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Abstract

:

Ternary complementary metal-oxide-semiconductor technology has been spotlighted as a promising system to replace conventional binary complementary metal-oxide-semiconductor (CMOS) with supply voltage (VDD) and power scaling limitations. Recently, wafer-level integrated tunneling-based ternary CMOS (TCMOS) has been successfully reported. However, the TCMOS requires large VDD (> 1 V), because a wide leakage region before on-current should be necessary to make the stable third voltage state. In this study, TCMOS consisting of ferroelectric-gate field effect transistors (FE-TCMOS) is proposed and its performance evaluated through 2-D technology computer-aided design (TCAD) simulations. As a result, it is revealed that the larger subthreshold swing and the steeper subthreshold swing are achievable by polarization switching in the ferroelectric layer, compared to conventional MOSFETs with high-k gate oxide, and thus the FE-TCMOS can have the more stable (larger static noise margin) ternary inverter operations at the lower VDD.
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1. Introduction


Tunneling-based ternary complementary metal-oxide-semiconductor (TCMOS) technology has been reported recently [1,2,3]. Instead of the binary systems of the existing complementary metal-oxide-semiconductor (CMOS) technology, the third output voltage (Vout) state is formed in the ternary systems, and it has been spotlighted in terms of scaling and energy-efficiency [4,5]. In the TCMOS, the off-current (IOFF) levels of NMOS (n-type MOS) and PMOS (p-type MOS), which are generated by band-to-band tunneling (BTBT), should be matched to form the third Vout state during inverter operations. In contrast to conventional ternary devices that utilize multithreshold voltage (Multi-Vt) transistors [6,7,8,9,10,11,12], the TCMOS can perform ternary operations using a pair of NMOS/PMOS with a single voltage (Vt); the fabrication process is also comparable to the conventional CMOS process, because it can be fabricated only by introducing one additional doping process. However, the TCMOS has the disadvantage of slow switching speed caused by low on-state current (ION). In general CMOS, the time required for Vout state transition is sub-nsec, while it takes ~μsec for the TCMOS to be switched [1].



In this study, TCMOS consisting of ferroelectric-gate field effect transistors (FE-TCMOS), consisting of ferroelectric-gate field effect transistor (FeFET), is proposed to improve switching speed and supply voltage (VDD) scaling since it is well-known that the FeFET boosts ION and steepens subthreshold swing (SS), compared to conventional MOSFETs [13,14,15,16,17]. To verify the operations of the FE-TCMOS, technology computer-aided design (TCAD) simulations with the calibrated ferroelectric material parameters are used and the ternary operations are rigorously compared between TCMOS and FE-TCMOS.




2. Experiments and Simulation Methods


To embody the ferroelectricity in FE-TCMOS (Figure 1a,b), a metal-ferroelectric-metal (MFM) capacitor was first fabricated using hafnium zirconium oxide (HZO) as ferroelectric material, and polarization-electric field (P-E) characteristics were obtained. Then, the simulation parameters of the ferroelectric material were achieved by fitting the simulation data to the measurement P-E data (Figure 1c) using the Sentaurus 2-D TCAD simulations where Preisach model was used for the calibration [18]. The equation for the model is as follows:


   P  a u x   = c ⋅  P s  ⋅ tanh  (  w ⋅  (  E ±  E c   )   )  +  P  o f f    



(1)




where E is electric field, Paux is auxiliary polarization, and


  w =  1  2  F c    ln    P s  +  P r     P s  −  P r     



(2)






   d  d t   P  ( t )  =    P  a u x    [  E  ( t )   ]  − P  ( t )     τ p     



(3)




where Ps is saturation polarization, Pr is remanent polarization, Ec is coercive field, and τp is relaxation time for polarization in ferroelectric material. Figure 1c indicates that the measured and the calibrated P-E curves are well-matched [15]. Here, the relaxation time τp is set to 250 ns. These ferroelectric material parameters are reflected to the gate dielectric of FE-TCMOS for the simulations, whereas high-k dielectric (εb = 25) is applied instead of the ferroelectric material for TCMOS simulations. Figure 1a shows the schematic diagram of the FE-TCMOS implemented in the simulations. A P-N junction is formed by introducing an additional doped layer between the source and the drain under the channel. When a drain voltage (VD) is applied, the band-to-band tunneling (BTBT) is generated at the drain-side P-N junction of the layer, and thus the P-N junctions formed by adding the doped layer can be modeled as a drain-side tunnel junction diode. Figure 1b is the circuit schematic diagram of the FE-TCMOS, which shows that the tunnel junction diode is connected to the Vout node as contrast to a conventional CMOS. Specific simulation parameters are listed in Table 1.




3. Results and Discussion


3.1. Tunneling-Based Ternary CMOS with Ferroelectric-Gate Field Effect Transistor


Before identifying the operations of TCMOS, the electrical characteristics of TNMOS (tunneling-based ternary NMOS) and TPMOS (tunneling-based ternary PMOS) were first verified (Figure 2). Compared to conventional N/PMOS for CMOS, TNMOS/TPMOS have the larger Vt (close to VDD) and the constant IOFF regardless of gate voltage (VG). As aforementioned, the IOFF is generated by the BTBT at the drain-side tunnel junction and hence the IOFF increases with the larger VD (Figure 3). For the stable TCMOS operations, the IOFF of TNMOS /TPMOS needs to be almost the same at VD = ~half VDD because the third Vout state between Vout = 0 V and Vout = VDD is formed using VDD divided by the resistance difference (namely, the IOFF difference) between them [2], if the TNMOS /TPMOS are simplified as variable resistors with respect to VD. Thus, the doping concentration modulation for the tunneling layer is essential to adjust the IOFF in the TCMOS fabrication process.



The ferroelectric material (e.g., doped HfO2) can have the larger permittivity by a polarization switching than the general high-k dielectric material (e.g., HfO2). The slope of the P-E curve refers to the permittivity of the dielectric, and the slope of the P-E curve in the ferroelectric material is larger than that of the high-k dielectric. Therefore, when the high-k dielectric is replaced with the ferroelectric layer in the gate stack of a MOSFET, the larger ION and the steeper SS are achievable. Figure 4a shows the comparison of the transfer characteristics between conventional TNMOS/TPMOS and FE-TNMOS (ferroelectric-gate field effect transistors-TNMOS)/TPMOS. As expected, the larger ION and the improved SS are observed in the FE-TNMOS/FE-TPMOS (ferroelectric-gate field effect transistors-TPMOS) (Figure 4a). Considering that the high Vt is inevitable for TCMOS operations, it is expected that FE-TCMOS can be operated at the more scaled VDD. In other words, at a specific VDD, FE-TCMOS might have a faster operation speed and a larger static noise margin than conventional TCMOS.




3.2. Operation Characteristics of FE-TCMOS


Prior to the evaluation of FE-TCMOS, the voltage transfer characteristics (VTC) of conventional TCMOS and CMOS were first verified. Figure 5a shows the VTC of TCMOS and CMOS where it can be confirmed that TCMOS is stably operated with VDD = 1 V as a ternary CMOS with the third Vout state. Then, FE-TCMOS and FE-CMOS were embodied by reflecting the calibrated ferroelectric material parameters to the gate stack. To evaluate the electrical characteristics of FE-TCMOS and FE-CMOS, a 7-stage inverter chain was configured in mixed-mode device and circuit simulations as shown in Figure 5b. The input pulse, which has the transition from 0 V to VDD (1 V) with 1 ms rising time, was applied, and the average propagation delay of Vout was extracted as the switching time from each inverter stage. Figure 5c demonstrates the switching time as a function of the number of inverter stages. It is found that the FE-TCMOS has the slower switching speed than the FE-CMOS. It has been reported that the tunneling-based TCMOS has the slower (μsec order) switching speed compared to that (psec order) of the CMOS [1], because the switching delay of an inverter is proportional to the driving current of n/p-type transistors. That is, TNMOS/TPMOS not only have the low ION due to the high Vt, but 0 V to half VDD and VDD to half VDD transitions are formed by the IOFF. Considering the 250 ns ferroelectric relaxation time (namely, polarization switching time) obtained in the previous study [15], if the ferroelectric layer is introduced to the CMOS, the boosted ION and the steeper SS cannot be achieved since the switching speed of the CMOS inverter is much faster than the polarization switching. This means that a ferroelectric material having a faster switching speed (sub-psec polarization switching) than the CMOS switching is required to apply the ferroelectric layer to conventional CMOS. In contrast, the operating speed of the tunneling-based TCMOS is slower than the polarization switching of the ferroelectric material. Therefore, the ferroelectric layer can effectively play a role as a current booster in the TCMOS.



Subsequently, the switching speed is compared between FE-TCMOS and TCMOS with respect to the number of inverter stages. Figure 6a shows that the switching delay difference between them is negligible, because the switching speed is determined by the IOFF and both devices have almost the same IOFF. The static noise margin (SNM) of FE-TCMOS was investigated from the butterfly curves with various VDDs (0.5 V, 0.7 V, and 1.0 V), and the SNMs were compared with those of TCMOS. Figure 6b indicates that the FE-TCMOS has the sufficient SNM even at low VDD. Additionally, Figure 6c shows the SNM comparison between FE-TCMOS and TCMOS. The improvement of the SNM is extracted as the increase of the SNM in percentage with respect to VDD. It is observed that the FE-TCMOS has the larger SNM and the SNM becomes improved further at the lower VDD, implying that the FE-TCMOS is more advantageous as VDD decreases. These results can be understood better by the steeper SS and the larger ION of FE-TNMOS/TPMOS than by conventional TNMOS/TPMOS.





4. Conclusions


In this study, we investigated the ternary CMOS with the ferroelectric layer as a gate oxide. By utilizing the higher capacitance of the ferroelectric layer instead of the conventional high-k dielectric, the larger ION and the steeper SS were obtained, compared to conventional MOSFETs with high-k gate oxide, which leads to the more stable (larger SNM) ternary inverter operations at the lower VDD. It has the advantage of being completely compatible with existing processes [19]; moreover, through the switching speed comparison between TCMOS and CMOS, it is confirmed that the ferroelectric polarization switching is faster than the tunneling-based ternary inverter switching and thus the ferroelectric layer can play a role as a current booster in TCMOS.
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Figure 1. (a) The schematic diagram of TCMOS consisting of ferroelectric-gate field effect transistors (FE-TCMOS). The ferroelectric layer is inserted between gate and oxide interfacial layer. (b) The circuit schematic diagram of FE-TCMOS. Tunnel junction diode is located under the drain-side channel. (c) Experimental polarization-electric field (P-E) curve and calibrated P-E curve by technology computer-aided design (TCAD) simulation. 
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Figure 2. The transfer characteristics of conventional NMOS/PMOS and TNMOS/TPMOS. Due to the IOFF generated from the tunnel junction, the IOFF increases with the larger drain voltage. Compared with conventional NMOS/PMOS, TNMOS/TPMOS are designed to have larger voltage (Vt). 
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Figure 3. (a) The schematic diagram of tunneling layer and doping concentration in case of TNMOS. The band-to-band tunneling generation rate at tunnel junction with respect to drain voltage. The drain voltages are (b) 0.05, (c) 0.5, and (d) 1.0 V, respectively. The band-to-band tunneling generation rate becomes larger with the higher drain voltage. 
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Figure 4. (a) The transfer characteristics of conventional TNMOS/TPMOS and FE-TNMOS/TPMOS. The higher ION and the steeper SS are shown in FE-TNMOS/TPMOS. (b) The SS of conventional TNMOS/TPMOS and FE-TNMOS/TPMOS with respect to drain current. In the entire drain current range, FE-TNMOS/TPMOS have a lower SS. 
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Figure 5. (a) The voltage transfer curves of conventional complementary metal-oxide-semiconductor (CMOS) and ternary complementary metal-oxide-semiconductor (TCMOS). The third Vout state is formed in TCMOS by voltage dividing depending on IOFF difference between TPMOS and TNMOS. (b) The circuit schematic diagram of 7-stage inverter chain. (c) The switching time of FE-CMOS and FE-TCMOS with respect to the number of inverter stages. The switching time of FE-CMOS is pico-sec order, whereas FE-TCMOS is micro-sec order. The dashed line represents ferroelectric switching delay, which is larger than the switching time of FE-CMOS. 
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Figure 6. (a) The switching time comparison between TCMOS and FE-TCMOS. The switching speed difference between them is negligible. (b) The butterfly curves of FE-TCMOS with respect to VDD. (c) The comparison of static noise margin between FE-TCMOS and TCMOS. The improvement of SNM in FE-TCMOS is extracted as the increase in percentage, compared to TCMOS. 
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Table 1. Simulation Parameters.
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	Parameter
	Description
	Value





	LG
	Gate Length
	1 μm



	NS
	Source Doping Concentration
	1020 cm−3 (Arsenic)



	ND
	Drain Doping Concentration
	1020 cm−3 (Arsenic)



	NB
	Body Doping Concentration
	1017 cm−3 (Boron)



	NT
	Tunneling Layer Doping Concentration
	5×1019 cm−3 (Arsenic)



	TTNL
	Tunneling Layer Thickness
	20 nm



	TOX
	Interfacial layer Thickness
	1 nm



	TFE
	Ferroelectric Thickness
	10 nm



	Ps
	Saturation Polarization
	18 μC/cm2



	Pr
	Remanent Polarization
	30 μC/cm2



	Ec
	Coercive Field
	0.75 MV/cm



	τp
	Relaxation Time for Polarization
	250 ns



	εb
	Permittivity Constant of Ferroelectric Material
	25











© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






media/file4.png
Drain Current (A)

. ——— N/PMOS 1"(’;3\'/
[ s L 1
4 B TN/TPMOS | oo ]
10 1 ..-.~ m— ()05 V . - -]
o L) ;
[ ™ - gy - (S P " > o
e N
r o I\ ¢ ’ 1
] ‘ ' L
) ¢
; L ) (] ]
) ’
3 ] ! 1
b ‘ ' o
: (W :
i v ]
. \' o
107"t - ' — ]
-1.0 -0.5 0.0 0.5 1.0

Gate Voltage (V)





nav.xhtml


  applsci-10-04977


  
    		
      applsci-10-04977
    


  




  





media/file2.png
(b)

——
()
'

30 Simulated Curve
[ == Experimental Curve .

Ternary CMOS i

Vin Vout

Polarization (uC/cm?)
(=]

1

-3 -2 -1 0 1 2
Ve Electric Field (MV/cm)






media/file5.jpg
(e)

Body

Vo205V

(b)

(d)

RIGGEN| oovi concentation )
Wi

| e
| B

RO 5204 o san Gencrtion s

B saswion

2500107
9360010
93880101

Listxaor






media/file3.jpg
Drain Current (A)

—_
S,

=== N/PMOS
—— TN/TPMOS
10" ‘_'_-_ e
10°
10"
10"

-1.0 -0.5 0.0 0.5 1.0
Gate Voltage (V)





media/file1.jpg
Electric Field (MV/cm)






media/file7.jpg
Current (A)

S8 (mV/dec)

200
180,
160,
140)
120,
100,

80,

60,

(b)

00 05 00 05 10 15
Gate Voltage (V)

0100 100 100 100

Drain Current (A/um)






media/file10.png
(a) (b)

—
(o]
~—

7 Stage

vout (V)
=]
/]
Switching Time (sec)

0.0 0.5 1.0 101234567
Number of Stage





media/file12.png
—
Q
S

Switching Time (sec)

10
10°
10
10

10

== TCMOS
== FE-TCMOS

2 3 4 5 6 7

Number of Stage

Noise Margin
234 mV

VDD
—_ 1.0V
— 0.7V
— 0.5V

NM Percentage Increase (%)

Noise Margin Percentage Increase =
NMpg_ - NM
i |NMre—_rcmos remos| x 100 (%)
NMrcmos

1.0 0.7 0.5
V,o (V)





media/file9.jpg
‘Number of Stage.





media/file0.png





media/file8.png
Drain Current (A)

' (a)

mde=  c-TNMOS/TPMOS

=== FE-TNMOS/TPMOS

15 -1.0 05 00 05 1.0 15

Gate Voltage (V)

SS (mV/dec)

200

180 |
160
140}
120}
100}
80 |
60 |

P | MR T |
-9

bote

c-TNMOS
c-TPMOS
FE-TNMOS
FE-TPMOS

10

- (b)

10 10 10° 107
Drain Current (A/um)

-7






media/file11.jpg
©

T

NM percentage Increase (

o I
0

Vo (v)

TR I PR
Number of Stage






media/file6.png
(c)

o5V

(b)

<
O
I

(d)

0.05V

1.0V

Doping Concentration (cm-3)
B 2.001x10%°

3.421x 107

5.850x1014

7.503x 1011

-1.462x 10

-8.549x 1016
B -5.000x10%

Band to Band Generation (cm3st)

M 6.145x10%
7.584x 102!
9.360x 106
9.388 x 101!
-1.754x10%
-1.421x10%

B -1.151x10%





