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Abstract: Investigating the micro-parameters of rock is vital for understanding the macro-properties
of rock, such as the uniaxial compressive strength (UCS), Young’s modulus, failure patterns, etc. In this
paper, based on the experimental results of rock material, a parallel-bond model in three-dimensional
particle flow code (PFC3D) was applied to investigate the effects of the joint action of bond stiffness ratio
and bond stress ratio on macro-properties of rock. The uniaxial compressive strength, stress–strain
relationships, and failure characteristics, as well as underlying compression and failure mechanisms,
in the process of parameter calibration, were systematically studied. The results indicated that the
interaction of several micro-parameters would obviously change the response characteristics of the
macro-properties of the model. The mechanism of the effects of various micro-parameters on the
macro-properties of the model was further revealed. The change of the micro-parameters would
change the strength and stress state of the bond between particles. The research results could promote
the understanding of the failure mechanism of rock and improve the efficiency of micro-parameter
calibration and the accuracy of calibration results.

Keywords: PFC3D; parallel-bond model; micro-parameters; macro-properties; bond stiffness ratio;
bond stress ratio

1. Introduction

The discrete element method (DEM) was first introduced by Cundall in 1971 [1]. Since this time,
the DEM has been widely applied in fields, such as mining and geotechnical engineering [2–9]. Particle
flow code (PFC) is one of the widely used particle DEMs. The PFC is convenient for dealing with
problems in non-continuous media and can effectively simulate non-continuous phenomena (e.g.,
cracking, media separation), which has greatly aided research into the damage, fracture evolution, and
failure mechanism of rocks [10–14].

The first step in a PFC simulation is to select rational micro-parameters according to the
material macro-responses. The accuracy of the simulation results depends on the selection of
micro-parameters [15,16]. Many studies have explored the relationship between micro- and
macro-parameters and achieved substantial success. Potyondy and Cundall [17] analyzed the sensitivity
of the results of biaxial, triaxial, and Brazilian splitting tests of the PFC model to micro-parameters.
Yoon et al. [18,19] proposed the calibration and optimization method of PFC micro-parameters based on
the design of experiments method. Yang et al. [20,21] analyzed the quantitative relationship between the
macro-properties and micro-parameters of the calculation model by using a two-dimensional particle
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flow code (PFC2D) parallel-bond model. Cong [22] combined the triaxial loading and unloading
test of marble to study the micro-parameters applicable to the mechanical analysis of rock materials.
Shi et al. [23–25] established a two-dimensional discrete element model, which could reflect the mineral
components of rocks, and studied the influence of mineral components and microdamage distribution
on the macro-properties of rocks. Ding et al. [26,27] studied the influence of model scale and particle
size distribution on PFC simulation results.

However, most of these studies are based on PFC2D, and few are based on a three-dimensional
particle flow code (PFC3D). Substantial differences have been shown to exist between PFC2D and
PFC3D simulation results [17,20,27–29]. Additionally, plane strain and plane stress conditions can be
applied to a wide variety of applications [30–33], but some engineering and experiment problems in the
field cannot be simplified into plane stress or plane strain problems [19,26,34,35]. The research on the
relationship between macro-properties and micro-parameters generally only considers the relationship
between macro-properties and a single micro-parameter, while the research on the influence of
multi-parameter coupling on macro-properties is insufficient. However, limited research shows that
the coupling of multiple parameters has a more significant impact on the macro characteristics of the
model [21,36].

In the PFC bond model, the contact-bond model (CBM) and parallel-bond model (PBM) are
widely used. CBM can be regarded as a spring with certain normal and shear stiffness, which binds
the particle element at the contact. PBM can be regarded as a series of springs with normal and shear
stiffness, which are evenly distributed on a certain width of the contact surface and can resist the action
of force and moment at the same time [19,37]. In PBM, the bond failure will immediately reduce the
macro-stiffness, which is more in line with the brittle failure characteristics of rock [10,19,37]. Therefore,
PBM is selected to simulate the mechanical behavior of hard rock in the process of failure.

In this study, the parallel-bond model in PFC was applied to investigate the effects and effect
mechanisms of bond normal strength, shear strength, and stiffness ratio on the macro-properties of
the PFC3D model of rocks. Section 2 briefly reviews the relationships between micro-parameters and
macro-properties in the parallel-bond model. Section 3 describes the test scheme, Section 4 presents the
test results, and the key problems found in this study are discussed in Section 5. The main conclusions
are given in Section 6.

2. Parallel-Bond Model and Its Micro-Parameters

PFC3D simulates the mechanical behavior of continuous medium materials by defining the contact
model to bond mutually independent particle units. Several studies have addressed the calibration of
micro-parameters for various contact models in PFC and also analyzed the relationships between these
micro-parameters and macro-properties [18,38–42].

The following parameters in PBM have been shown to exert major effects on the
macro-properties [22,26,28,37,38]: Rmax/Rmin (Rmin is minimum particle radius in the entire population
of particles, Rmax is particle radius in the entire population of particles), Rmin, L/d (L is the smallest
characteristic model length, such as the diameter of a cylindrical specimen, or the smallest width of a
parallelepiped specimen, d is the median particle diameter), k∗ (bond normal-to-shear stiffness ratio,
k∗ = kn/ks, kn is normal stiffness, ks is shear stiffness), Ec (effective modulus, Ec = k∗LR/A, LR is the
sum of particle radius on both sides of the bond, A= 2r (2D) or A = πr2 (3D), r is the minimum radius
of particles on both sides of the bond), µ (grain contact friction coefficient), k

∗

(bond normal-to-shear
stiffness ratio, k

∗

= kn/ks, kn is bond normal stiffness, ks is bond shear stiffness), Ec (bond effective
modulus, Ec = k

∗

LR), σn (bond normal stress), τn (bond shear stress), and λ (bond width multiplier).
R = λr, R is the bond radius. By setting λ, the bond radius is enlarged or reduced.

Among these parameters, k
∗

, σn, and τn have significant effects on model macro-properties. The k
∗

value has a substantial effect on the model Poisson’s ratio and Young’s modulus [17,19,22]. With
increasing k

∗

, the Poisson’s ratio increases, while Young’s modulus decreases [19–22]. In contrast,
the existing studies on the effect of k

∗

on uniaxial compressive strength (UCS) are insufficient.
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Most researchers have not considered this effect or only considered it on the condition that other
micro-parameters are unchanged. They have not considered coupling effects between k

∗

and other
micro-parameters on UCS, as well as the model deformation and failure characteristics [18–22,38,43].
Table 1 shows the results of the relationship between k

∗

and UCS in different researchers’ studies.

Table 1. Summary of the PFC study on the relationship between micro-parameters and UCS.

References
Value Range of Bond

Normal-to-Shear
Stiffness Ratio

Influence Degree of
Bond Normal-to-Shear
Stiffness Ratio on UCS

Note

Deng, S.X. et al. [19] 0.6–3.6 Not significant PFC3D
Wang, Y.N. et al. [38] 0–0.8 Not considered PFC3D
Zhao, G.Y. et al. [21] 0.1–6 Not considered PFC2D
Yang, B.D. et al. [20] 0.6–2 Not significant PFC2D
Cong, Y. et al. [22] 1–5 Not significant PFC2D

Yoon, J. [18] 0.5–10 Not significant PFC2D
Xu, X.M. et al. [43] 1–100 Not considered PFC3D

Uniaxial compressive strength (UCS), three-dimensional particle flow code (PFC3D), two-dimensional particle flow
code (PFC2D)

Previous studies have shown that UCS of the model is also highly dependent on σn and τn, both
of which have a positive effect [18,19]. Zhao [21] reported that when σn/τn > 0.5, the strength of the
model was mainly affected by τn, and when σn/τn < 0.5, it was mainly affected by σn. However,
changes in σn and τn generally do not affect Young’s modulus or Poisson’s ratio. Earlier studies have
primarily investigated the effect of a particular single micro-parameter on the macro-properties of
the model, whereas the combined effects of multiple micro-parameters on the macro-properties of
the model have not been taken into account. Additionally, some studies [18–21,23–27] set k∗ = k

∗

as a
default to facilitate analyses, even though these values have been shown to have considerable effects
on the model macro-properties under different conditions [7,22].

In summary, the effects of k
∗

, σn, and τn in PFC3D on model macro-properties require a more
thorough investigation. It is of great significance to improve the efficiency of micro-parameter
calibration and the accuracy of calibration results.

3. Experiment and Calibration

In order to make the simulation results conform to the physical properties of rock materials,
the rock was first tested under uniaxial compression, and then the micro-parameters calibrated
according to the test results were used as the benchmark for further study.

The rock material used in the test was sandy mudstone (Figure 1a), which was taken from
−437.62 m of buertai mine, Shandong mining area, Inner Mongolia, China. The main mineral
compositions of rock materials were analyzed by D/max-2500 X-ray diffractometer in the School of
materials science and engineering, Shandong University. The content of clay mineral was 34.8%, quartz
was 51.9%, K-feldspar was 5.6%, and plagioclase was 7.7%. The rock was made into a standard rock
sample with a height of 100 mm and a radius of 25 mm. The test loading rate was 1 mm/min.

A cylindrical model with a height of 100 mm and a radius of 25 mm was constructed using PFC3D,
and the damping coefficient used in the experiment was 0.7. Specimens were loaded using the top
and bottom walls during uniaxial compression. A loading rate of 0.1 m/s was used in the simulation
process to ensure the comparability and prevent interference of the loading rate on the results [26,44]
(Quasi-static modeling with PFC3D usually made usage of a high local damping coefficient to efficiently
remove kinetic energy from the system. Therefore, typical quasi-static deformation could be performed
at a much higher rate than in real experiments [26]. Because of the high damping coefficient used,
the loading rate in PFC was different from that used in the actual test [42]. The loading rate of 0.1 m/s
could meet the requirements of PFC3D uniaxial compression simulation).



Appl. Sci. 2020, 10, 4957 4 of 18

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 20 

The rock material used in the test was sandy mudstone (Figure 1a), which was taken from 
−437.62 m of buertai mine, Shandong mining area, Inner Mongolia, China. The main mineral 
compositions of rock materials were analyzed by D/max-2500 X-ray diffractometer in the School of 
materials science and engineering, Shandong University. The content of clay mineral was 34.8%, 
quartz was 51.9%, K-feldspar was 5.6%, and plagioclase was 7.7%. The rock was made into a standard 
rock sample with a height of 100 mm and a radius of 25 mm. The test loading rate was 1 mm/min. 

  

  

Figure 1. Stress–strain responses of sandy mudstone and DEM model. (a) Uniaxial compression test, 
(b) Stress strain curve. 

A cylindrical model with a height of 100 mm and a radius of 25 mm was constructed using 
PFC3D, and the damping coefficient used in the experiment was 0.7. Specimens were loaded using 
the top and bottom walls during uniaxial compression. A loading rate of 0.1 m/s was used in the 
simulation process to ensure the comparability and prevent interference of the loading rate on the 
results [26,44] (Quasi-static modeling with PFC3D usually made usage of a high local damping 
coefficient to efficiently remove kinetic energy from the system. Therefore, typical quasi-static 
deformation could be performed at a much higher rate than in real experiments [26]. Because of the 
high damping coefficient used, the loading rate in PFC was different from that used in the actual test 
[42]. The loading rate of 0.1 m/s could meet the requirements of PFC3D uniaxial compression 
simulation). 

The numerical simulation software was PFC3D5.0, purchased from Itasca Consulting Co., Ltd. 
(Wuhan). Based on the experimental data of sandy mudstone, a numerical model simulating sandy 
mudstone was established, and a set of micro-parameters to match the numerical results with the 
measured mechanical properties was determined. Calibrated micro-parameters were used to 

systematically explore the effects of nσ , nτ , and 
*
k  in PFC3D on the macro-properties of rocks 

and the underpinning failure mechanisms by varying /n nσ τ  and 
*
k . The micro parameters were 

adjusted by a trial-and-error method using the following specific steps: (1) According to the uniaxial 
compression test, the UCS, E, μ of sandy mudstone were obtained; (2) The numerical model was 
established by PFC3D software, and a group of micro-parameters was set up according to the 
experience, and the uniaxial compression test was simulated; (3) The UCS, E, and μ obtained from 
the experiment and simulation were compared; (4) The reasonable micro-parameters could be 
obtained by adjusting the micro-parameters until the simulation results were close enough to the 
experimental results. The calibrated micro-parameters of the PFC3D model are presented in Table 2. 

Table 2. Calibrated micro-parameters of the PFC3D model. 

Micro-
parameter 

Description Calibrated 
Value 

Figure 1. Stress–strain responses of sandy mudstone and DEM model. (a) Uniaxial compression test,
(b) Stress strain curve.

The numerical simulation software was PFC3D5.0, purchased from Itasca Consulting Co., Ltd.
(Wuhan, China). Based on the experimental data of sandy mudstone, a numerical model simulating
sandy mudstone was established, and a set of micro-parameters to match the numerical results with
the measured mechanical properties was determined. Calibrated micro-parameters were used to
systematically explore the effects of σn, τn, and k

∗

in PFC3D on the macro-properties of rocks and the
underpinning failure mechanisms by varying σn/τn and k

∗

. The micro parameters were adjusted by a
trial-and-error method using the following specific steps: (1) According to the uniaxial compression
test, the UCS, E, µ of sandy mudstone were obtained; (2) The numerical model was established by
PFC3D software, and a group of micro-parameters was set up according to the experience, and the
uniaxial compression test was simulated; (3) The UCS, E, and µ obtained from the experiment and
simulation were compared; (4) The reasonable micro-parameters could be obtained by adjusting
the micro-parameters until the simulation results were close enough to the experimental results.
The calibrated micro-parameters of the PFC3D model are presented in Table 2.

Table 2. Calibrated micro-parameters of the PFC3D model.

Micro-Parameter Description Calibrated Value

Rmin/mm Minimum particle radius 1
Rmax/Rmin Particle radius ratio 1.66

Ec/GPa Effective modulus 3
k∗ Normal-to-shear stiffness ratio 3.3
µ Particle friction coefficient 0.5

Ec/MPa Bond effective modulus 3
k
∗

Bond normal-to-shear stiffness ratio 3.3
σn/MPa Normal bond strength (Mean ± standard deviation*) 9 ± 3
τn/MPa Shear bond strength (Mean ± standard deviation) 15 ± 3

λ Bond width multiplier 1

* According to the test results, it was set by PFC code

Results of PFC simulations and uniaxial compression test are presented in Table 3. As shown in
Figure 1b, the stress–strain characteristics of the DEM model were compared with the experimental
data obtained from sandy mudstone under uniaxial compression. The simulation results were basically
consistent with the test data. The difference in stress–strain curve was caused by the loading mechanism
of numerical simulation [42]. In the process of sample formation, the particle had achieved self-balance
under the effect of its gravity acceleration, and the particle had reached an ideal state through effective
contact, while the microfracture of the actual rock sample led to initial compression phase.
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Table 3. Experimental data and simulation results.

Test Method Uniaxial Compression Strength
(σc/MPa)

Young’s Modulus
(E/GPa)

Poisson’s Ratio
(ν)

Sample Size
(R × H/mm)

Laboratory test 31.91 4.61 0.241 25 × 100
PFC simulation 33.07 4.57 0.248 25 × 100

To study the effects of σn, τn, and k
∗

on the macro-properties of the model, a total of 10 different
bond normal-to-shear stress ratios, σn/τn < 1 (0.1, 0.2, 0.4, 0.6, 0.8) and σn/τn > 1 (1, 2, 3, 4, 6), were set
based on the micro-parameters presented in Table 2. When simulating rock material, the reasonable
range of values of k

∗

was 1–11 [45,46]. Thus, each group σn/τn corresponded to ten groups k
∗

. The value
of k

∗

was set to 1.11, 2, 3, 4, 5, 6, 7, 8, 9, 10.11. The influence on the rock macro-properties of the PFC3D
model was monitored by varying σn/τn and k

∗

. Additionally, the stiffness ratio factor (KK = k∗/k
∗

)
was taken as KK = 0.1, 1, 2, 4, 6, 8, or 10 to study the effects of k∗ and k

∗

on the model macro-properties
under different conditions.

4. The Results of Micro-Parameters on Mechanical Properties of Rock

4.1. The Influence of Micro-Parameters on UCS

4.1.1. Combined Effects of σn/τn and k
∗

on UCS

The relationships between UCS and σn/τn and k
∗

are shown in Figure 2. It could be seen from
Figure 2a that when σn/τn < 0.8, the UCS of the model decreased continuously with increasing
k
∗

. The rate of the decrease declined with increasing k
∗

, whereas the extent of the decrease grew
with increasing σn/τn. When 0.8 ≤ σn/τn < 4, the UCS initially increased and then decreased with
increasing k

∗

. The extent of the increase grew consistently with increasing k
∗

, and the curve maximum
continuously shifted toward the right. As shown in Figure 2b, when σn/τn ≥ 4, the UCS initially
increased with increasing k

∗

and then leveled off. Additionally, as σn/τn increased, the change in UCS
with k

∗

became consistently larger.
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stiffness ratio (k

∗

) versus uniaxial compressive strength (UCS). (a) σn/τn < 1, (b) σn/τn > 1.

The results indicated that when k
∗

was constant, the UCS increased with increasing σn/τn. When
k
∗

was relatively low, there was a minor increase in the UCS with increasing σn/τn. For k
∗

= 1.11, when
σn/τn < 0.8, the UCS increased by 1.77-fold. When 0.8 ≤ σn/τn < 1, the increase in the UCS was 20.58%,
and when σn/τn ≥ 1, there was an increase of 8.94%. With increasing k

∗

, the increase in UCS with
σn/τn became gradually larger. For k

∗

= 10.11, when σn/τn < 1, the UCS increased by 6.24-fold; when
σn/τn ≥ 1, the increase in UCS was 3.22-fold.
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The response surface plots of UCS are shown in Figure 3. When σn/τn < 0.8, the UCS exhibited
a negative response to k

∗

that became more evident with increasing σn/τn. When σn/τn ≥ 0.8,
the response of UCS to k

∗

shifted from negative to positive. This positive response also became more
evident with increasing σn/τn, and UCS exhibited a positive response to σn/τn. When σn/τn < 1,
the positive response of UCS was attenuated with increasing k

∗

; when σn/τn > 1, the positive response
was enhanced by increased k

∗

.
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4.1.2. Combined Effects of KK and σn/τn on UCS

The relationships between UCS versus σn/τn and KK are shown in Figure 4. The UCS curve
exhibited a consistent relationship when σn/τn < 1 and > 1. With increasing KK, the UCS decreased
continuously at a gradually decreasing rate. When KK > 6, the UCS tended to level off. Additionally,
with increasing σn/τn, the overall decrease in the UCS became gradually larger.
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4.1.3. Combined Effects of KK and k
∗

on UCS

The relationships between UCS versus k
∗

and KK at σn/τn = 0.8 and 4 are shown in Figure 5.
The UCS consistently decreased with increasing KK. When k

∗

was relatively low, there was an
approximately linear relationship between KK and UCS; the curve exhibited a very gradual decrease,
indicating a minor effect of KK on UCS for relatively low k

∗

. However, with increasing k
∗

, there existed
a nonlinear relationship between KK and UCS; the curve exhibited a larger decrease, and the effect of
KK on the UCS became increasingly more evident.
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4.2. The Influence of KK and k
∗

on Young’s Modulus and Poisson’s Ratio

The relationships between Young’s modulus versus k
∗

and KK at σn/τn = 0.8 and 4 are shown in
Figure 6. When KK < 4, Young’s modulus decreased gradually with increasing KK, and there was
a minor change in Young’s modulus when k

∗

was relatively low. However, the change in Young’s
modulus became gradually larger with increasing k

∗

at a decreasing rate. When KK > 4, Young’s
modulus generally remained constant, and KK had almost no effect. Additionally, as compared with
k
∗

, the change in KK had less effect on Young’s modulus, while the change in σn/τn had no effect.
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The relationships between Poisson’s ratio versus k
∗

and KK at σn/τn = 0.8 and 4 are shown in
Figure 7. When KK < 4, the Poisson’s ratio increased gradually with increasing KK. For relatively low
k
∗

, the Poisson’s ratio showed a minor change with KK. However, with increasing k
∗

, the change in
Poisson’s ratio became more evident, whereas the rate of increase diminished gradually. When KK >

4, the Poisson’s ratio was generally constant, and KK almost had no effect on the Poisson’s ratio. As
compared with k

∗

, the change in KK had less effect on the Poisson’s ratio, while the change in σn/τn

had no effect.

4.3. The Effects of σn/τn and k
∗

on Stress–Strain Relationships and Failure Characteristics

The stress–strain relationships with different k
∗

at σn/τn = 0.8 and 4 are shown in Figure 8.
For σn/τn = 0.8, when k

∗

< 3, the UCS and strain of specimens increased with increasing k
∗

. A clear
yield stage was not observed, and the curve rapidly dropped after reaching the peak value. There was
a minor strain change in the post-peak stage. When k

∗

> 3, the sample UCS decreased with increasing
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k
∗

, whereas little change occurred in the strain. Plastic flow increased considerably in the yield and
post-peak stages, and sample failure gradually changed from brittle to ductile failure.
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For σn/τn = 4, when k
∗

= 10.11, the samples showed no clear yield stage, and the stress dropped
rapidly after reaching the peak value. With decreasing k

∗

, the sample UCS and strain decreased
continuously, whereas the strain in the yield stage increased gradually, and the plastic flow was evident.
This trend was distinct from the case for σn/τn = 0.8.

As shown in Figure 9, PFC3D used the break of contact bond between particles to characterize the
generation of micro-fractures. The propagation of micro-fractures in the test specimens with different
k
∗

at σn/τn < 1 is illustrated in Figure 10. When σn/τn < 1, the formation of micro-fractures within the
samples mainly resulted from tension. Under constant k

∗

, the number of micro-fractures gradually
decreased with increasing σn/τn. When σn/τn = 0.8, the number of micro-fractures decreased from 44%
to 63% compared to σn/τn = 0.1. When σn/τn was relatively low, the micro-fractures formed mainly
by tensile failure. As σn/τn increased, the number of micro-fractures formed by shear failure gradually
increased. Under constant σn/τn, the number of micro-fractures within the samples increased with
increasing k

∗

, whereas the number of micro-fractures formed by shear decreased gradually. When k
∗

=

10.11, the number of micro-fractures increased from 28% to 96% compared to k
∗

= 1.11. Meanwhile,
the bond fracture between particles gradually evolved from combined tension-shear to tension alone.
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The propagation of micro-fractures within specimens with different k
∗

for σn/τn > 1 is illustrated
in Figure 11. With increasing σn/τn, shear gradually played a dominant role in the formation of
micro-fractures within the samples. When k

∗

< 5, the number of micro-fractures gradually increased
with increasing σn/τn. When σn/τn = 6, the number of micro-fractures increased from 80% to 118%
compared to σn/τn = 1. However, when k

∗

≥ 5, the number of micro-fractures exhibited a reverse
trend. When σn/τn = 6, the number of micro-fractures decreased from 0.08% to 55% compared to
σn/τn = 1. With increasing k

∗

, gradually more micro-fractures formed within the samples. The number
of micro-fractures formed by shear decreased, whereas the number of micro-fractures formed by
tension increased. When k

∗

= 10.11, the proportion of shear fractures in total micro-fractures decreased
from 20 to 62%. Moreover, with increasing σn/τn, the change in the micro-fracture number with
increasing k

∗

reversed from an increase to a decrease.Appl. Sci. 2020, 10, 4957 13 of 21 
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5. Discussion

5.1. Effects of Different k
∗

Assignment Methods on the Macro-Properties

In previous studies, the assignment of model k
∗

is mostly implemented by using the term
contact method pb_deformability. Using this method, the model parallel-bond stiffness is calculated as
follows [37]:

kn = Ec/LR (1)

ks = kn/k
∗

(2)

where kn is bond normal stiffness, ks is bond shear stiffness, and LR is the contact length. If the contact
is particle-particle, then LR = R1 + R2, where R1 and R2 are the radii of the two particles, respectively;
if the contact is particle-wall, then LR = R1.

According to the above formula, this assignment method actually achieves the target k
∗

by
maintaining constant kn and adjusting ks. Increasing k

∗

essentially leads to a continuous decrease of
the overall bond stiffness of the specimens.

In this study, the term contact property was, therefore, used to assign values to kn and ks. The target
k
∗

was set by maintaining constant while varying kn to evaluate the effects of different k
∗

assignment
methods on the model macro-properties.

The effects of different k
∗

assignment methods on the macro-properties for σn/τn = 0.8 and 4 are
shown in Figure 12. In case I, the assignment was implemented using the contact method pb_deformability;
in case II, the assignment was implemented using contact property. In these two schemes, the UCS
and Poisson’s ratio generally exhibited a consistent relationship with k

∗

, whereas Young’s modulus
showed distinct relationships with k

∗

. In case I, Young’s modulus was inversely proportional to k
∗

and
decreased continuously with increasing k

∗

. In case II, Young’s modulus was positively proportional to
k
∗

and increased approximately linearly with increasing k
∗

.
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macro-properties. (a) UCS-k

∗

, (b) E-k
∗

, (c) µ-k
∗

.

The stress–strain relationships with different k
∗

for σn/τn = 0.8 and 4 in case II are shown in
Figure 13. In the two schemes, the UCS changed with k

∗

following consistent trends; however, the trends
of strain change were distinct between schemes. In case II, owing to the constant ks and varying
kn, the overall stiffness of specimens increased with increasing k

∗

, while the deformability decreased
continuously. Thus, the strain decreased constantly with increasing k

∗

.
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5.2. Mechanisms Underpinning the Effects of Micro-Parameters on Macro-Properties

The failure envelope for the PBM of PFC3D is shown in Figure 14. PBM determines the bond
fracture between particles, mainly by the following method [37]. First, the tensile strength limit was
determined. If the tensile strength limit was exceeded (σ > σn), the bond underwent tensile fracture.
If the bond did not undergo tensile fracture, the shear strength limit was determined. The shear
strength was expressed as:

τc = τn − σ tanϕ (3)

σ = Fn/A (4)

where Fn is the normal component of the parallel-bond contact force, and A = πR2 is the cross-sectional
area of the contact bond between particles. If the shear strength limit was exceeded (τ > τc), then the
bond underwent shear fracture.
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Combined with Table 4, the results showed that under the conditions of different σn/τn, the effects
of k

∗

on the macro-properties could be divided into three types. σn/τn < 0.8: In this case, the strength
of specimens was mainly restricted by σn, and the inter-particle bond failure was dominated by
tensile fracture.
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Table 4. Effect characteristics of bond normal-to-shear stress ratio (σn/τn) and parallel-bond stiffness
ratio (k

∗

) on the macro-properties.

Type Law of UCS Change σn/τn Curve Characteristics
Main Failure

Characteristics of
Samples

1
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As shown in Figure 2, the sample strength increased with σn/τn. However, Figure 16 shows that
for σn/τn > 10, the sample strength ceased to increase with increasing σn/τn. Furthermore, Figure 16
shows that an increase in σn or τn resulted in higher strength. In the research scheme of this paper,
increasing σn/τn referred to maintaining a constant τn while increasing σn. When σn/τn reached a
certain value (that we would call N), the σn was relatively high, and the bond did not undergo tensile
fracture. The shear strength limit was then determined. Because τn did not increase, the sample
strength was restricted by shear strength and, thus, ceased to increase.
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Figure 17. Change in bond strength.

According to Figure 19, the parallel-bond model degenerated into a linear contact model after
bond failure [10,37]. In this case, the overall sample stiffness decreased rapidly, whereas the KK
increased; that is, the k∗ of the linear contact portion increased. There was a larger decrease in the overall
sample stiffness, while Young’s modulus decreased, and the Poisson’s ratio increased. The deformation
parameter of the specimens deteriorated, and their strength declined.
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6. Conclusions

Based on PFC3D simulation, this study analyzed the effects of different σn/τn and k
∗

on the
macro-properties of the model using PFC3D simulations. Ten different bond normal-to-shear stress
ratios (σn/τn = 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2 3, 4, and 6) were considered with 10 different bond
normal-to-shear stiffness ratios (k

∗

= 1.11, 2, 3, 4, 5, 6, 7, 8, 9, and 10.11) set for each stress ratio.
The effects of different KK on the macro-properties of the model were also considered. The simulation
results were analyzed, and the following results were obtained:

1. Changes in k
∗

altered the bond stress state within specimens and their overall stiffness, thereby

affecting their strength and stress–strain characteristics. Changes in bond stress state with k
∗

altered the extent of influence that σn/τn exerted on sample strength. The change of k
∗

assignment
mode also had a significant effect on the deformation ability of the model.

2. σn/τn altered the inter-particle bond strength. An increase in σn/τn improved the effect level of

k
∗

on the sample strength. The sample strength increased with increasing σn/τn. However, when
σn/τn exceeded a certain value N, the sample strength was restricted by τn and did not increase
further. The N value was determined by a combination of φ and k

∗

.
3. An increase in KK resulted in a larger decrease in the overall stiffness of specimens after

parallel-bond failure. The sample strength decreased as their deformability increased.
4. Considerable changes in the sample brittleness and ductility were observed under the combined

effects of σn/τn and k
∗

. When σn/τn < 1, specimens changed from brittle to ductile with increasing
k
∗

, and when σn/τn > 1, they exhibited a reverse trend.
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5. According to the research results, the appropriate adjustment of the micro-parameters of PFC
could make the mechanical properties of the simulation model more consistent with the actual
mechanical properties of the rock material, improve the accuracy of the simulation results, and
provide some help for the research of the rock mechanical behavior. Considering the variation
range of micro-parameters in this paper, the results of this paper could only be used to simulate
the mechanical properties of rock materials.
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