for insider threat classification which is motivated by the
effectiveness of pre-trained deep convolutional neural networks (DCNNs) for image classification.
In the proposed approach, we extract features from usage patterns of insiders and represent these
features as images. Hence, images are used to represent the resource access patterns of the employees
within an organization. After construction of images, we use pre-trained DCNNs for anomaly
detection, with the aim to identify malicious insiders. Random under sampling is used for reducing
the class imbalance issue. The proposed approach is evaluated using the MobileNetV2, VGG19,
and ResNet50 pre-trained models, and a benchmark dataset. Experimental results show that the
proposed method is effective and outperforms other state-of-the-art methods.

Keywords: cybersecurity; deep learning; insider threat; transfer learning; machine learning;
image classification

1. Introduction

Insider threat is one of the most prevalent cybersecurity threats. It refers to potential attacks
perpetrated by trusted employees associated with that organization. These employees may have
access to sensitive information and resources, which makes it easier for them to orchestrate an
attack. There can be many reasons for insider attacks like unintentional human error, conflict with
co-workers or managers, and coercion by competing organizations. Insider threats are mainly targeted
at violation and sabotage of computer systems and data exfiltration activities. Recent literature vividly
prove the significance of this threat and its prevalence. However, there is still no concrete solution
to efficiently characterize insider attacks and to facilitate an understanding of the problem and its
various components.

The Verizon 2019 Data Breach Investigations Report (DBIR) [1] revealed that there has been a
considerable rise in insider incidents. In 2018, the percentage of internal actors involved in overall
breaches was 28%, whereas it increased to 34% in 2019. A study on the cost of Cybercrime jointly
performed by Accenture and the Ponemon Institute in 2019 [2] revealed that average cost of an insider
attack increased by 15% from 2018 to 2019. The Cost of a Data Breach Study in 2019 [3] claimed that the
lifecycle of a breach takes 206 days (over 6 months) to first identify it and another 73 days to contain it.

Researchers use data analysis techniques to detect and mitigate security challenges. The use of
statistical learning, machine learning, artificial intelligence, and natural language processing techniques
has been broadened to solve cybersecurity use cases like detecting malwares and intrusions, phishing,
denial of service (DoS) attacks, etc. Security analytics is an approach of data processing which combines

Appl. Sci. 2020, 10, 4945; doi:10.3390/app10144945 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-0445-0573
http://www.mdpi.com/2076-3417/10/14/4945?type=check_update&version=1
http://dx.doi.org/10.3390/app10144945
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 4945 2 of 17

acquisition, aggregation and analysis techniques of data for security monitoring and threat detection.
Security analytics solutions can be applied on large and diverse datasets using machine learning,
deep learning, and artificial intelligence frameworks. Deep Convolutional Neural Networks (DCNNs),
one of the most popular deep learning models, proved to be highly efficient in handling visual data,
such as images and videos [4].

The challenge of insider actions is that they might only leave a small footprint in the digital audit
data because attackers know precisely how and where sensitive data resides and are aware of the
security solutions implemented in the organization. This is why certain insider incidents are not
revealed for a prolonged period. Effective and efficient data analysis platforms for insider attacks
remains an open challenge.

Different insider threat patterns, such as unintentional human errors, misuse of privilege by
unsuspecting and malicious users, and cyber espionage, aggravate the complexity of insider threat
detection. Inexpensive data storage and increased computing power motivates data scientists to
acquire and analyze huge volume of resource access log data. The data used in any learning algorithm
for insider threat attack needs to be transformed into a structured format and used for discrepancy or
user behavior analysis. In this paper, we propose an image-based feature representation method to
depict the behavioral pattern of the employees in an organization. These images are used to detect the
anomalous patterns using deep learning models, thereby detecting the insiders.

Our contributions in the work are summarized as follows. First, we represent the resource access
patterns of the employees, from a benchmark dataset, as 1D feature vectors and grayscale images.
Second, anomaly detection is applied on the 1D feature vectors using deep neural networks and on the
images, using deep convolutional neural network to detect unusual usage patterns and to identify the
malicious insiders. Third, we compare the effectiveness of our approach with the state-of-the-art deep
learning methods available in recent literature.

The remainder of the paper is organized as follows. Section 2 gives an overview of approaches for
insider threat detection in recent literature. In Section 3, we explain our proposed approach for insider
threat detection. Section 4 discusses the implementation of the proposed approach. Finally, in Section 5,
we conclude the paper by presenting a discussion and outlining the scope for future work.

2. Related Work

Researchers have worked on a plethora of solutions for insider threat detection. Ivan Homoliak et al. [5]
proposed a novel categorization of the types of insider threat data available with references to existing
works and frameworks available in the area of insider detection and analysis. Sanzgiri and Dasgupta [6]
classified insider threat detection approaches into nine classes based on the techniques and features
utilized in the detection, namely anomaly-based, role-based access control, scenario-based using decoys
and honeypots, risk analysis using psychological factors, risk analysis using workflow, improving
defense of the network, improving defense by access control, and process control to dissuade
insiders. Out of these classes, anomaly-based detection and user behavior analysis are popularly used.
User profiling used in behavior analysis helps in bringing out the abnormal user behavior. It is well
established as a primary approach in insider threat detection.

Zeadally et al. [7] present a review of solutions for insider threat detection with their advantages
and shortcomings. According to the paper, the range of existing techniques are categorized
into Intrusion-detection-based approaches, System-call-based approaches, Data-centric approaches,
Honeypot approaches, Dynamical-system-theory-based approaches, Anti-indirect-exfiltration
approaches, and Visualization approaches.

One of the most popular approaches for insider threat problem is framing the problem as an
anomaly detection problem [8]. Chandola et al. [9] contributed a well-studied overview of anomaly
detection. In this paper, they state that anomaly detection methods for sequences with multivariate
data is still in the budding stage. Machine learning methods can efficiently tackle the anomaly detection
problem, and a lot of work has been accomplished in this direction.



Appl. Sci. 2020, 10, 4945 3 of 17

Gavai et al. [10] compared supervised classifier approach with an Isolation Forest-based
unsupervised approach for detecting insider threat using network logs. This work aggregates
details of those features that contribute most to the isolation of a data sample in the tree to clearly
understand why a user was tagged as anomalous.

Due to the scarcity of the real-world data, researchers use either data collected through their
own data collection processes or synthetic data. The Carnegie Mellon University (CMU) Computer
Emergency Response Team (CERT) generated a synthetic dataset mimicking an organization structure
and the log files similar to the activities performed by the employees [11].

Liu et al. [12] proposed a method that could unravel the non-linear relationships in log data.
An ensemble of deep autoencoders is used to detect malicious insider activities by calculating a score
from the error resulting from the original data and the reconstructed data. A model is built from
each autoencoder for the input features extracted from each log file. Finally, all the models from the
individual autoencoder are combined to build a single model that is used to vividly identify the user′s
behavior pattern. However, this process is not effective for a dataset from a different source. One of the
limitations to this approach is that the feature extraction based on frequency does not always give the
expected outcome. Further, the one-hour interval considered for user behavior study is not enough to
identify the usage patterns. The experiments were performed using the Carnegie Mellon University
(CMU) CERT Insider Threat dataset [11].

Noever [13] tried different families of learning algorithms and concluded that random forest
gives the best results with an accuracy of 94%. The experiments were performed using the CMU
CERT Insider Threat dataset, and the risk factors were extracted from the data to create the feature
vector. They incorporated the sentiment analysis factors from the email and the website content and
file access details.

Meng et al. [14] used an approach using Long Short-Term Memory Recurrent Neural Network
(LSTM-RNN) and Kernel PCA for the analysis of insiders. The model was built and tested using the
CMU CERT Insider Threat dataset v6.2. Performance comparison of the proposed technique was done
against popular algorithms, such as SVM and Isolation Forest, but it was not compared with deep
learning models.

Lin et al. [15] formulated a hybrid method using Deep Belief Networks (DBN) for feature
reconstruction, and One Class SVM (OCSVM) for insider threat detection. In the first step, the features
were learned using the DBN model. Then, the multi-domain features were re-learned, and the hidden
features were extracted and trained by the first layer that is visible in DBN, followed by each layer of
Restricted Boltzmann Machine (RBM). The last layer was set up with the back-propagation network
which receives the feature vector generated from RBM and optimizes the parameters of the entire
network. Finally, the last layer of the network is replaced with the trained multilayer structure as
a feature extractor. These features were fed to OCSVM to train the insider threat detection model.
Each day was divided into intervals of fixed time to calculate the activity frequency from the resource
log files. The evaluation of the method using CMU CERT Insider Threat dataset achieved an accuracy
of 87.79%.

Yuan et al. [16] presented a user behavior anomaly detection-based insider threat detection
technique using Deep Neural Network (DNN). User actions sequences were fed to a Long Short-Term
Memory (LSTM), which extracts user behavior features and predicts the next user action. A sequence
of hidden states of the LSTM model were used to create a feature matrix of fixed-size, which is given to
the Convolutional Neural Network (CNN), that it normal or anomaly. The hidden units of the LSTM
efficiently captures the temporal behavior patterns. Hence, the temporal dependencies on user action
sequence in a long-term were recorded by LSTM. CMU CERT Insider Threat dataset V4.2 was used for
experimentation and the results are promising with an area under the curve (AUC) of 0.9449.

Zhang et al. [17] focused on the unsupervised deep learning model DBN. The pre-processing
stage included the collection and analysis of the insider behavior logs to extract the behavior feature in
the format of a tuple. It included the time of the occurrence of the behaviors, the behavior subject, the



Appl. Sci. 2020, 10, 4945 4 of 17

host that produces the behaviors, and the specific behaviors. All kinds of logs had the first three items
common in it. The fourth item behavior depended on the behavior types and was more difficult to
integrate. 1/N code discretization was used on the extracted features for data normalization. The deep
learning network model DBN used these features for threat detection. More than one RBM hidden
layer with the sigma activation function was used. Back propagation was used to fine tune the
network parameters to get an optimized DBN model. CMU CERT Insider Threat dataset was used for
method validation.

Chattopadhyay [18] proposed an approach for insider threat detection based on classification
of time-series user activities. Features of each day and related statistics were computed to construct
the time-series features. Since the dataset is highly imbalanced, a cost-sensitive technique for data
adjustment was used to randomly undersample the instances belonging to non-malicious class. A deep
autoencoder with two layers was used for the classification. The observations showed that random
forest and deep autoencoder classified the time-series feature vectors with high precision, recall and
f-score. Using Multilayer perceptron gave a higher recall, but it resulted in a low f-score and precision
than the other classifiers.

A behavioral analysis framework (BAIT) was proposed by Azaria et al. [19] for insider threat
detection using a semi-supervised classification method that learns from highly imbalanced data.
In this work, a one-person game was designed, and 795 players were recruited to play the game on
Amazon Mechanical Turk. A few subjects were added to behave maliciously, thereby introducing
imbalance. Maliciousness was predicted from the way a player plays the game. The paper explains
several variations of the BAIT algorithm, amongst which the best approach gave a precision of only
0.07 and a recall of 0.7. Many works, like Reference [19], exist, in which they propose approaches for
insider threat detection based on the behavioral analysis of people in an organization.

Several surveys [20,21] have been reported in the area of insider attacks. Salem et al. [20] mentions
about different kinds of insider attacks, including, traitors, and masqueraders. The paper focused
on the challenges of insider threat and categorized most popular techniques into Host-based User
Profiling, Network-Based Sensors, and Integrated Approaches. One of the main challenges with the
research in this direction is the lack of real-world data to study common solutions and general models.

Ferreira et al. [22] proposed a sliding window based approach to the insider threat problem using
CERT CMU dataset and the Random Forest algorithm. They used 40% of the users amongst the 2000
users and applied the statistical feature normalization. Random Forest was used for classification, and
the results were marked based on precision and F1-score. The main challenge in insider threat analysis
is the need for algorithms and approaches that can efficiently identify malicious activities with reduced
false negatives and false positives in optimal time [8,23,24].

There are existing works that have effectively applied image classification approaches and deep
learning models for malware detection in the domain of cybersecurity. Transfer learning has been
applied to malware classification [25] with an accuracy of 98.65%. Kancherla and Mukkamala [26]
proposed malware detection by representing the machine code as grayscale images and extracting
intensity-based and texture-based features. This approach achieved an accuracy of 95% on a dataset
containing 12,000 benign samples and 25,000 malware. Tobiyama et al. [27] developed a malware
detection method that uses RNN to perform feature extraction. The extracted features are represented
as images, and a CNN is used for classification to malicious or non-malicious, and achieved 96%
accuracy. Recently, Bhodia et al. [28] used the image-based transfer learning for malware analysis.
There are papers, like Reference [29–31], that proved the effectiveness of image-based deep learning
approaches for malware analysis. However, image classification has not been used for insider threat
analysis. In the next section, we discuss our proposed method.

3. Proposed Method

In Section 2, the existing deep learning based insider threat detection methods are discussed.
We use the resource access patterns of the employees in an organization to identify the major behavioral



Appl. Sci. 2020, 10, 4945 5 of 17

indicators and use them as features to perform anomaly detection. Usage patterns of employees
are represented as 1D feature vectors. These feature vectors are used to create grayscale images.
Anomaly detection is performed separately on the 1D feature vectors and on the grayscale images.

We described image classification approaches which are state-of-the-art for malware
detection [25–28]. This motivated us to adopt image classification for insider threat detection.
It is a novel contribution of this paper. The construction of user-behavior feature vectors, and their
transformation into images are underlying steps in the proposed method. It is significantly different
from image-based malware detection, in which the binaries are transformed into images with minimal
preprocessing. Another novel contribution of the proposed method is the use of transfer learning (TL)
for insider threat detection. We used popular TL frameworks to ease the process of designing the
DCNN and finding suitable weights. Below, we elaborate the contributions of the paper.

We used the 1D feature vectors to represent the behavior of employees on a daily basis.
These feature vectors are used for behavioral analysis. Further, we performed transformation
of feature vectors to images which is a significant step in the process of user-behavior representation.
It bridges the gap between insider threat analysis and computer vision. Currently, no computer vision
techniques are designed for the task of insider threat detection. Hence, to apply image-based analysis,
modification to the existing methods or redefinition of the original problem is required. In this paper,
we formulate the insider threat analysis problem as a computer vision problem, by creating images
from user-behavior feature vectors. The usage logs of an organization contain all the information
required to articulate user-behavior. Feature vectors that represent user-behavior are constructed by
extracting relevant attributes from the usage logs. The feature vectors constructed from the usage logs
are transformed into images. Once the images are created, deep neural network approach for image
classification is applied to perform anomaly detection. Any deviation of the behavior from the model
is treated as an anomaly.

Transfer Learning (TL) is used in the proposed method to reduce the model complexity. TL is
also referred to as inductive learning or domain adaptation. TL has been widely used in image
recognition to transfer an already learned model into new tasks and domains. TL allows classifiers
to retain their performance on incoming data with new distributions and/or classes by learning a
new feature space [32]. TL was introduced to use knowledge from the source domain with sufficient
labeled data to help build accurate models in a related but different domain, with small labeled data.
This is well-suited for cybersecurity applications because of the limited number of malicious instances,
as described in Section 4.2. This capacity of TL has been adopted in cybersecurity systems [33–35].
Juan et al. [34] proposed a feature-based TL approach that improved the classifier performance on
NSL-KDD dataset of TCP traffic, illustrating the merit of TL for the cyber security domain. Specifically,
we applied feature-based transfer learning, as explained in Section 3.4. In the TL scheme, we borrow
knowledge from computer vision and apply to the target domain of insider threat detection. As a result,
training time of deep neural networks is reduced, while achieving high classification performance.
Figure 1 shows the proposed process flow.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 17 

represented as 1D feature vectors. These feature vectors are used to create grayscale images. Anomaly 
detection is performed separately on the 1D feature vectors and on the grayscale images. 

We described image classification approaches which are state-of-the-art for malware detection 
[25–28]. This motivated us to adopt image classification for insider threat detection. It is a novel 
contribution of this paper. The construction of user-behavior feature vectors, and their transformation 
into images are underlying steps in the proposed method. It is significantly different from image-
based malware detection, in which the binaries are transformed into images with minimal 
preprocessing. Another novel contribution of the proposed method is the use of transfer learning 
(TL) for insider threat detection. We used popular TL frameworks to ease the process of designing 
the DCNN and finding suitable weights. Below, we elaborate the contributions of the paper. 

We used the 1D feature vectors to represent the behavior of employees on a daily basis. These 
feature vectors are used for behavioral analysis. Further, we performed transformation of feature 
vectors to images which is a significant step in the process of user-behavior representation. It bridges 
the gap between insider threat analysis and computer vision. Currently, no computer vision 
techniques are designed for the task of insider threat detection. Hence, to apply image-based analysis, 
modification to the existing methods or redefinition of the original problem is required. In this paper, 
we formulate the insider threat analysis problem as a computer vision problem, by creating images 
from user-behavior feature vectors. The usage logs of an organization contain all the information 
required to articulate user-behavior. Feature vectors that represent user-behavior are constructed by 
extracting relevant attributes from the usage logs. The feature vectors constructed from the usage 
logs are transformed into images. Once the images are created, deep neural network approach for 
image classification is applied to perform anomaly detection. Any deviation of the behavior from the 
model is treated as an anomaly. 

Transfer Learning (TL) is used in the proposed method to reduce the model complexity. TL is 
also referred to as inductive learning or domain adaptation. TL has been widely used in image 
recognition to transfer an already learned model into new tasks and domains. TL allows classifiers to 
retain their performance on incoming data with new distributions and/or classes by learning a new 
feature space [32]. TL was introduced to use knowledge from the source domain with sufficient 
labeled data to help build accurate models in a related but different domain, with small labeled data. 
This is well-suited for cybersecurity applications because of the limited number of malicious 
instances, as described in Section 4.2. This capacity of TL has been adopted in cybersecurity systems 
[33–35]. Juan et al. [34] proposed a feature-based TL approach that improved the classifier 
performance on NSL-KDD dataset of TCP traffic, illustrating the merit of TL for the cyber security 
domain. Specifically, we applied feature-based transfer learning, as explained in Section 3.4. In the 
TL scheme, we borrow knowledge from computer vision and apply to the target domain of insider 
threat detection. As a result, training time of deep neural networks is reduced, while achieving high 
classification performance. Figure 1 shows the proposed process flow. 

 
Figure 1. Overall process flow. 

First, we extract features from resource usage log files. Second, we present an image-based 
feature representation approach to map the user behavior. Third, we use deep learning based 
anomaly detection to detect malicious insiders. Each step is explained in the following sub-sections. 

3.1. Feature Vector Construction 

Figure 1. Overall process flow.

First, we extract features from resource usage log files. Second, we present an image-based
feature representation approach to map the user behavior. Third, we use deep learning based anomaly
detection to detect malicious insiders. Each step is explained in the following sub-sections.



Appl. Sci. 2020, 10, 4945 6 of 17

3.1. Feature Vector Construction

In the first step of our proposed approach, user access log pre-processing and feature extraction is
performed. In this process, the log files that contain the raw resource access information of employees
in the form of rows and columns are extracted to create a feature vector with useful and meaningful
features. We used the popular CMU CERT Insider Threat dataset V4.2 [11] for simulation. The dataset
comprises of various log files with information regarding the user’s logon/logoff details (logon.csv),
details of the user browsing history (http.csv), file access patterns (files.csv), external device usage
within the organization (device.csv), and email communications sent/received by the user (email.csv).
The feature vector is constructed using a frequency-based approach as in Reference [12–15,18]. Figure 2
depicts how the normalized feature vector is created from log files.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 17 

In the first step of our proposed approach, user access log pre-processing and feature extraction 
is performed. In this process, the log files that contain the raw resource access information of 
employees in the form of rows and columns are extracted to create a feature vector with useful and 
meaningful features. We used the popular CMU CERT Insider Threat dataset V4.2 [11] for simulation. 
The dataset comprises of various log files with information regarding the user’s logon/logoff details 
(logon.csv), details of the user browsing history (http.csv), file access patterns (files.csv), external 
device usage within the organization (device.csv), and email communications sent/received by the 
user (email.csv). The feature vector is constructed using a frequency-based approach as in Reference 
[12–15,18]. Figure 2 depicts how the normalized feature vector is created from log files. 

The logon.csv is used to extract the information about computer usage, such as the session 
duration, the number of sessions within and outside of office hours, etc. This information provides 
insights to the computer access patterns of the user. The file.csv gives details about the files 
copied/read/written by the user on each day. This information is used to analyze the file access 
patterns of the user. Device.csv log file contains the external device access details of the user on each 
day. It indicates a user’s access to any device within and outside of office hours. Usage of devices 
outside of office hours may be considered a suspicious activity. 

 
Figure 2. Feature extraction from log files. 

The email.csv file contains information about emails sent/received by the employee within and 
outside of office hours. It also indicates if the recipient/sender was an external/internal entity. The 
http.csv provides information about the user’s browsing history. The log files described above are 
used to construct feature vectors. Each feature vector is comprised of 18 features, as shown in Table 
1. 

Table 1. Feature set used in the proposed approach. 

Log file Features Description 

Login 

L1 Difference between office start time and first login time 
L2 Difference between last login time and office end time 

L3 
Average difference in time between office start time  and 

number of logins before office hours 

L4 
Average difference in time between office end time and 

number of logins after office hours 
L5 Total number of logins 
L6 Number of logins outside office hours 
L7 Number of systems accessed 
L8 Number of systems used outside office hours 
L9 Average session length outside office hours 

Email 
E1 Count of emails sent outside the domain of organization 

E2 
Count of emails sent within the domain from supervisor′s 

account 

Figure 2. Feature extraction from log files.

The logon.csv is used to extract the information about computer usage, such as the session duration,
the number of sessions within and outside of office hours, etc. This information provides insights to the
computer access patterns of the user. The file.csv gives details about the files copied/read/written by
the user on each day. This information is used to analyze the file access patterns of the user. Device.csv
log file contains the external device access details of the user on each day. It indicates a user’s access
to any device within and outside of office hours. Usage of devices outside of office hours may be
considered a suspicious activity.

The email.csv file contains information about emails sent/received by the employee within
and outside of office hours. It also indicates if the recipient/sender was an external/internal entity.
The http.csv provides information about the user’s browsing history. The log files described above are
used to construct feature vectors. Each feature vector is comprised of 18 features, as shown in Table 1.

In this paper, we use the features used in the paper [18]. The CMU CERT dataset provides the
ground truth to label the users as malicious or non-malicious. The ground truth contains the details
of user ID, the malicious events that have occurred, and the date/time of the event. There is a list of
malicious users with their user IDs and the period in which their activity is marked as suspicious.
Separate files are provided for each malicious user with the details of the activity that marked the user
as a malicious insider, the timestamp of the event, and the log file.

3.2. Image-Based Feature Vector Representation

The log files from the CMU CERT dataset are pre-processed to obtain the feature vector of each
user for each day, as explained in Section 3.1. This represents the resource usage pattern of each user
on a daily basis. The features contain numeric values, and need to be normalized to avoid skewing the
results. We use Min-Max method to normalize the features in the range 0 to 1. The extracted features
are represented as 1D feature vectors. The feature vectors are used for feature representation for
user-per-day granularity. Further, the features extracted from the log files are represented as grayscale
images. These 1D feature vectors and images are provided as input to the learning model to predict
malicious and non-malicious users. The feature vector is represented as a grayscale image, where
each pixel is a feature normalized in the range from 0 to 255. The images fall under two categories,



Appl. Sci. 2020, 10, 4945 7 of 17

namely malicious users and non-malicious users. All the images are of fixed length with same size and
maintain the spatial properties which are seen in other greyscale images. Figure 3 depicts the image
creation process from CMU CERT data.

Table 1. Feature set used in the proposed approach.

Log file Features Description

Login

L1 Difference between office start time and first login time

L2 Difference between last login time and office end time

L3 Average difference in time between office start time and number of
logins before office hours

L4 Average difference in time between office end time and number of
logins after office hours

L5 Total number of logins

L6 Number of logins outside office hours

L7 Number of systems accessed

L8 Number of systems used outside office hours

L9 Average session length outside office hours

Email

E1 Count of emails sent outside the domain of organization

E2 Count of emails sent within the domain from supervisor′s account

E3 No. of attachments

E4 Average email size

E5 Number of recipients

Device
D1 Count of thumb drive usage outside office

D2 Count of external device usage

File F1 Number of .exe files downloaded

Http H1 Count of usage of wikileaks.org

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 17 

E3 No. of attachments 
E4 Average email size 
E5 Number of recipients 

Device 
D1 Count of thumb drive usage outside office 
D2 Count of external device usage 

File F1 Number of .exe files downloaded 
Http H1 Count of usage of wikileaks.org 

In this paper, we use the features used in the paper [18]. The CMU CERT dataset provides the 
ground truth to label the users as malicious or non-malicious. The ground truth contains the details 
of user ID, the malicious events that have occurred, and the date/time of the event. There is a list of 
malicious users with their user IDs and the period in which their activity is marked as suspicious. 
Separate files are provided for each malicious user with the details of the activity that marked the 
user as a malicious insider, the timestamp of the event, and the log file. 

3.2. Image-Based Feature Vector Representation 

The log files from the CMU CERT dataset are pre-processed to obtain the feature vector of each 
user for each day, as explained in Section 3.1. This represents the resource usage pattern of each user 
on a daily basis. The features contain numeric values, and need to be normalized to avoid skewing 
the results. We use Min-Max method to normalize the features in the range 0 to 1. The extracted 
features are represented as 1D feature vectors. The feature vectors are used for feature representation 
for user-per-day granularity. Further, the features extracted from the log files are represented as 
grayscale images. These 1D feature vectors and images are provided as input to the learning model 
to predict malicious and non-malicious users. The feature vector is represented as a grayscale image, 
where each pixel is a feature normalized in the range from 0 to 255. The images fall under two 
categories, namely malicious users and non-malicious users. All the images are of fixed length with 
same size and maintain the spatial properties which are seen in other greyscale images. Figure 3 
depicts the image creation process from CMU CERT data. 

 
Figure 3. Image representation of the numerical features extracted from log files. 

3.3. Classification 

Section 3.2 explained the construction of images which represents the resource usage behavior. 
In this section, we address the classification of 1D feature vectors and synthesized images as 
malicious or non-malicious. Deep learning models are applied to perform anomaly detection. Any 
deviation from the normal user behavior is considered as an anomaly. It is considered as a binary 
classification and hence the instances are labelled as malicious and non-malicious. Two sets of 
experiments are performed. First, a deep neural network (DNN) is used for the classification of the 
feature vectors. Second, we use the Deep Convolutional Neural Network (DCNN) for the 
classification of the image data. DCNNs take the unprocessed data as input and transforms the data 

Figure 3. Image representation of the numerical features extracted from log files.

3.3. Classification

Section 3.2 explained the construction of images which represents the resource usage behavior.
In this section, we address the classification of 1D feature vectors and synthesized images as malicious
or non-malicious. Deep learning models are applied to perform anomaly detection. Any deviation
from the normal user behavior is considered as an anomaly. It is considered as a binary classification
and hence the instances are labelled as malicious and non-malicious. Two sets of experiments are
performed. First, a deep neural network (DNN) is used for the classification of the feature vectors.



Appl. Sci. 2020, 10, 4945 8 of 17

Second, we use the Deep Convolutional Neural Network (DCNN) for the classification of the image
data. DCNNs take the unprocessed data as input and transforms the data by processing it through a
series of basic computational units to get the representations that have useful values for classification
in the higher layers. Figure 4 shows sample images generated using the features given in Table 1.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 17 

by processing it through a series of basic computational units to get the representations that have 
useful values for classification in the higher layers. Figure 4 shows sample images generated using 
the features given in Table 1. 

 
Figure 4. Sample grayscale images. 

Deep Convolutional Neural Networks (DCNN) are comprised of neurons with weights and 
biases that are learnable. DCNN is a sequence of layers, and each layer of a network transforms one 
volume of activation to another applying a differentiable function. Figure 5 shows the input 
propagation through various layers of DCNN and how it finally gives a score for each class. 

 
Figure 5. The Convolutional Neural Network (CNN) architecture comprises of a stack of 
Convolutional layer, Nonlinear layer rectified linear activation unit (ReLU), Pooling layer, and a Loss 
function (like Softmax) on the last fully connected layer. 

The grayscale images are passed to the DCNN to compute the probability of a user being an 
insider or not. The network does the prediction by computing the probability for each class label. The 
error in the prediction is calculated using the loss function. Deep Convolutional Neural Network [36] 
models are popularly used in image classification and recognition. In order to train and test the 
images, each input image is passed through a series of convolution layers with filters, pooling, and 
fully connected layers.  

Training a deep learning model from scratch requires a very large dataset to avoid overfitting. 
Moreover, the training time is significant. A pre-trained model converges quickly because the 
weights are already optimized. Therefore, we propose to use pre-trained models. This is the main 
motivation for representing the features as images. The pre-trained models available for image 
classification are more robust than training a new network and can be re-trained to accommodate 
new classes. The following section presents the details of transfer learning for insider threat detection. 

3.4. Transfer Learning 

Transfer learning [32] is a research direction in machine learning that focuses on retaining 
knowledge obtained during problem solving and re-applying it to another similar problem. 

Transfer learning models can be broadly categorized into four types: instance-based, parameter, 
feature-representation, and relational-knowledge transfer learning [32]. Amongst these categories, 
feature-representation transfer learning is most suitable because this approach aims to identify good 
feature representations that can be utilized across domains. In the proposed approach, pre-trained 
CNNs are used to extract image features that are domain-independent features, thereby improving 
the transferability from source to target domain. A CNN pre-trained on ImageNet is used, where the 

Figure 4. Sample grayscale images.

Deep Convolutional Neural Networks (DCNN) are comprised of neurons with weights and biases
that are learnable. DCNN is a sequence of layers, and each layer of a network transforms one volume
of activation to another applying a differentiable function. Figure 5 shows the input propagation
through various layers of DCNN and how it finally gives a score for each class.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 17 

by processing it through a series of basic computational units to get the representations that have 
useful values for classification in the higher layers. Figure 4 shows sample images generated using 
the features given in Table 1. 

 
Figure 4. Sample grayscale images. 

Deep Convolutional Neural Networks (DCNN) are comprised of neurons with weights and 
biases that are learnable. DCNN is a sequence of layers, and each layer of a network transforms one 
volume of activation to another applying a differentiable function. Figure 5 shows the input 
propagation through various layers of DCNN and how it finally gives a score for each class. 

 
Figure 5. The Convolutional Neural Network (CNN) architecture comprises of a stack of 
Convolutional layer, Nonlinear layer rectified linear activation unit (ReLU), Pooling layer, and a Loss 
function (like Softmax) on the last fully connected layer. 

The grayscale images are passed to the DCNN to compute the probability of a user being an 
insider or not. The network does the prediction by computing the probability for each class label. The 
error in the prediction is calculated using the loss function. Deep Convolutional Neural Network [36] 
models are popularly used in image classification and recognition. In order to train and test the 
images, each input image is passed through a series of convolution layers with filters, pooling, and 
fully connected layers.  

Training a deep learning model from scratch requires a very large dataset to avoid overfitting. 
Moreover, the training time is significant. A pre-trained model converges quickly because the 
weights are already optimized. Therefore, we propose to use pre-trained models. This is the main 
motivation for representing the features as images. The pre-trained models available for image 
classification are more robust than training a new network and can be re-trained to accommodate 
new classes. The following section presents the details of transfer learning for insider threat detection. 

3.4. Transfer Learning 

Transfer learning [32] is a research direction in machine learning that focuses on retaining 
knowledge obtained during problem solving and re-applying it to another similar problem. 

Transfer learning models can be broadly categorized into four types: instance-based, parameter, 
feature-representation, and relational-knowledge transfer learning [32]. Amongst these categories, 
feature-representation transfer learning is most suitable because this approach aims to identify good 
feature representations that can be utilized across domains. In the proposed approach, pre-trained 
CNNs are used to extract image features that are domain-independent features, thereby improving 
the transferability from source to target domain. A CNN pre-trained on ImageNet is used, where the 

Figure 5. The Convolutional Neural Network (CNN) architecture comprises of a stack of Convolutional
layer, Nonlinear layer rectified linear activation unit (ReLU), Pooling layer, and a Loss function (like
Softmax) on the last fully connected layer.

The grayscale images are passed to the DCNN to compute the probability of a user being an insider
or not. The network does the prediction by computing the probability for each class label. The error in
the prediction is calculated using the loss function. Deep Convolutional Neural Network [36] models
are popularly used in image classification and recognition. In order to train and test the images,
each input image is passed through a series of convolution layers with filters, pooling, and fully
connected layers.

Training a deep learning model from scratch requires a very large dataset to avoid overfitting.
Moreover, the training time is significant. A pre-trained model converges quickly because the weights
are already optimized. Therefore, we propose to use pre-trained models. This is the main motivation
for representing the features as images. The pre-trained models available for image classification
are more robust than training a new network and can be re-trained to accommodate new classes.
The following section presents the details of transfer learning for insider threat detection.

3.4. Transfer Learning

Transfer learning [32] is a research direction in machine learning that focuses on retaining
knowledge obtained during problem solving and re-applying it to another similar problem.

Transfer learning models can be broadly categorized into four types: instance-based, parameter,
feature-representation, and relational-knowledge transfer learning [32]. Amongst these categories,
feature-representation transfer learning is most suitable because this approach aims to identify good
feature representations that can be utilized across domains. In the proposed approach, pre-trained



Appl. Sci. 2020, 10, 4945 9 of 17

CNNs are used to extract image features that are domain-independent features, thereby improving
the transferability from source to target domain. A CNN pre-trained on ImageNet is used, where the
top layers are replaced with the classification head. There is remarkable reduction in the training
time; hence, pre-trained models are preferred where applicable. Transfer learning is mainly used to
eliminate the overhead in training. The pre-trained models use two methods to build new models:
feature extraction and fine-tuning. In fine-tuning, we can add more layers to accommodate the new
classes. We use the fine-tuning method here.

Fine-tuning is the approach followed on a pre-trained model to extend the model so that it suits
the need of the new dataset. There is no need to train the model from scratch. This helps in reducing
the training time. Here, a few other layers will be trained by updating the weights while training.
The training process will tune the weights to match the features in our dataset. Usually the higher
layers of the convolutional networks are more specialized. The lower layers learn generic and simple
features that can be generalized to most of the images. Moving up the network, the features become
more specific to the dataset on which the model is being trained. The main goal of fine-tuning is to
use the specialized features with the desired dataset, rather than overwriting the generic learning.
Fine-tuning can be applied to increase the performance.

Transfer learning is commonly used with problems on predictive modeling where the input is
in the form of images. Each model uses a different image size as input tensor. We scale the images
to 32 × 32 and modified the pre-trained models to accept input images of these dimensions. If the
input dimensions are too large, the network might fail to achieve reasonable accuracy as there are not
enough layers in the network to learn the features. If the dimensions of the input image is too small,
then the neural network naturally reduces volume of dimensions during the forward propagation and
then effectively runs out of data.

Our image dataset is dissimilar to the data that is used for pre-training of the original model.
Therefore, we perform customization of the network and re-train the model. The proposed approach
has two parts: the convolutional base and the classifier head. The convolutional base contains the
pre-trained base model. In this stage, the pixels of the input image are converted into features.
Then, these features are passed onto the classifier head. The convolutional base is responsible for
getting the features from the input image. Once the features are extracted, it is passed to the fully
connected layer, and the last layer with the classifier does the prediction in terms of the probability.

The fully connected layers connect all the neurons with each other and combines all the features
to get the best prediction. In the fully connected layer, every neuron in the previous layer connects to
every neuron in the next layer. The purpose of this layer is to utilize the features from the output of
the previous layer to perform classification on the input image-based on the training data. In a fully
connected layer, neurons have full connections to all activation in the previous layer similar to the
normal neural networks. Fully-connected layer calculates the class probability scores, producing the
volume of size [1 × 1 × 2], in which both the numbers map to a class score. This class score is used for
the classification.

In the proposed problem, there are two classes, Malicious and Non-Malicious. The number of
neurons in the last layer of the network should be same as the number of classes to be identified in the
dataset. In our last layer, we have two neurons as there are two classes (Malicious and Non-Malicious).
The Softmax activation function is used in the final layer to predict the class probabilities.

We used the MobileNetV2 [37], VGG19 [38], and ResNet50 [39] to demonstrate the proposed
approach. The base models are instantiated and loaded with the initial weights. Then, the fully
connected model is appended to this loaded model and train the network. The details for each model
are explained in detail in the following sections. We only fine-tuned the last convolutional block
instead of the whole network so that it helps in preventing overfitting. The low-level convolutional
blocks learn features that are less abstract and more general than the ones found from higher layers,
so it is sensible to keep the first few blocks fixed (more general features) and only fine-tune the last



Appl. Sci. 2020, 10, 4945 10 of 17

one (more specialized features). Fine-tuning is done with a very slow learning rate to ensure that the
updates stay very small, such that it does not affect the previously learned features.

The more layers are frozen, the less effective the network capacity becomes. So, we started from
freezing all the layers and only learning the final classifier. Then, we considered unfreezing more layers
progressively from the top to achieve a better result. Networks trained on relatively small datasets
can overfit the training data. Dropout layers drop out a random set of activations in that layer by
setting them to zero. This layer ensures that the network does not get too much fitted to the training
data, thereby helping decrease the issue of overfitting. Dropout layer is only used while training.
The outputs of a layer under dropout undergo random subsampling. This has the effect of thinning the
network or reducing the capacity during training.

Fine tuning the models included addition of a global average pooling layer followed by fully
connected layers as the classification layers. In all the three models, we used a Global Average Pooling
after the base mode. Unlike the ordinary pooling layer that makes small changes to the images to
reduce the size, the global average pooling layer is used to fully or partially replace the fully connected
layers used as the highest ones in the convolutional neural networks. The fine-tuning includes the
addition of global average pooling layer, which helps to reduce the size of the tensor and speeds up
the calculations. The global average pooling layer does a more intense dimensionality reduction, such
that a tensor of dimensions h x w x d is reduced to dimensions 1 x 1 x d. It is a simple operation that
has no trainable parameters, hence speeding up the training process.

In a classification task, Softmax function is applied to classify an image with probabilistic values
ranging between 0 and 1. The summed-up values of a feature map from the global average pooling
layer is fed into the Softmax layer. The activation values are added up and divided by the sum
produced to give the probability values. Figure 6 gives the details of these models.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 17 

datasets can overfit the training data. Dropout layers drop out a random set of activations in that 
layer by setting them to zero. This layer ensures that the network does not get too much fitted to the 
training data, thereby helping decrease the issue of overfitting. Dropout layer is only used while 
training. The outputs of a layer under dropout undergo random subsampling. This has the effect of 
thinning the network or reducing the capacity during training. 

Fine tuning the models included addition of a global average pooling layer followed by fully 
connected layers as the classification layers. In all the three models, we used a Global Average Pooling 
after the base mode. Unlike the ordinary pooling layer that makes small changes to the images to 
reduce the size, the global average pooling layer is used to fully or partially replace the fully 
connected layers used as the highest ones in the convolutional neural networks. The fine-tuning 
includes the addition of global average pooling layer, which helps to reduce the size of the tensor and 
speeds up the calculations. The global average pooling layer does a more intense dimensionality 
reduction, such that a tensor of dimensions h x w x d is reduced to dimensions 1 x 1 x d. It is a simple 
operation that has no trainable parameters, hence speeding up the training process. 

In a classification task, Softmax function is applied to classify an image with probabilistic values 
ranging between 0 and 1. The summed-up values of a feature map from the global average pooling 
layer is fed into the Softmax layer. The activation values are added up and divided by the sum 
produced to give the probability values. Figure 6 gives the details of these models. 

 
Figure 6. Transfer learning using MobilenetV2, VGG16, and ResNet50. Figure 6. Transfer learning using MobilenetV2, VGG16, and ResNet50.



Appl. Sci. 2020, 10, 4945 11 of 17

For the MobilenetV2 [37] model, weights are initialized with the weights used in the training of the
original model. The global average pooling layer is followed by a dropout layer. There are three fully
connected layers with the number of neurons 512, 256, and 128. When using the VGG19 [38] pre-trained
model, we fine-tuned the model by adding an average pooling layer followed by batch normalization.
The output features undergo a batch normalization that helps to bring all the activation values to
the same scale such that the training speed is improved. In this model, we used the SGD optimizer.
The fully connected layers are formed of 1280, 512, and 256 neurons and, finally, the classifier layer.

ResNet50 [39] is also used to train the insider threat dataset. The architecture is similar to VGG,
but the size of the model is substantially smaller. This model is fine-tuned by freezing the top layers of
the model and adding the fully connected layers followed by classifier layer. Increasing the depth of
the network can improve the results as long as overfitting is taken care of. L2 Regularization is applied
to avoid overfitting. The fully connected layers are formed of 1024, 512 and 256 neurons and finally the
classifier layer.

The weight is initialized with the ImageNet weight used in the training of the original model.
Since there are only two class variables, we used the binary cross-entropy logarithmic loss function.
In a classification task, Softmax function is applied to classify an image with probabilistic values
ranging between 0 and 1. The details of the hyper-parameters are given in Table 2.

Table 2. Hyper-parameters used in the MobilenetV2, VGG19, and ResNet50-based model.

Parameter MobileNetV2 VGG19 ResNet50

Input shape (32,32,3) (32,32,3) (32,32,3)

Weight Initialized to ImageNet Initialized to ImageNet Initialized to ImageNet

Optimizer RMSProp SGD Adamax

Loss function Binary cross entropy Binary cross entropy Binary cross entropy

Classifier Softmax Softmax Softmax

Epochs 15 15 15

Batch size 64 128 128

Dropout rate 0.3 Nil Nil

Regularization Nil BatchNormalization L2 Regularization

The proposed models are demonstrated by implementing them as deep learning models and
evaluated them using a benchmark dataset. The following section explains the implementation and
validation details of the models.

4. Implementation

In this section, we present the details about the experiments performed to evaluate the proposed
approach. First, the dataset description is given. Second, the class-imbalance problem inherent in
the dataset is addressed. Third, we provide experimental results and comparisons with existing
approaches. The implementation is done in Keras [40] with Tensorflow [41] backend, an open source
machine learning platform from Google.

4.1. Dataset

We used CMU CERT insider threat dataset v4.2 [11] to test the proposed method. Availability of
the data is indeed a challenge for insider threat detection because the data from the organizations
are sensitive. These data are managed by the data owner and seamless data sharing remains an
open challenge. CMU CERT data is a benchmark dataset for insider threat detection which has been
widely used by researchers to evaluate their proposed methods [11]. This synthetic dataset generation
uses various scenarios to define the malicious activities. The log files contain logon-logoff data,



Appl. Sci. 2020, 10, 4945 12 of 17

web browsing history, file access logs, emails, device usage, psychometric information, and LDAP data.
Each dataset produced contains a small number of insider threat incidents, or scenarios. The malicious
activities are categorized into three scenarios in this version. These scenarios were developed in
consultation with counterintelligence experts. Each scenario is instantiated as synthetic data in the
same form and scope as the normal background data generated for all users in the dataset. The dataset
also consists of ground truth information needed to validate the approaches. The CMU CERT dataset
is the most popular dataset being used in almost all the recent works in insider threat analysis [42–45].

We used the five event files: logon/logoff activity, http data, email communications, file operations,
and usage of external storage device. The events from these log files are fed as input to derive the
malicious and non-malicious instances used to create the feature vector and the representative images.
Our feature extraction process extracts the various features and summarizes it per day per user to
a feature vector of malicious and non-malicious instances. Table 3 gives an overview of the dataset.

Table 3. Dataset details.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 17 

malicious activities are categorized into three scenarios in this version. These scenarios were 
developed in consultation with counterintelligence experts. Each scenario is instantiated as synthetic 
data in the same form and scope as the normal background data generated for all users in the dataset. 
The dataset also consists of ground truth information needed to validate the approaches. The CMU 
CERT dataset is the most popular dataset being used in almost all the recent works in insider threat 
analysis [42–45]. 

We used the five event files: logon/logoff activity, http data, email communications, file 
operations, and usage of external storage device. The events from these log files are fed as input to 
derive the malicious and non-malicious instances used to create the feature vector and the 
representative images. Our feature extraction process extracts the various features and summarizes 
it per day per user to a feature vector of malicious and non-malicious instances. Table 3 gives an 
overview of the dataset. 

Table 3. Dataset details. 

Log File 
No. of  
Events 

 

Non-Malicious 
Events 

 

Non-Malicious Instances 
Logon.csv 854859 7154815 330452 

Email.csv 2629979   
Http.csv 1048575 Malicious  

Events 
Malicious Instances 

Device.csv 405380 Scenario1 Scenario2 Scenario3 
File.csv 445581 7323 85 861 20 

As seen in Table 3, the number of malicious instances is very small compared with the non-
malicious ones. In the next section, we address the data imbalance issue. 

4.2. Imbalanced Data Handling 

The class imbalance problem [46] is a critical issue in machine learning as there is lack of data in 
various domains and it has significant impact on the performance evaluation of learning methods 
modeled with an assumption of a balanced class distribution. Zhou and Liu [46] studied the effect of 
undersampling, oversampling, and threshold-moving in the training phase of cost-sensitive neural 
networks. Soft-ensemble and Hard-ensemble, i.e., the combination of oversampling, undersampling, 
and threshold-moving using voting mechanisms are also experimented. There are recent research 
works like [47,48] that focus on the anomaly detection in images with skewed class distribution. The 
main point to be noted is that none of these approaches require any kind of algorithm modification 
of the neural networks. Table 3 shows that the CMU CERT data is highly imbalanced in terms of the 
class distribution. 

Imbalanced datasets can be dealt with various strategies like adapting the classification 
algorithms or balancing classes in the training data before providing the data as input to the learning 
algorithm. The sampling technique is applied to either add more samples to the minority class 
referred to as oversampling or remove samples from the majority class referred to as undersampling. 
The main idea is to achieve a better balance in the data sample for all the classes. 

Undersampling means randomly selecting a subset of samples from the instances with majority 
class to avoid its influence from dominating the algorithm learning process. The most common 
method for doing this is resampling without replacement. In the proposed method, we used 
undersampling to alleviate the data imbalance. The original data has an imbalance ratio of 1:340 for 
non-malicious and malicious classes. We used various sampling ratios to undersample the majority 
class instances. Table 4 shows the data with varying sampling ratios. 
  

As seen in Table 3, the number of malicious instances is very small compared with the non-malicious
ones. In the next section, we address the data imbalance issue.

4.2. Imbalanced Data Handling

The class imbalance problem [46] is a critical issue in machine learning as there is lack of data
in various domains and it has significant impact on the performance evaluation of learning methods
modeled with an assumption of a balanced class distribution. Zhou and Liu [46] studied the effect of
undersampling, oversampling, and threshold-moving in the training phase of cost-sensitive neural
networks. Soft-ensemble and Hard-ensemble, i.e., the combination of oversampling, undersampling,
and threshold-moving using voting mechanisms are also experimented. There are recent research
works like [47,48] that focus on the anomaly detection in images with skewed class distribution.
The main point to be noted is that none of these approaches require any kind of algorithm modification
of the neural networks. Table 3 shows that the CMU CERT data is highly imbalanced in terms of the
class distribution.

Imbalanced datasets can be dealt with various strategies like adapting the classification algorithms
or balancing classes in the training data before providing the data as input to the learning algorithm.
The sampling technique is applied to either add more samples to the minority class referred to as
oversampling or remove samples from the majority class referred to as undersampling. The main idea
is to achieve a better balance in the data sample for all the classes.

Undersampling means randomly selecting a subset of samples from the instances with majority
class to avoid its influence from dominating the algorithm learning process. The most common method
for doing this is resampling without replacement. In the proposed method, we used undersampling
to alleviate the data imbalance. The original data has an imbalance ratio of 1:340 for non-malicious
and malicious classes. We used various sampling ratios to undersample the majority class instances.
Table 4 shows the data with varying sampling ratios.



Appl. Sci. 2020, 10, 4945 13 of 17

Table 4. Sampling ratio.

Non-Malicious Instances Malicious Instances Undersampling Ratio

24,150 966 25
19,320 966 20
14,490 966 15
9660 966 10
4830 966 5

4.3. Performance Metrics

The proposed work is tested on the CERT CMU Dataset. Since it is a highly skewed data,
we applied random undersampling. The following section shows how each sampling ratio behaves
as the number of samples increase in the majority class. This phenomenon is referred to as accuracy
paradox, where the majority class tends to be learnt by the model explicitly because of the outnumbered
data samples. Hence the classifier gives a very high accuracy. Therefore, we use the precision, recall,
and f1-score as the performance metrics. Majority of the existing works use accuracy as the performance
metric. Since we compare the proposed approach with other existing approaches, we use accuracy in
Section 4.4 to explain the evaluation.

Precision is the ability of a classifier not to label a negative sample ad positive, whereas recall is its
ability to find all the positive instances. F1-scores, the harmonic mean of precision, and recall are used
to compare the classifiers. These metrics are computed from the classification summary that gives the
true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN).

4.4. Experimental Results

The evaluation is performed using the CMU CERT v4.2 data. The features are represented as 1D
feature vectors and images, as described in Section 3. Random sampling is performed on the data to
overcome the class imbalance problem. Various sampling ratios are used to perform the experiments.
We tested on various train-test split ratios. The dataset is split to training and testing before feeding it
to the deep learning model. Accuracy, precision, recall, and F-score are used to compare the results.

DNN is used for classification of 1D feature vectors. The DNN consists of 3 hidden layers and
a final a classification layer which uses the sigmoid function. A dropout layer is added before the
classification layer to reduce the effect of overfitting. Table 5 gives the overall performance of the DNN
model for different train-test split of the dataset on the feature vectors. In the table, A, P, F, and R
represent accuracy, precision, F1-score, and recall, respectively.

Table 5. Performance evaluation on the benchmark dataset using 1D feature vectors.

Model Sample
Ratio

Training % (70) Training % (80)

A P F R A P F R

DNN

5 90.86 76.04 73.37 70.88 91.72 79.62 72.25 66.12

10 93.46 64.32 64.81 65.31 93.56 70.24 63.27 57.57

20 95.57 53.65 52.76 59.87 95.88 67.34 57.39 45.49

25 96.24 55.10 22.69 14.29 96.34 62.96 36.30 25.50

DCNN is used for classification of grayscale images. The weights used in the original pre-trained
models are applied but with varying hyper-parameters. Table 6 gives the overall performance of the
model for different train-test split of the dataset on the grayscale images. The results show that VGG19
performs better than the other two models.



Appl. Sci. 2020, 10, 4945 14 of 17

Table 6. Performance evaluation on the benchmark dataset using grayscale images.

Model Sample
Ratio

Training % (70) Training % (80)

A P F R A P F R

Mobile
Net
V2

5 75.84 83.83 87.06 90.54 78.60 83.48 87.83 92.65

10 85.32 89.98 92.83 95.84 87.81 90.86 93.49 96.27

20 93.38 95.24 96.13 97.09 94.59 95.32 96.21 97.18

25 94.61 96.21 97.54 98.09 95.28 96.21 97.58 98.18

VGG19

5 90.16 94.07 94.10 94.13 90.94 94.80 94.55 94.31

10 91.21 96.90 95.08 93.34 92.24 96.37 95.65 94.93

20 95.67 96.60 97.75 98.93 95.17 97.56 96.46 96.36

25 94.16 96.16 98.78 98.03 96.34 96.80 97.12 98.59

ResNet50

5 78.94 80.20 83.66 94.75 79.26 83.99 87.96 92.33

10 87.45 91.13 93.25 95.47 87.98 91.17 96.16 93.60

20 89.95 95.29 90.43 85.27 92.28 95.29 96.18 97.15

25 93.41 95.13 95.54 96.68 95.31 96.12 97.43 98.09

Tables 5 and 6 show the performance achieved for the 1D feature vectors and the grayscale
images. Though the accuracy of the DNN on the 1D feature vectors is almost same as that of
DCNN on image-based analysis, the precision and recall deteriorate for DNN. DCNN gives much
improved precision and recall. Hence, the image-based analysis proved to be more promising.
The proposed approach is compared with state-of-the-art approaches. Random forest method proposed
by Noever [13] gave 94% accuracy with randomization and 90% accuracy with normal Random Forest.
Several works use LSTM [14,16] for feature learning, followed by classification algorithms, like CNN.
Another approach used deep learning for feature learning and then applied one class SVM [15] for
classification. Our proposed approach gave an improved AUC = 97.38 when compared to the method
using LSTM [16] gave an AUC = 94.49. Since various papers use different metrics for performance
evaluation, we chose the papers with accuracy for the comparison, and those use the CERT CMU
v4.2. The difference in the number of features and the representation used, methods applied for class
imbalance handling, performance metrics applied, etc., affect the results of each method. Still, we tried
to compare the proposed approach with the existing deep learning methods and the CMU CERT
dataset. Table 7 shows the performance of the proposed method compared to existing approaches.

Table 7. Performance comparison with existing approaches using the CMU CERT dataset v4.2.

Method Accuracy (%)

Random Forest with Randomization [13]
Random Forest [13]

94.00
90.00

LSTM-RNN [14] 93.85
DBN-OCSVM [15] 87.79

Graph Convolutional Networks [42] 94.50
Proposed Method 96.34

In the next section, we provide the discussion of results and conclude the paper with possible
directions for future work.

5. Discussion and Conclusion

The results in the Section 4.4 show that the image-based representation can be effectively applied
to the insider threat detection. The dataset has high class imbalance with a ratio of 1:340 for



Appl. Sci. 2020, 10, 4945 15 of 17

non-malicious and malicious instances. Therefore, we applied random undersampling. In image-based
representation, the optimal imbalance ratios are identified as those with high precision, recall, and
f1-score. The imbalance ratios from 5 to 25 gave promising results. The precision, recall, and f1-score
remain consistent for these ratios. Increasing the sampling ratio beyond 25 causes the precision and
recall to drop. This can be handled effectively by using techniques, like random oversampling of
malicious instances. Data augmentation approaches can be applied to images to handle the issue of
class imbalance [49].

The proposed approach is motivated by the effectiveness of deep learning to learn from very
complex mappings between input and output data. Deep learning has proven to be successful
in numerous fields like speech recognition, image recognition, and Natural Language Processing.
However, the huge number of hidden neurons and layers used in Deep Neural Networks end up in
computationally-intensive vector and matrix operations involving millions of parameters that need
high performance computing resources. Moreover, it is impractical to collect labeled data samples in
many real-world domains to train a network from scratch. In such cases, a pre-trained deep learning
model can be used by fine-tuning it for new labels. This motivated us to formulate insider threat
detection as a transfer learning problem.

We proposed grayscale images to represent the behavioral features of users which were extracted
from resource log files. In order to detect anomalous behavior, these images were used to train and test
a pre-trained deep learning model for classification. We used the CMU CERT Insider Threat dataset
to evaluate the proposed method. The results presented in Section 4 show the effectiveness of the
proposed approach. The temporal aspects of the usage access patterns can be added to the images to
achieve an incremental solution approach.

There is vast scope for future work on image-based security analysis. Various other attacks can be
formulated as pattern recognition problems to identify anomalies. Additionally, more experiments are
needed to better portray the role of image-based analytics in cybersecurity.

Author Contributions: Conceptualization, R.G.G. and A.S.; methodology, R.G.G. and A.S.; software, R.G.G. and
A.S.; validation, R.G.G. and A.S.; writing—original draft preparation, R.G.G.; writing—review and editing, A.S. and
Y.X; supervision, A.S. and Y.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Verizon: 2019 Data Breach Investigations Report. In Computer Fraud & Security; Elsevier BV: Oxfordshire,
UK, 2019; Volume 2019, p. 4. [CrossRef]

2. Accenture/Ponemon Institute. The Cost of Cybercrime, Network Security; Elsevier BV: Amsterdam, The Netherlands,
2019; Volume 2019, p. 4. [CrossRef]

3. IBM. Cost of a Data Breach Report 2019. In Computer Fraud & Security; Elsevier BV: Oxfordshire, UK, 2019;
Volume 2019, p. 4. [CrossRef]

4. Garcia, A.; Orts-Escolano, S.; Oprea, S.; VillenaMartinez, V.; Martinez-Gonzalez, P.; Garcia-Rodriguez, J.
A survey on deep learning techniques for image and video semantic segmentation. Appl. Soft Comput. 2018,
70, 41–65. [CrossRef]

5. Homoliak, I.; Toffalini, F.; Guarnizo, J.; Elovici, Y.; Ochoa, M. Insight into insiders and it: A survey of insider
threat taxonomies, analysis, modeling, and countermeasures. ACM Comput. Surv. (CSUR) 2019, 52, 30.
[CrossRef]

6. Sanzgiri, A.; Dasgupta, D. Classification of Insider Threat Detection Techniques; ACM: New York, NY, USA, 2016;
Volume 25.

7. Zeadally, S.; Yu, B.; Jeong, D.H.; Liang, L. Detecting insider threats: Solutions and trends. Inform. Secur. J.
Glob. Perspect. 2012, 21, 183–192. [CrossRef]

8. Berman, D.S.; Buczak, A.L.; Chavis, J.S.; Corbett, C.L. A survey of deep learning methods for cyber security.
Information 2012, 10, 122. [CrossRef]

http://dx.doi.org/10.1016/S1361-3723(19)30060-0
http://dx.doi.org/10.1016/S1353-4858(19)30032-7
http://dx.doi.org/10.1016/S1361-3723(19)30081-8
http://dx.doi.org/10.1016/j.asoc.2018.05.018
http://dx.doi.org/10.1145/3303771
http://dx.doi.org/10.1080/19393555.2011.654318
http://dx.doi.org/10.3390/info10040122


Appl. Sci. 2020, 10, 4945 16 of 17

9. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. (CSUR) 2009, 41, 15.
[CrossRef]

10. Gavai, G.; Sricharan, K.; Gunning, D.; Hanley, J.; Singhal, M.; Rolleston, R. Supervised and Unsupervised
methods to detect Insider Threat from Enterprise Social and Online Activity Data. JoWUA 2015, 6, 47–63.

11. Glasser, J.; Lindauer, B. Bridging the gap: A pragmatic approach to generating insider threat data. In Security
and Privacy Workshops; IEEE: Piscataway, NJ, USA, 2013; pp. 98–104.

12. Liu, L.; De Vel, O.; Chen, C.; Zhang, J.; Xiang, Y. Anomaly-Based Insider Threat Detection Using Deep
Autoencoders. In Proceedings of the 2018 IEEE International Conference on Data Mining Workshops
(ICDMW) 2018, Singapore, 17–20 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 39–48.

13. Noever, D. Classifier Suites for Insider Threat Detection. arXiv 2019, arXiv:1901.10948.
14. Meng, F.; Lou, F.; Fu, Y.; Tian, Z. Deep learning based attribute classification insider threat detection for data

security. In Proceedings of the 2018 IEEE Third International Conference on Data Science in Cyberspace
(DSC), Guangzhou, China, 18–21 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 576–581.

15. Lin, L.; Zhong, S.; Jia, C.; Chen, K. Insider threat detection based on deep belief network feature representation.
In Proceedings of the 2017 International Conference on Green Informatics (ICGI), Fuzhou, China,
15–17 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 54–59.

16. Yuan, F.; Cao, Y.; Shang, Y.; Liu, Y.; Tan, J.; Fang, B. Insider threat detection with deep neural network.
In Proceedings of the 2018 International Conference on Computational Science, Wuxi, China, 11–13 June
2018; Springer: Cham, Swizerland, 2018; pp. 43–54.

17. Zhang, J.; Chen, Y.; Ju, A. Insider threat detection of adaptive optimization DBN for behavior logs. Turkish J.
Electr. Eng. Comput. Sci. 2018, 26, 792–802. [CrossRef]

18. Chattopadhyay, P.; Wang, L.; Tan, Y.P. Scenario-based insider threat detection from cyber activities. IEEE Trans.
Comput. Soc. Syst. 2018, 5, 660–675. [CrossRef]

19. Azaria, A.; Richardson, A.; Kraus, S.; Subrahmanian, V.S. Behavioral analysis of insider threat: A survey and
bootstrapped prediction in imbalanced data. IEEE Trans. Comput. Soc. Syst. 2014, 1, 135–155. [CrossRef]

20. Salem, M.B.; Hershkop, S.; Stolfo, S.J. A survey of insider attack detection research. In Insider Attack and
Cyber Security; Springer: Boston, MA, USA, 2008; pp. 69–90.

21. Liu, L.; De Vel, O.; Han, Q.L.; Zhang, J.; Xiang, Y. Detecting and preventing cyber insider threats: A survey.
IEEE Commun. Surv. Tutor. 2018, 20, 1397–1417. [CrossRef]

22. Ferreira, P.; Le, D.C.; Zincir-Heywood, N. Exploring Feature Normalization and Temporal Information for
Machine Learning Based Insider Threat Detection. In Proceedings of the 2019 15th International Conference
on Network and Service Management (CNSM), Halifax, NS, Canada, 21–25 October 2019; IEEE: Piscataway,
NJ, USA, 2019; pp. 1–7.

23. Xin, Y.; Kong, L.; Liu, Z.; Chen, Y.; Li, Y.; Zhu, H.; Gao, M.; Hou, H.; Wang, C. Machine learning and deep
learning methods for cybersecurity. IEEE Trans. Knowl. Data Eng. 2018, 6, 35365–35381. [CrossRef]

24. Li, J.H. Cyber security meets artificial intelligence: A survey. Front. Inform. Technol. Electron. Eng. 2018,
19, 1462–1474. [CrossRef]

25. Rezende, E.; Ruppert, G.; Carvalho, T.; Ramos, F.; De Geus, P. Malicious software classification using transfer
learning of resnet-50 deep neural network. In Proceedings of the 2017 16th IEEE International Conference on
Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December 2017; IEEE: Piscataway, NJ,
USA, 2017; pp. 1011–1014.

26. Kancherla, K.; Mukkamala, S. Image visualization based malware detection. In Proceedings of the 2013
IEEE Symposium on Computational Intelligence in Cyber Security (CICS), Singapore, 16–19 April 2013;
IEEE: Piscataway, NJ, USA, 2013; pp. 40–44.

27. Tobiyama, S.; Yamaguchi, Y.; Shimada, H.; Ikuse, T.; Yagi, T. Malware detection with deep neural network
using process behavior. In Proceedings of the 2016 IEEE 40th Annual Computer Software and Applications
Conference (COMPSAC), Atlanta, GA, USA, 10–14 June 2016; IEEE: Piscataway, NJ, USA, 2016; Volume 2,
pp. 577–658.

28. Bhodia, N.; Prajapati, P.; Di Troia, F.; Stamp, M. Transfer Learning for Image-Based Malware Classification.
arXiv 2019, arXiv:1903.11551.

29. Lison, P.; Mavroeidis, V. Automatic detection of malware-generated domains with recurrent neural models.
arXiv 2017, arXiv:1709.07102.

http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.3906/elk-1706-163
http://dx.doi.org/10.1109/TCSS.2018.2857473
http://dx.doi.org/10.1109/TCSS.2014.2377811
http://dx.doi.org/10.1109/COMST.2018.2800740
http://dx.doi.org/10.1109/ACCESS.2018.2836950
http://dx.doi.org/10.1631/FITEE.1800573


Appl. Sci. 2020, 10, 4945 17 of 17

30. Feng, Z.; Shuo, C.; Xiaochuan, W. Classification for DGA-based malicious domain names with deep learning
architectures. In Proceedings of the 2017 Second International Conference on Applied Mathematics and
Information Technology, Vellore, India, 26 December 2017; p. 5.

31. Dai, Y.; Li, H.; Qian, Y.; Lu, X. A malware classification method based on memory dump grayscale image.
Digit. Investig. 2018, 27, 30–37. [CrossRef]

32. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [CrossRef]
33. Zhao, J.; Shetty, S.; Pan, J.W.; Kamhoua, C.; Kwiat, K. Transfer learning for detecting unknown network

attacks. EURASIP J. Inf. Secur. 2019, 2019, 1. [CrossRef]
34. Zhao, J.; Shetty, S.; Pan, J. Feature-based transfer learning for network security. Proceeding of MILCOM

2017—2017 IEEE Military Communications Conference (MILCOM), Baltimore, MD, USA, 11 December 2017;
pp. 17–22.

35. Tan, Z.; Jamdagni, A.; He, X.; Nanda, P.; Liu, R.P.; Hu, J. Detection of denial-of-service attacks based on
computer vision techniques. IEEE Trans. Comput. 2014, 64, 2519–2533. [CrossRef]

36. Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and
application in radiology. Insights Imaging 2018, 9, 611–629. [CrossRef]

37. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake
City, UT, USA, 18–23 June 2018; pp. 4510–4520.

38. Simonyan, K.; Zisserman, A. Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014,
arXiv:1409.1556.

39. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

40. Chollet, F. Keras: Deep learning library for theano and tensorflow. 2015. Available online: https://github.
com/fchollet/keras (accessed on 18 July 2020).

41. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al.
Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th Symposium on Operating
Systems Design and Implementation, Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

42. Zhou, Z.H.; Liu, X.Y. Training cost-sensitive neural networks with methods addressing the class imbalance
problem. IEEE Trans. Knowl. Data Eng. 2005, 18, 63–77. [CrossRef]

43. Piciarelli, C.; Mishra, P.; Foresti, G.L. Image anomaly detection with capsule networks and imbalanced
datasets. In Proceedings of the International Conference on Image Analysis and Processing, Trento, Italy,
9–13 September 2019; Springer: Cham, Swizerlands, 2019; pp. 257–267.

44. Jiang, J.; Chen, J.; Gu, T.; Choo, K.K.R.; Liu, C.; Yu, M.; Huang, W.; Mohapatra, P. Anomaly Detection with
Graph Convolutional Networks for Insider Threat and Fraud Detection. In Proceedings of the MILCOM
2019–2019 IEEE Military Communications Conference (MILCOM), Norfolk, VA, USA, 12–14 November 2019;
IEEE: Piscataway, NJ, USA, 2019; pp. 109–114.

45. Aldairi, M.; Karimi, L.; Joshi, J. A Trust Aware Unsupervised Learning Approach for Insider Threat Detection.
In Proceedings of the 2019 IEEE 20th International Conference on Information Reuse and Integration for Data
Science (IRI), Los Angeles, CA, USA, 30 July–1 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 89–98.

46. Khan, A.Y.; Latif, R.; Latif, S.; Tahir, S.; Batool, G.; Saba, T. Malicious Insider Attack Detection in IoTs Using Data
Analytics; IEEE: Piscataway, NJ, USA, 2019; Volume 8, pp. 11743–11753.

47. Le, D.C.; Zincir-Heywood, N.; Heywood, M.I. Analyzing data granularity levels for insider threat detection
using machine learning. IEEE Trans. Netw. Serv. Manag. 2020, 17, 30–44. [CrossRef]

48. Perera, P.; Patel, V.M. Learning deep features for one-class classification. IEEE Trans. Image Process. 2019,
28, 5450–5463. [CrossRef] [PubMed]

49. Vasan, D.; Alazab, M.; Wassan, S.; Naeem, H.; Safaei, B.; Zheng, Q. IMCFN: Image-based malware
classification using fine-tuned convolutional neural network architecture. Comput. Netw. 2020, 171, 107138.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.diin.2018.09.006
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1186/s13635-019-0084-4
http://dx.doi.org/10.1109/TC.2014.2375218
http://dx.doi.org/10.1007/s13244-018-0639-9
https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://dx.doi.org/10.1109/TKDE.2006.17
http://dx.doi.org/10.1109/TNSM.2020.2967721
http://dx.doi.org/10.1109/TIP.2019.2917862
http://www.ncbi.nlm.nih.gov/pubmed/31144635
http://dx.doi.org/10.1016/j.comnet.2020.107138
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Proposed Method 
	Feature Vector Construction 
	Image-Based Feature Vector Representation 
	Classification 
	Transfer Learning 

	Implementation 
	Dataset 
	Imbalanced Data Handling 
	Performance Metrics 
	Experimental Results 

	Discussion and Conclusion 
	References

