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Featured Application: In this research, a two-stage deep convolutional neural network is proposed
to predict the off-design performance of a S-CO2 turbine based on field reconstruction. Once the
deep model is well-trained, the calculation with graphics processing unit (GPU)-acceleration can
quickly predict the physical fields on the blade surface and turbine performance. In practical
engineering applications, the proposed method can not only reduce the design cycle of
components but also help to grasp the actual operating conditions in real time.

Abstract: The reliable design of the supercritical carbon dioxide (S-CO2) turbine is the core of
the advanced S-CO2 power generation technology. However, the traditional computational fluid
dynamics (CFD) method is usually applied in the S-CO2 turbine design-optimization, which is a high
computational cost, high memory requirement, and long time-consuming solver. In this research,
a flexible end-to-end deep learning approach is presented for the off-design performance prediction
of the S-CO2 turbine based on physical fields reconstruction. Our approach consists of three steps:
firstly, an optimal design of a 60,000 rpm S-CO2 turbine is established. Secondly, five design variables
for off-design analysis are selected to reconstruct the temperature and pressure fields on the blade
surface through a deconvolutional neural network. Finally, the power and efficiency of the turbine is
predicted by a convolutional neural network according to reconstruction fields. The results show that
the prediction approach not only outperforms five classical machine learning models but also focused
on the physical mechanism of turbine design. In addition, once the deep model is well-trained,
the calculation with graphics processing unit (GPU)-accelerated can quickly predict the physical fields
and performance. This prediction approach requires less human intervention and has the advantages
of being universal, flexible, and easy to implement.
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1. Introduction

Supercritical carbon dioxide (S-CO2) refers to the carbon dioxide fluid above the critical
point (30.98 ◦C, 7.38 MPa) [1]. It has the advantages of being stable chemical properties, weak
high-temperature corrosion, non-toxic, and non-combustible. At the same time, it has the characteristics
of high specific heat capacity and density, high thermal conductivity, and low viscosity. S-CO2 is
an ideal low-cost working medium [2,3]. Therefore, a Brayton power generation system with S-CO2

has the advantages of high-efficiency, small-volume, and low-noise (mainly high-frequency noise).
It has become one of the main research directions in the field of power generation technology (nuclear
energy, solar energy, geothermal energy, waste heat, etc.) [4–7].
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Turbine is the “heart” of the whole power cycle. The power and efficiency of the system are
directly affected by its performance. Therefore, the research on S-CO2 turbine has become a hot
spot. Sandia National Laboratory [8] developed a 100 kW centripetal turbine and a 50 kW centrifugal
compressor, and conducted a large number of S-CO2 closed cycle tests from 2007 to 2009. A labyrinth
seal turbine wheel was developed by Korea Institute of Energy Research [9]. It was applied to
a 10 kW S-CO2 Brayton experimental loop. Zhou et al. [10] proposed a design method of S-CO2

radial turbine. The one-dimensional (1-D) model and three-dimensional (3-D) numerical simulation
methods were adopted to predict the off-design performance. Han et al. [11] completed the design of
high-pressure and low-pressure axial-flow turbines applied to 5 MW S-CO2 reheated Brayton cycle by
using the self-designed program. The isentropic efficiencies of the turbines were 82.88% and 82.26%,
respectively. A 10 MW S-CO2 single stage centrifugal turbine was designed and numerically analyzed
by Luo et al. [12]. The total-static efficiency after blade shape optimization was 89.02%. At present,
computational fluid dynamics (CFD) is still the main method of turbine aerodynamic design and
analysis. However, a lot of iterative calculations are needed to solve the Navier–Stokes (NS) equation.
This is time-consuming and expensive to calculate. It also delays the entire design and analysis cycle.
Therefore, it is necessary to develop a more efficient and accurate method than CFD.

With the development of computers, CFD method is widely used. Hence, a large number of
CFD data are generated in the process of design and optimization. Therefore, the data-based proxy
model becomes more and more practical and important. Previous studies have shown that when the
machine learning algorithm is properly selected and fully utilized, surrogate models based on that
can well predict the performance of components in power cycle. Based on Levenberg–Marquardt
algorithm, Yu et al. [13] proposed a back-propagation neural network to predict the off-design or overall
dynamic performance of the gas turbine. Rossi and Renzi [14] developed a computational methodology
based on artificial neural networks (ANNs). It could accurately predict the performance-curve and
best-efficiency-point of turbo pump working in reverse mode. This proved that ANNs are a universal
and effective evaluation tool. Based on neural network surrogate models, Palagi et al. [15] proposed
an optimization model for main design parameters of the radial turbine. The designed neural
networks had high accuracy and could accurately learn highly nonlinear physical model objects.
Sarafraz et al. [16–18] developed the response surface methodology (RSM) for the optimization of
a catalytic reforming micro-reactor and a thermosyphon heat pipe. The above examples have shown
that machine learning can be used for component performance prediction, but such surrogate models
belong to the black-box model, ignoring the physical relationship between parameters, and have little
effect on grasping the operation rules of components and guiding component control.

In recent years, some scholars have reconstructed similar heat transfer or mass transfer problems
based on the rapidly developing deep learning algorithm, aiming to obtain a surrogate model that can
consider the physical mechanism. Guo et al. [19] adopted a convolutional neural network (CNN) to the
prediction of the velocity field with different geometric shapes, while convolution and deconvolution
operations were used to perform image-to-image regression. Although the accuracy rate reached 98%,
there were prediction errors near the boundary. Based on the deep convolutional neural network,
the Cp-u model was proposed by Jin et al. [20] for the prediction of the unsteady velocity around
a circular cylinder. Compared with the measured data, it had good accuracy. Ti et al. [21] proposed
an innovative framework based on the machine learning and CFD simulation to improve the prediction
accuracy of turbine wake. The results of the turbine wake model based on ANN were in good
agreement with the numerical and experimental data, which showed that the ANN can establish
the complex spatial relationship of the problem. In summary, deep learning has been used in the
reconstruction of problems such as velocity field, pressure field, and temperature field, and has shown
high accuracy and performance.

Based on the above introduction, it can be found that there are two main methods to predict the
performance of components in power cycles, especially S-CO2 turbines: the mechanism-based physical
model and the data-based proxy model. The mechanism-based physical model is a conventional
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CFD solution method. It mainly solves NS equations on computational grids with corresponding
boundary conditions. Although this method is accurate, the time and cost of calculation are very high.
The performance prediction of related components shows high prediction efficiency and accuracy.
However, it cannot capture the details of heat and mass transfer process in turbine. However,
in solutions to similar problems, deep learning can overcome the above shortcomings. Therefore,
in order to improve the accuracy and efficiency of performance prediction while preserving the physical
field information, a performance prediction method of S-CO2 turbines based on CNN is proposed.

Our contributions are as follows:

1. The performance of field reconstruction for an end-to-end deep learning method is explored in
this research. The most existing machine learning methods only focus on one target variable in
engineering design and optimization tasks. The fields predicted by our method can provide more
flow mechanism explanations and help designers understand the physical process.

2. The data-based proxy model is established for a physical system. Traditional methods lack
accuracy to some extent and require manual intervention. Based on the existing scientific
database, this method does not need to rely on human intervention and has the advantages of
being universal, flexible, and easy to implement, showing a good promise for real-time control
and design optimization of turbines.

3. The method proposed in this research is effective and accurate. The off-design power and
efficiency prediction in this method is able to reach performance comparable to a state-of-the-art
model and clearly outperforms classical methods. In addition, once the deep model is well-trained,
the calculation with GPU-accelerated can quickly predict the physical fields on the blade surface
and turbine performance.

This flexible and adaptive tool can not only reduce the design cycle of turbine components, but
also help to grasp the actual operating conditions in real time, which can be applied to adjust and
control the system in time.

The rest of this paper is organized as below: Section 2 introduces the overall architecture
of this research, the theory and method of CFD analysis and deep convolutional neural network;
Section 3 is the results and discussion, including CFD off-design pre-analysis, flow field reconstruction,
and performance prediction. Section 4 draws conclusions.

2. Theory and Method

2.1. Overall Architecture

In this research, the end-to-end reconstruction deep convolutional neural network implemented
by deep learning framework Pytorch [22] was utilized to reconstruct the expand process in the S-CO2

turbine based on main design parameters and then predict the aerodynamic performance of S-CO2

turbine from reconstructed results.
As illustrated in Figure 1, the proposed end-to-end framework includes three stages. The stage 0

was applied to obtain real field structures and performance of the designed S-CO2 turbine from
numerical results in the off-design analysis. In the next two stages, a deep convolutional neural
network was employed to reconstruct interested physical fields and predict turbine performance
based on physical fields. At stage 1, the interested physical fields were reconstructed with design
variables including geometric variables and environmental condition variables as input. Subsequently,
the performance of the S-CO2 turbine was predicted at stage 2. It should be noted that the input of
performance prediction model can be the reconstructed fields from stage 1 or the real fields from
off-design analysis.
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2.2. CFD Analysis Method

The general forms of the three control equations mass conservation equation, momentum
conservation equation, and energy conservation equation can be expressed as follows [23,24]:

∂(ρφ)

∂t
+ div(ρUφ) = div

(
Γφgradφ

)
+ Sφ (1)

where ρ is density, t is time, U is velocity, Γφ is the generalized diffusion coefficient, Sφ is the generalized
source term, and φ is the general variable.

In this study, the zonal shear stress transport (SST) k−ω turbulence model was adopted. It was
raised by Menter [25] on the basis of standard k − ω turbulence model. This turbulence model
is considered by more and more scholars as the preferred choice in the field of fluid machinery.
Additionally, it has a good agreement with measurement data [26,27]. The transport equation is:

∂(ρk)
∂t

+
∂(ρkui)

∂xi
=

∂
∂x j

[
Γk
∂k
∂x j

]
+ Gk −Yk (2)

∂(ρω)

∂t
+
∂(ρωu j)

∂x j
=

∂
∂x j

[
Γω
∂ω
∂x j

]
+ Gω −Yω + Dω (3)

where ui and u j are the average turbulent velocity, xi and x j are the coordinate component, Gk is
the generation term of turbulent kinetic energy k based on the average velocity gradient, Gω is the
generation term of dissipation rate ω, Yk is the dissipation term of k, Yω is the dissipation term of ω,
Γk and Γω are the effective diffusion coefficients of k and ω, respectively, Dω is cross-diffusion term,
which coordinates the interface between the standard k− ε turbulence model and the standard k−ω
turbulence model.

The formula of turbulent dynamic viscosity coefficient µt of the modified turbulence model is
as follows:

µt =
ρk
ω

1

max
[

1
α∗ ,

cF2
α0ω

] (4)
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where α∗ is the low Reynolds number correction coefficient for reducing turbulent eddy viscosity, c is
the constant term of shear stress tensor, α0 is the empirical constant, and F2 is the mixed function.

Based on a large number of physical characteristics data of carbon dioxide, the explicit equation
of Helmholtz energy equation, the improved Benedict Webb Rubin (MBWR) state equation and the
extended corresponding state (ECS) model were adopted. The MBWR state equation is as follows:

P =
9∑

n=1

anρ
n + exp

−( ρρc

)2 15∑
n=10

anρ
2n−17 (5)

where P is pressure, ρc is critical density, and an is characteristic parameters related to temperature.
In this study, x = [Tin, Pin,α1,

.
m,ωR] is taken as the design variable of the turbine, including: inlet

temperature Tin, inlet pressure Pin, inlet air flow angle α1, mass flow rate
.

m, and rotating speed ωR.
The real result field f obtained by 3-D CFD analysis is as follows:

f = Fcfd(x) = [P, T] (6)

where P is pressure fields and T is the temperature fields.
According to 3-D numerical results, the pressure and temperature distribution on the blade surface

can be obtained. Additionally, then the performance of turbine ψ, power p, and efficiency η can be
calculated based on fields information:

ψ = Fper(f) = [p,η] (7)

The torque of the turbine TR is obtained by solving the torque difference on the rotor blade surface
between pressure side and suction side by integral method. The formula of power is as follows:

p = TRωR =

(∫ rPdA
)

ps
−

(∫
rPdA

)
ss

ωR (8)

where r is the radius, dA is the unit surface area, subscript ps is the rotor blade pressure surface and ss
is the rotor blade suction surface.

The total static efficiency of the turbine is:

ηT−S =
p

.
m′ · [h(Pin, Tin) − h(S(Pin, Tin), Pout)]

(9)

where
.

m′ is the mass flow (obtained by numerical simulation), h is the enthalpy, S is the entropy,
the subscripts in and out, respectively, represent the turbine inlet and outlet.

2.3. Deep Convolutional Neural Network

In Figure 1, the architecture of the two-stage deep convolutional neural network composed by
two stages, stage 1 employed as field reconstruction model and stage 2 employed as performance
prediction model, is described in detail.

In stage 1, the field reconstruction model with deconvolutional neural network is trained by
minimum the loss function `stage1 between real and predicted fields. With the predicted fields from
stage 1 as input, the performance prediction model with convolutional neural network is trained by
minimum the loss function `stage2 between real and predicted performance. It should be emphasized that
the `stage2 backward propagate through both the convolutional and deconvolutional neural networks
if reconstructed fields are the input, while the `stage2 just backpropagate through the convolutional
neural network with real fields as input.
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In stage 1, the deconvolutional neural network is employed to establish the reconstruction
mapping from design variables. The input is design parameters x, while the temperature and pressure
fields are target physical fields.

Assuming the reconstruction mapping in stage 1 can be defined as followed:

f̂ = F̂1(x; Θ1) (10)

where x is the input design variables, f̂ is the reconstructed field, Θ1 is the learnable parameters in
reconstruction deconvolutional neural network, the reconstruction mapping F̂1 can be obtained by
minimizing the expectation of loss function `stage1 in the definition domain of the dataset.

The training process of stage 1 is presented as:

Θ1 = arg min
Θ1

{
E{x,f}∼D

(
`stage1

)}
(11)

where {x, f}∼D indicates design variables and fields samples obtained by numerical simulations in
definition domainD.

At stage 2, the performance is predicted from physical fields using a deep convolutional neural
network. In this study, the input at stage 2 is the reconstructed fields obtained at stage 1 and the output
is the interested performance of S-CO2 turbine, power, and efficiency. The mapping function from
physical fields too performance can be described as follows:

ψ̂ = F̂2
(
f̂; Θ2

)
= F̂2

(
F̂1(x; Θ1); Θ2

)
(12)

where ψ̂ is the predicted turbine performance, f̂ is the reconstruction field at stage 1, Θ2 is the learnable
parameters of the deep convolutional neural network, the mapping function F̂2 can be obtained by
minimizing the expectation of loss function `stage2 in the definition domain of the dataset.

The training process of stage 2 is formalized as:

Θ2 = arg min
Θ2

{
E{f,ψ}∼D

(
`stage2

)}
(13)

where {f,ψ}∼D indicates fields and performance samples obtained by numerical simulations in
definition domainD.

It is obvious that the input design variables of stage 1 are low dimensional data while the physical
fields with high dimension are obtained as output. Thus, deconvolutional neural network is utilized to
expand low-dimensional input to high-dimensional fields. Deconvolutional neural network was first
proposed by Zelier [28] and the general application was presented in their following works [29,30].
With the development of deconvolutional neural network, plenty of applications are conducted on
scene segmentation [31], image processing [32], and so on.

The deconvolutional operation is illustrated in Figure 2 with a simple example with padding size
b = 1, stride size s = 2, and kernel size k = 3. For a more convenient description, the input, kernel,
and output are marked in blue, gray, and green, respectively. The input of size 3 × 3 is interpolated
with zero and the size of intermediate matrix up to (s × 3 + b) × (s × 3 + b), that is 7 × 7. The final
output is the result of convolutional operation between the kernel and intermediate matrix with stride
of 1. In this point, deconvolution can be seen as a kind of special convolution.

Convolutional neural networks became more and more popular in computer vision [33,34],
nature language [35], and so on due to their powerful ability of feature extracting and learning. It is
a natural idea to utilize convolutional neural networks to extract the low-dimensional performance
from the high-dimensional physical fields. In mathematics, the convolution operation is a kind of
multiplication of input and kernel at certain strides, as shown in Figure 3. Similar to Figure 2, the input,
kernel, and output in this convolutional example are marked in blue, gray, and green, respectively.
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As shown in the sketch, the intermediate matrix can be obtained by input with padding around the
original input matrix. Additionally, then the elements of output are the multiplication results of kernel
and corresponding input elements moving at a specified stride.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 24 
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With the complexity of application scenarios, the convolutional neural network goes deeper and
deeper. However, some obstacles such as degradation of training accuracy and vanishing/exploding
gradients arise with deeper layers. In order to avoid the above problems, some outstanding means, data
normalization, intermediate normalization layers [36], and Residual Neural Network (ResNet) [37],
were applied in our approach. In this study, input and output were normalized to (−1, 1) by maximum
and minimum normalization, and batch normalization was applied after every deconvolution or
convolution except for the output layer. The detailed architecture of our two-stage algorithm is listed in
Table 1, in which Deconv2d means deconvolutional operation, Conv2d means convolutional operation,
k is the size of kernel, s is the stride size, c is the channel size of output, in is the input size of linear layer,
and out is the output size of linear layer. For more convenient description, the building block in ResNet
is separated to the basic block (a pair of 3 × 3 filters) and shortcut (connection operation with identify)
in this study. As shown in Table 1, the input of the field reconstruction model is firstly reshaped to
a feature of large size by linear layer for subsequent deconvolutional operations. The size of output
features become a specified 256 × 64 × 4 after the transformation of six deconvolutional layers and
then the output features are interpolated to 256 × 64 × 4 and 256 × 64 × 4 for physical fields of stator
and rotor blades. The similar interpolation operation can be found in performance prediction model.
The physical fields with different sizes are adjusted to the specified size of 256 × 64 by an interpolation
operation which makes the performance prediction model away from the affection of input size.
After the subsequent convolutional operations from layer 1 to layer 6, the average pooling [38] and
linear layers are adopted to obtain objective output from extracted features. In addition, the active
function ReLU [39] is employed to enhance the nonlinear performance of the deep convolutional
neural networks.
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Table 1. Architecture of two-stage deep convolutional neural network.

Layers Stage 1: Field Reconstruction Model Stage 2: Performance Prediction Model

Basic Block Shortcut Basic Block Shortcut

Input size Batch Size × 5 (number of design variables) Stator blade: Batch Size (64) × grid size (36 × 104)
Rotor blade: Batch Size (64) × grid size (51 × 232)

Input layer Linear (in = 5, out = 8192) Interpolation (Batch Size × 256 × 64 × 4)
Conv2d (k = 3, s = 1, c = 32)

Layer 1

Deconv2d
(k = 3, s = 2, c = 512

Deconv2d
(k = 3, s = 1, c = 512)

Deconv2d
(k = 3, s = 2, c = 512)

Conv2d
(k = 3, s = 1, c = 64)

Conv2d
(k = 3, s = 1, c = 64)

Conv2d
(k = 3, s = 2, c = 64)

Layer 2

Deconv2d
(k = 3, s = 2, c = 256)

Deconv2d
(k = 3, s = 1, c = 256)

Deconv2d
(k = 3, s = 2, c = 256)

Conv2d
(k = 3, s = 2, c = 128)

Conv2d
(k = 3, s = 1, c = 128)

Conv2d
(k = 3, s = 2, c = 128)

Layer 3

Deconv2d
(k = 3, s = 2, c = 128)

Deconv2d
(k = 3, s = 1, c = 128)

Deconv2d
(k = 3, s = 2, c = 128)

Conv2d
(k = 3, s = 2, c = 256)

Conv2d
(k = 3, s = 1, c = 256)

Conv2d
(k = 3, s = 2, c = 256)

Deconv2d
(k = 3, s = 1, c = 128)

Deconv2d
(k = 3, s = 1, c = 128)

/

Conv2d
(k = 3, s = 1, c = 256)

Conv2d
(k = 3, s = 1, c = 256)

/

Layer 4

Deconv2d
(k = 3, s = 2, c = 64)

Deconv2d
(k = 3, s = 1, c = 64)

Deconv2d
(k = 3, s = 2, c = 64)

Conv2d
(k = 3, s = 2, c = 512)

Conv2d
(k = 3, s = 1, c = 512)

Conv2d
(k = 3, s = 2, c = 512)

Deconv2d
(k = 3, s = 1, c = 64)

Deconv2d
(k = 3, s = 1, c = 64)

/

Layer 5

Deconv2d
(k = 3, s = 2, c = 32)

Deconv2d
(k = 3, s = 1, c = 32)

Deconv2d
(k = 3, s = 2, c = 32)

Conv2d
(k = 3, s = 2, c = 1024)

Conv2d
(k = 3, s = 1, c = 1024)

Conv2d
(k = 3, s = 2, c = 1024)

Layer 6

Deconv2d
(k = 3, s = 1, c = 16)

Deconv2d
(k = 3, s = 1, c = 16)

Deconv2d
(k = 3, s = 1, c = 16)

AvgPool2d
(k = 3, s = 3)

Output layer Conv2d (k = 3, s = 1, c = 4)
Interpolation (256 × 64)

Linear (in = 5120, out = 256)
Linear (in = 256, out = 2)

Output size Stator blade: Batch Size (64) × grid size (36 × 104)
Rotor blade: Batch Size (64) × grid size (51 × 232) Batch Size × 2 (number of performance)

The Adaptive Moment Estimation (Adam) [40] optimizer was adopted in the optimization process.
In essence, it is Root Mean Square Prop (RMSProp) [41] with a momentum factor. By combining the
advantages of RMSProp and Adaptive Gradient (AdaGrad) [42], the Adam has lower calculation cost.
In addition, it has good performance for high-dimensional space, large data sets, and most nonconvex
optimization. Mathematically, the definitions of Adam are as follows:

t← t− 1 (14)

gt ← ∇θ`t(θt−1) (15)

mt ← β1·mt−1 + (1− β1)·gt (16)

vt ← β2·vt−1 + (1− β2)·gt � gt (17)

m̂t ← mt/(1− βt
1) (18)

v̂t ← vt/(1− βt
2) (19)
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αt ← α·
√

1− βt
2(1− β

t
1) (20)

θt ← θt−1 − αt·m̂t/(
√

v̂t + ε) (21)

where subscript t indicates the iteration step of the optimization process, ` is the loss function which
can be `stage1 or `stage2, θ is the learnable parameters of the neural network (θ ∈ Θ1 or θ ∈ Θ2), m is the
first moment estimation, v is the second moment estimation, β1 and β2 are attenuation coefficients,
α is the learning rate, and ε is a small number which prevents division by zero in the implementation.
In this study, ε = 10−8, β1 = 0.9, and β2 = 0.999.

The optimization in stage 1 is performed such that the defined loss is minimized. Firstly, the field
loss in this study is the mean square error (MSE) between the predicated field f̂ and the original field f,
which can be written as:

`f = E{x,f}∼Γ(
C∑

l=1

||f̂
l
i − fl

i||) ≈
1
N

N∑
i=0

C∑
l=1

||f̂
l
i − fl

i|| (22)

where N is the sample size and C is the number of fields in the train dataset. The subscript i represents
sample index and the superscript l is the type of the field.

To circumvent a very blurred predication only by the field loss, the absolute error of gradient
information between the predicated field and ground truth is reckon in loss function, also called
gradient loss, that is defined as:

`∇ = E{x,f}∼Γ(
C∑

l=1

||∇ ·f̂
l
i −∇·f

l
i||) ≈

1
N

N∑
i=1

C∑
l=1

‖ ∇·f̂
l
i −∇·f

l
i ‖ (23)

Then the total loss function to be minimized can be written as a combination of field loss and
gradient loss, where λ is the loss weight. In this study, λ = 0.1.

`stage1 = `F + λ`∇ (24)

The optimization in stage 2 was performed to minimize MSE. For the batch of N samples, MSE of
the parameterization case can be defined as:

`stage2 =
1
N

N∑
m=0

(yt
i − yp

i )
2

(25)

R square value (R2), mean absolute error (MAE), and root mean squared error (RMSE) are adopted
to compare efficiency prediction results. R2, MAE, and RMSE are calculated using Equations (26)–(28),
where Prei and Acti represent the predicted and actual efficiency and N is the number of observations
in the testing dataset.

R2(Pre, Act) =
N∑

i=1

(Prei −Acti)
2/

N∑
i=1

(
Acti −Act

)2
(26)

MAE(Pre, Act) =
1
N

N∑
i=1

|Prei −Acti| (27)

RMSE(Pre, Act) =

√√√
1
N

N∑
i=1

(Prei −Acti)
2 (28)
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3. Results and Discussion

3.1. CFD Off-Design Pre-Analysis

The design-optimization of a 60,000 rpm S-CO2 turbine were completed based on our previous
research. First of all, the design-optimization approach using Gauss process regression was adopted [43].
Combined with the rapid 1-D thermal design method and the high-precision 3-D aerodynamic
analysis method, the preliminary optimization design was obtained. Then, further 3-D aerodynamic
optimization was carried out, mainly including inlet and outlet flow angle correction, flow matching
of rotor and stator blades, blade profile optimization, etc. These optimization methods have achieved
good results in previous research [24,44,45]. The detailed thermodynamic design parameters, geometric
parameters, performance parameters, and blade profiles of the designed S-CO2 turbine are shown in
Table 2.

Table 2. Key design parameters.

Parameter Type Parameter Value Unit

Thermodynamic parameter

Inlet temperature 600 ◦C
Inlet pressure 15 MPa

Outlet pressure 8 MPa
Design power 1000 kW
Rotating speed 60,000 rpm

Geometric parameter

Number of stator blades 16 pc.
Stator inner diameter 119.7 mm
Stator outer diameter 153.2 mm

Number of rotor blades 15 pc.
Impeller inlet blade height 6 mm

Impeller outer diameter 99.7 mm
Impeller outlet blade height 15.9 mm

Tip clearance 0.2 mm

Performance parameter

Mass flow rate 11.38 kg/s
Torque 162.2 N·m

Numerical power 1019 kW
Isentropic enthalpy drop 1139 kJ/kg

Total static efficiency 89.44 %

Blade profile
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Stator (blade to blade) Rotor (Meridional plan)

Figure 4 shows the 3-D model and numerical grid of the S-CO2 turbine. In this study, the single
passage (one stator passage and one rotor passage) was used for calculation. In order to improve the
mesh quality, the H type mesh was adopted in the inlet and outlet extension sections, while the O type
mesh was adopted for blade meshing. The grids were densified in the tip clearance, around the blade
and near the wall to obtain accurate flow parameters. The orthogonal angle of the mesh was greater
than 15◦, which meets the requirements of grid quality. The SST k−ω turbulence model was adopted.
The value of Y+ near the wall was about 1, which meets the calculation requirements of the turbulence
model. The corresponding boundary conditions were given according to the thermodynamic design
parameters. The grid independence was verified to balance the calculation accuracy and efficiency.
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The output power calculated at different grid scales was used as the evaluation basis. When the
calculation error between adjacent grid scales is less than 1%, it is considered to meet the demand of
calculation accuracy. The final number of selected grid nodes was 420,000. The numerical method
was the same as previous research [24,43–45]. In previous research, the S-CO2 compressor with
more complex flow was used for numerical verification. By comparing with the numerical and
experimental results of other scholars, it can be shown that the numerical method is accurate [45].
For the off-design performance analysis of the turbine, the turbine’s inlet temperature, inlet pressure,
inlet airflow angle, mass flow rate, and rotating speed were changed change within ±15% of the
design value. The Latin Hypercube Sampling method was adopted to obtain a total of 1000 off-design
conditions. The off-design performance data set of the designed turbine was obtained by CFD analysis
of 1000 off-design conditions.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 24 
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Table 2 shows that the output power of the designed S-CO2 turbine is 1019 kW and the total static
efficiency is 89.44%. Figure 5 shows the limiting streamline, pressure distribution, and temperature
distribution of the 50% blade height section of the turbine. At the inlet of impeller, the boundary
layer thickens and even separates. This will cause great impact loss. Therefore, the turbine design in
this paper adopts the negative impact angle design, which has less impact on energy loss than the
positive impact angle. In addition, it can increase the power capacity of impeller [46,47]. It can be seen
from the figure that except for a small range of flow separation phenomenon from the leading edge
to 25% chord length on the pressure side of the rotor blade, there is no secondary flow in other flow
passage areas. S-CO2 expands gradually from stator inlet to rotor outlet. The temperature and pressure
decrease along the flow direction, and the value on the pressure side is larger than that on the suction
side. There is no reverse pressure and temperature gradient. Therefore, the turbine design has good
flow characteristics and aerodynamic performance. In order to explain the effect of prediction in detail,
two off-design conditions, Case A (x = [950.13 K, 14.27 MPa, 45.58◦, 10.41 kg/s, 52,803.96 rpm]) and
Case B (x = [752.05 K, 13.80 MPa, 39.31◦, 64,074.22 rpm]) are selected as examples in the design space.
Figures 6 and 7 show the limiting streamline, pressure distribution, and temperature distribution
of Cases A and B, respectively. The results show that the operating conditions of Cases A and B
are both away from the design point. There is a small range of flow separation or local acceleration
in the turbine. The power and efficiency deviate greatly from the design condition. The power of
Case A is 882.48 kW and the efficiency is 87.69%. The power and efficiency of Case B are 1608.73 kW
and 83.07%, respectively.

The new 3-D CFD numerical analysis is often needed to predict the off-design performance of the
turbine. In this method, the number of calculations is large, and the calculation speed is very slow.
On the one hand, this will lead to a significant increase in the design cycle of the turbine. On the
other hand, in the actual operation and control of the system, it is difficult to grasp the off-design
performance of the turbine unit in real time. As a result, the system cannot be regulated in time.
Therefore, it is urgent to develop an efficient and accurate prediction method of turbine performance
under off-design conditions.
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3.2. Physical Field Reconstruction

In this research, 70% and 30% of the off-design performance data set were selected as the training
set and the verification set randomly for the neural network model training. The training process
is shown in Figure 8. The cyan and purple lines indicate the field loss during the training process
changes with the number of iterations. According to the figure, the field loss declines very quickly,
and the loss of the training set and the verification set is similar in the late training period which can
prove the model is well trained. The orange and blue lines indicate the R square value of the efficiency
and power prediction, respectively, which can effectively represent the effect of the regression model.
It can be seen from the figure that during the training process, the square R square value quickly rises
from a large error area less than 0 to a small error close to 1 in the region. The final R-squared value is
kept near 1, which means that all the real data in the validation set of the model we built predicts well.
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15%, and the prediction error of the stator blade pressure is small. The above description shows that 
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Figure 8. The training process.

In this study, the surfaces of the stator blade and rotor blade were, respectively, expanded into the
260 × 65 rectangle as shown in Figure 9. The transverse direction is the chord direction, the longitudinal
direction is the spanwise direction (0 for blade tip, 65 for blade root). Four key positions of leading
edge (LE), trailing edge (TE), pressure surface (PS), and suction surface (SS) corresponding to rotor
blade (R) and stator (S) blades were identified in the figure. For the rotor blade, area (12–40) × 65
corresponds to R_TE, area (130–145) × 65 corresponds R_LE, area (40–130) × 65 corresponds to R_PS,
and the rest of the area corresponds to R_SS. For the stator blade, areas (120–135) × 65, (220–240) × 65,
and (135–220) × 65 correspond to S_LE, S_TE, and S_PS respectively. The rest of the region corresponds
to S_SS.
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The data obtained after the reconstruction of all the calculation examples were summarized.
Then, the average relative error and maximum relative error of the temperature and pressure at the
stator blade and rotor blade were obtained with the box chart, as shown in Figure 10. The results
show that the average relative error of the field is less than 1.5%, and the error of the stator blade
temperature and the rotor blade pressure is relatively small. The maximum relative error is less than
15%, and the prediction error of the stator blade pressure is small. The above description shows that
the reconstructed field is in good agreement with the field calculated by CFD, and the reconstruction
method is effective.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 24 

  

(a) (b) 

Figure 10. The relative error: (a) the average relative error; (b) the maximum relative error. 

The prediction results, 3-D CFD results and error distributions of Cases A and B are shown in 
Figures 11 and 12, respectively. It can be found that the cloud map distribution of the prediction 
results is basically the same as that of the CFD results, which is in good agreement. All kinds of key 
typical phenomena in turbine are captured and predicted, including: 

1. Stagnation phenomenon of high temperature and high pressure in the S_LE. 
2. The local acceleration of S_LE due to the large curvature change results in a small area of low 

pressure and low temperature. 
3. The tip clearance of rotor blade is affected by the pressure difference between both rotor blade 

sides and the larger negative impact angle. This causes the working fluid in the tip clearance to 
accelerate from the pressure side to the suction side. Therefore, the pressure and temperature 
near the tip of the rotor blade will be relatively low. 

4. The flow separation due to deviation from the design condition. It is worth noting that the flow 
in these regions is very complex, so the corresponding prediction error will increase accordingly. 
However, the error is still small, completely within the acceptable range. 
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The prediction results, 3-D CFD results and error distributions of Cases A and B are shown in
Figures 11 and 12, respectively. It can be found that the cloud map distribution of the prediction results
is basically the same as that of the CFD results, which is in good agreement. All kinds of key typical
phenomena in turbine are captured and predicted, including:

1. Stagnation phenomenon of high temperature and high pressure in the S_LE.
2. The local acceleration of S_LE due to the large curvature change results in a small area of low

pressure and low temperature.
3. The tip clearance of rotor blade is affected by the pressure difference between both rotor blade

sides and the larger negative impact angle. This causes the working fluid in the tip clearance to
accelerate from the pressure side to the suction side. Therefore, the pressure and temperature
near the tip of the rotor blade will be relatively low.

4. The flow separation due to deviation from the design condition. It is worth noting that the flow
in these regions is very complex, so the corresponding prediction error will increase accordingly.
However, the error is still small, completely within the acceptable range.

The computation costs of different methods are compared in Table 3. The evaluation time of the
CFD solver is the average time to obtain the numerical result with design input. Since ResNet based
surrogate models could amortize computational overhead per instance by predicting multiple instances
in parallel, we measured the average time cost for batch size 32 running on a Nvidia Geforce-1080.
It can be found that GPU accelerated ResNet model only needs 0.04 s to obtain a prediction result.
Compared with the conventional CFD method, our method can quickly predict the physical field on
the blade surface and the aerodynamic performance of the turbine. It can greatly reduce the design
cycle of the turbine. In addition, the off-design performance of the turbine unit can be mastered in real
time in the actual operation of the system, so as to adjust and control the system in time and realize the
rapid response of the system.
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Figure 11. The parameter distribution of Case A: (a) the pressure of the stator blade; (b) the temperature
of the stator blade; (c) the pressure of the rotor blade; (d) the temperature of the rotor blade.
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Figure 12. The parameter distribution of Case B: (a) the pressure of the stator blade; (b) the temperature
of the stator blade; (c) the pressure of the rotor blade; (d) the temperature of the rotor blade.
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Table 3. Comparison of computation costs with different methods.

Method Physical Memory Graphics Memory Train Time Evaluation Time

CFD solver 730–1730 Mb / / 3.5 h
Our study—CPU 1975–2975 Mb / 24 h 0.24 s
Our study—GPU 2787–3787 Mb 1785–2385 Mb 4–5 h 0.04 s

3.3. Performance Prediction

Based on the above physical field reconstruction results, the power and efficiency of the S-CO2

turbine were predicted under off-design conditions, as shown in Figure 13. The abscissa in the figure is
the actual power and efficiency data calculated by numerical simulation. The ordinate is the power
and efficiency data predicted by the model. The blue scattered points are the predicted sample points
and the red line indicates that the prediction is completely correct at the ideal situation. The gray area
indicates the distribution interval of the prediction error within 5%. The results show that basically all
the prediction results of this model are within the distribution interval of 5%. The scattered points
with poor prediction results are mostly in the low efficiency area.
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In this study, five classic data prediction methods of XGboost, KNN, RF, SVR, and MLP were 
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The detailed distribution density of power and efficiency in the range of ±5% relative error is
shown in Figure 14. The relative error of power and efficiency are basically between −4% and 4%.
The prediction of efficiency has a better effect, and the relative errors are concentrated in the ±1% range.
It can be proved that the model in this research has high prediction accuracy.
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In this study, five classic data prediction methods of XGboost, KNN, RF, SVR, and MLP were
compared with this model, as shown in Table 4 and Figure 15. The training and verification set of
the above models are consistent. The evaluation index is the R2, MAE, and RMSE of the power and
efficiency prediction result. The comparison of square values shows that the prediction efficiency of
our model is the best.

Table 4. Comparison with five classic data prediction methods.

Model XGboost KNN RF SVR MLP Our Study

R2 0.6784 0.7020 0.7446 0.8447 0.9072 0.9851
MAE 0.0184 0.0133 0.0148 0.0076 0.0066 0.0027
RMSE 0.0297 0.0288 0.0267 0.0208 0.0161 0.0054
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4. Conclusions

In this research, we presented a two-stage deep convolutional neural network to predict the
off-design performance of a S-CO2 turbine based on field reconstruction. The concrete results are listed
as following:

1. The design and optimization of a 60,000 rpm S-CO2 turbine were completed based on our previous
research. The output power of the designed turbine is 1019 kW and the total static efficiency
is 89.44%.

2. At stage 1, the field reconstruction was conducted on 1000 off-design cases with varying design
variables. The physical fields were plausibly predicted and all key typical phenomena in turbine
were captured. The average relative error of the field is less than 1.5%, while the maximum
relative error is less than 15%.

3. Based on the reconstructed physical field, the off-design performance of the S-CO2 turbine was
predicted accurately at stage 2. The relative error of predicted power and efficiency are between
−5% and +5%. Moreover, the relative error of efficiency is concentrated in the ±1% range.

4. Compared with other five classic data prediction methods, XGboost, KNN, RF, SVR, and MLP,
the off-design power and efficiency prediction in this method clearly outperforms classical
methods and comparable to a state-of-the-art model.

5. In addition, once the deep model is well-trained, the calculation with GPU-accelerated can quickly
predict the physical fields on the blade surface and turbine performance.

Compared to the conventional off-design analysis methods, our method can provide more
mechanism explanations for designers due to accurate prediction of physical fields. Our method relies
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on less human intervention and has the advantages of being effective, universal, flexible, and easy to
implement, showing a good promise for real-time control and design optimization of turbines.

Author Contributions: Conceptualization, D.S. and Y.X.; investigation, D.S. and L.S.; methodology, D.S. and L.S.;
resources, Y.X.; software, D.S. and Y.X.; supervision, Y.X.; validation Y.X.; writing—original draft preparation,
D.S. and L.S.; writing—review and editing, D.S. All authors have read and agreed to the published version of
the manuscript.
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