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Abstract: For multiple extended target tracking, the accuracy of measurement partitioning directly
affects the target tracking performance, so the existing partitioning algorithms tend to use as many
partitions as possible to obtain accurate estimates of target number and states. Unfortunately, this
may create an intolerable computational burden. What is worse is that the measurement partitioning
problem of closely spaced targets is still challenging and difficult to solve well. In view of this,
a prediction-driven measurement sub-partitioning (PMS) algorithm is first proposed, in which target
predictions are fully utilized to determine the clustering centers for obtaining accurate partitioning
results. Due to its concise mathematical forms and favorable properties, redundant measurement
partitions can be eliminated so that the computational burden is largely reduced. More importantly,
the unreasonable target predictions may be marked and replaced by PMS for solving the so-called
cardinality underestimation problem without adding extra measurement partitions. PMS is simple to
implement, and based on it, an effective multiple closely spaced extended target tracking approach
is easily obtained. Simulation results verify the benefit of what we proposed—it has a much faster
tracking speed without degrading the performance compared with other approaches, especially in a
closely spaced target tracking scenario.

Keywords: multiple extended target tracking; prediction-driven measurements sub-partitioning;
closely spaced targets; cardinality underestimation

1. Introduction

Target tracking techniques have been studied extensively with fruitful results and widely
developed in both military and civil fields [1–10]. In traditional tracking applications, it is generally
assumed that at most one measurement can be received by sensors per time and the target is modeled as
a single point mass. However, with the increased resolution of modern sensors, multiple measurements
may be originated from different unknown sources on a target. In this case, a target should be regarded
as extended if its extension is much larger than the sensor resolution. Recently, multiple extended
target tracking [11–16] has been attracting attention. However, it is still a complicated problem because
there are unknown and uncertain associations between targets and measurements. Especially for
multiple closely spaced extended target tracking (MCETT), extended targets may have parallel or
crossed tracks (such as decoys and re-entry vehicles in ballistic missiles, and groups of airplanes with
close tracks in radar surveillance). It is more difficult to judge the associations between these closely
spaced targets and their measurements, respectively.
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The random finite set (RFS) [17] and the finite set statistics (FISST) [18] have been developed over
decades. They are widely applied to deal with the tracking of multiple targets with unknown and
time-varying number in noise and clutter environments, because the uncertain associations between
targets and measurements can be avoided. In [19,20], the probability hypothesis density (PHD) filter
was proposed. It was evolved into the extended target PHD (ET-PHD) filter [21] by assuming that the
number of measurements obeys the Poisson distribution and measurements are distributed around
the target based on an inhomogeneous spatial Poisson point process [22]. In recent years, many
multiple extended target tracking approaches based on the ET-PHD filter and its variants have been
proposed [23–26], e.g., the extended target Gaussian mixture PHD filter [27], the extended target
gamma GIW-PHD (ET-GGIW-PHD) filter [28–30] based on the random matrix approach [31–33], and
the ET-GM-PHD filter based on random hypersurface model [34–36].

In the ET-PHD filter framework, the measurement partitioning is indispensable. It divides the set
of measurements into several non-empty subsets and aims at obtaining the partitions that are closest
to the true partition. The multiple extended target tracking performance is affected by measurement
partitioning to a large extent because the partitioning results are directly utilized to update the
predicted target state. Especially for MCETT, the dense distribution of measurements may bring
difficulty to the accurate measurement partitioning and even cause the cardinality underestimation
problem. To deal with this problem, the traditional partitioning algorithms usually require all possible
partitions. However, the number of possible partitions grows very fast with the increasing total
number of measurements, which creates a heavy computational burden. Furthermore, a large number
of partitions are still unreasonable and should be eliminated.

To partition the measurements more effectively, a distance partitioning algorithm was proposed
to make relatively accurate partitions by decreasing the distance threshold empirically. However, this
approach may not be well applied for tracking closely spaced extended targets because it is very likely
to cause an underestimation in the extended target number. Furthermore, there are still unreasonable
and redundant measurement partitions, which are adverse to reducing a heavy computational burden.
In [37], the prediction partitioning algorithm and EM partition algorithm were proposed for tracking
elliptical targets. The former directly treats the predicted mean of the GIW component as the centroid
of the ellipsoid target and uses the extension estimation to put the measurements belonging to the
corresponding component into the same subset. However, it may not handle well the tracking of
extended targets with different sizes. To deal with this problem, the EM partition algorithm was
proposed to obtain the better measurement partitions in which the Gaussian mixtures are initialized
with the predicted GIW components. Due to the utilization of predictive information, these two
algorithms can improve the tracking performance and save computational time.

Although the predictive information is promising to be utilized for achieving better performance,
its accuracy is closely related to the predicted target number and state. Especially for the tracking
of multiple closely spaced extended targets, obtaining accurate partitioning results is difficult when
the target number is underestimated. Moreover, it is very likely to gain non-information subsets in
missed detection environment, which directly leads to the instable estimate performance of target
number and state. To deal with this problem, the distance partitioning algorithm was extended with
sub-partitioning and proposed in [27]. It uses the K-means++ clustering [38–40] to repartition the
inaccurate subsets. Unfortunately, it may not possibly guarantee the accuracy of repartitioning results.
The main reason lies in the loss function of K-means++, which is likely to cause an unreasonable
repartition of subsets and degrades the tracking performance. Overall, the main difficulties of
measurement partitioning for MCETT are summarized as follows.

(i) How does one maintain the accuracy of the indispensable measurement partitioning results in
clutters and missed detection environment without sacrificing the tracking performance?

(ii) How does one achieve high tracking performances in MCETT approaches, i.e., obtain relatively
accurate partitions when tracking closely spaced extended targets in practical scenarios (e.g., tracks
crossed or paralleled)?
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This paper is motivated by these problems and proposes a prediction-driven measurement
sub-partitioning (PMS) algorithm for tracking multiple closely spaced extended targets. The predictive
information is utilized to determine possible clustering centers. Moreover, unreasonable target
predictions (whose corresponding subset may contain measurements from more than one target
when the target number is underestimated) are replaced by alternative points to obtain relatively
accurate partition results when targets are spatially close. This proposed partitioning strategy fully
considers the spatial distribution characteristics for the clustering center and target predictions, which
help obtain the clustering centers close to the true target centers. Thus, PMS handles well the tracking
of closely spaced extended targets and seems promising. To reduce the computational complexity, the
range of partition numbers is narrowed to eliminate unreasonable and redundant partitions. Note that
the proposed algorithm considers all possible changes in the number of targets at each time step and
reduces the number of partitions as reasonably as possible. Due to its concise mathematical forms and
favorable properties (modifying target predictions and reducing partition number), an approach to
multiple extended target tracking is proposed. Compared with other existing approaches based on
different measurement partitioning algorithms, the innovative aspects of this work are summarized
as follows.

(i) In PMS, target predictions are explicitly considered and fully utilized to improve the accuracy
of measurement partitioning, which facilitate the performance improvement of multiple closely spaced
extended targets tracking.

(ii) Due to the concise mathematical forms and favorable properties of PMS, redundant
measurement partitions can be eliminated so that the computational burden is largely reduced.

(iii) When extended targets are spatially close, PMS seems more promising because the
unreasonable target predictions can be marked and replaced by alternative points. It solves the
so-called cardinality underestimation problem without adding extra measurement partitions.

(iv) The proposed MCETT approach based on PMS fits well with the tracking of spawned and
newborn targets in the clutter and missed detection environments.

This paper is organized as follows. Section 2 first elaborates and analyzes the existing problems
of the typical measurement partitioning algorithms in multiple extended target tracking. Section 3
proposes a fast and robust prediction-driven algorithm (i.e., PMS) to partition the measurements set
accurately for improving the target tracking performance. In Section 4, a multiple extended target
tracking approach based on PMS is proposed for tracking closely spaced extended targets. Section 5
presents simulation results and demonstrates the effectiveness of what we proposed. Section 6 further
discusses and compares the proposed algorithm with existing measurement partitioning algorithms.
The last section concludes this paper.

2. The Measurement Partitioning Problem

An integral part of the update equation requires the partitions of the measurement set, i.e., the set
of measurements needs to be partitioned into different partitions at each time step and each partition
contains several subsets with the measurements understood to be originated from the same target or
clutter. For MCETT in noise and clutter environments, the result of measurement partitioning would
greatly affect the stability of subsequent tracking algorithm and the estimation accuracy of both the
target state and number.

In the framework of the ET-PHD filter, all possible partitions of the measurement set are needed
in the measurement pseudo-likelihood, which makes the whole filtering computationally challenging
with the increase of the partitions’ number [27]. However, there are many unsuitable subsets in a large
part of the partitions, contributing little to the tracking performance. Only several partitions contain
the most likely subsets. Thus, these partitions can be used to approximate the whole partitions.
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2.1. The Measurement Partitioning Algorithm Based on Distance

A distance-based measurement partitioning algorithm (i.e., so-called distance partitioning) was
proposed. It utilizes the statistical properties of distances between measurements obtained from the
same target to reduce the number of partitions. However, the computational burden still grows rapidly
in many cases when the number of targets increases. Furthermore, the distance-based underlying
mechanism that measurements generated from the same target are close to each other will no longer
applicable to the spatially close target tracking scenario. In this case, all the measurements are densely
distributed in the same region once targets make a cross with each other. One clustering of the
measurements may be generated from more than one extended target. However, distance partitioning
is very likely to mistreat this clustering from one target, causing a cardinality error in the following
filtering. In this point, the sub-partitioning algorithm was proposed on the basis of distance partitioning
to better handle the estimated problem of cardinality.

The sub-partitioning is an augmentation of distance partitioning, which repartitions the subsets
containing measurements from multiple targets by distance partitioning. It uses K-means++ clustering
to repartition the subset Wi

j into N j
x smaller subsets if the maximum likelihood (ML) estimation

about the number of targets for each subset is larger than 1. These smaller subsets are added to
the list of partitions, which are considered and utilized by the ET-PHD filter framework. However,
this sub-partitioning strategy only focuses on improving the estimation performance of target number
without considering the heavy computational burden, which is not good for real-time target tracking.
Moreover, the cardinality error still exists, especially in the tracking scenario where four or more
targets are being crossed. This is mainly because the loss function of the K-means++ clustering causes
inaccurate repartitioning. These inaccurate repartitioning results will not contribute much to the target
tracking due to the lower likelihood obtained by these partitions compared with one obtained by the
relatively accurate partitions.

2.2. The Target Measurement Partitioning Algorithm Based on Target Predictions

In addition to the distance-based measurement partitioning algorithms, predicted components
are used to partition the measurement set in the prediction partition and EM partition in the random
matrix framework of extended target tracking [37]. In prediction partition, the predicted mean of
the GIW component is treated as the centroid of the elliptic target. The extension estimate X̂(j)

k+1|k
(i.e., a symmetric positive definite matrix used to represent the elliptical shape of jth elliptic extended
target) of the component is used to accurately partition the measurements, i.e., the measurements

satisfying
(

z(i)k −m(j),d
k+1|k

)T(
X̂(j)

k+1|k

)−1 (
z(i)k −m(j),d

k+1|k

)
< ∆d(p) are put into the same subset, where

m(j),d
k+1|k denotes the first d components of the predicted mean of jth GIW component, z(i)k is the ith

measurement at time k, ∆d(p) is determined according to the inverse χ2 distribution with d degree of
freedom, and p is the probability and equal to 0.99. For other measurements that are not included in
any subsets of the predicted components, each of them is treated as an individual subset. However,
the use of extension estimate limits the application of prediction partition to the tracking of extended
targets with different shapes. It is also difficult to track ellipsoid targets with different sizes.

To better partition the measurements when elliptic targets have different sizes and a diverse
number of measurements, EM partition was proposed based on the Expectation Maximization
algorithm for Gaussian mixtures. The predicted components are used to initialize the Gaussian
mixtures. Both of the above algorithms only generate one accurate partition for the subsequent
filtering, which can achieve good tracking performances when the target predictions are accurate
in some cases. However, they are sensitive to the target predictions. When the target prediction is
erroneous (i.e., the discrepancy between the predicted mean of the GIW component and the true target
centroid is considerable), this partition is very likely to contain the non-information subsets, which
directly causes the degradation of the target tracking performance. Thus, the alternative partitions
should be considered to guarantee the stability of target tracking.
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Another problem of these partition algorithms is that they cannot handle well the measurement
partitioning for tracking closely spaced extended targets in missed detection environments, which is
very likely to cause the underestimation of the target number. Moreover, once the target number is
underestimated, it further makes the target predictions erroneous, inevitably making the subsequent
partition results unreasonable. Worst of all, only one partition is used in the partitioning algorithms.
These subsets can directly influence the tracing performance and cause poor estimate performance of
target number and state.

To sum up, the key to achieving good tracking performance is to obtain the partitions that are
closest to the true partition, and the number of partitions is the main factor affecting the averaged
computation time. As for the distance-based measurement partitioning algorithms, there is still a large
part of partitions that contain unreasonable subsets, which contributes little to tracking performance
and leads to a heavy computational burden. In contrast, the measurement partitioning algorithms
based on predictions aim to obtain one relatively accurate partition by utilizing predictive information,
which greatly reduces the partition number. However, the accuracy of this partition can not be
guaranteed, making the target tracking performance unstable. Both of these measurement partitioning
algorithms cannot handle well the tracking scenario where extended targets are spatially close to each
other. It is very likely to cause an underestimation of target number.

From the above comparison of the existing measurement partitioning algorithm, it can be
concluded that fast tracking multiple targets without a loss of tracking performance is still a challenge
for tracking multiple extended targets (especially for closed spaced extended targets). In order to
partition the measurement set accurately and quickly when extended targets of interest are spatially
close, a more general prediction-driven measurement sub-partitioning algorithm (i.e., PMS) is proposed
in this paper. The detailed procedures of the proposed PMS are in the next section.

3. Prediction-Driven Measurement Sub-Partitioning

To effectively approximate all possible partitions, several reasonable partitions are considered to
achieve stable and accurate target tracking performance. The partition number is determined according
to the possible changes of the target number. Suppose that the number of extended targets at time step
k− 1 is Jk−1, the number of newborn targets is Jγ,k, and the number of spawned targets from the same
existing target is Jβ,k, then the range of target number K is

Jk−1 ≤ K ≤ Jk−1 + Jβ,k × Jk−1 + Jγ,k, (1)

As the measurements are needed to be partitioned into several subsets, we set the number of
subsets in a partition as the possible target number. To obtain different partitions, we use different
possible target number for measurement partitioning. As shown in Equation (1), there are Jβ,k × Jk−1 +

Jγ,k + 1 different integers in the closed interval. Correspondingly, there are Jβ,k× Jk−1 + Jγ,k + 1 different
partitions of the measurements. Here, Jβ,k and Jγ,k are approximated by 1 and Jk−1, respectively. That
is, there are Jk−1 newborn targets and one target spawned from the same target. Thus, the partition
number Np is reduced to

Np = 2× Jk−1 + 1. (2)

As mentioned above, every possible target (e.g., the existing target, the spawned target, or the
newborn target) has the corresponding subset in the partition. Considering the unknown positions
of the spawned and newborn targets, their possible clustering centers are determined by the initial
center selection strategy of K-means++ clustering. To make sure each partition contains the most likely
subsets, the predicted position of the existing target is used to obtain the possible clustering center of
the existing target at the current time step, i.e., the measurement close to the predicted mean is treated
as the possible center. It is clear that the number of subsets for the existing targets is determined by
one of the existing targets and the accuracy of the partitioning results is closely related to the target
predictions. However, in the typical target tracking scenario with spatially close targets, the target



Appl. Sci. 2020, 10, 5004 6 of 26

number is very likely to be underestimated, causing the same cardinality underestimation problem to
the target predictions. It would directly influence the precision of the partition results. What is worse
is that the wrong number of target predictions is hard to correct, which makes accurate measurement
partitions unavailable for the subsequent filtering. This phenomenon no doubt degrades the MCETT
performance and lasts for some time.

To improve the robustness of the proposed measurement partitioning algorithm based on target
prediction, a new repartition strategy is proposed in this paper to correct the unreasonable clustering
centers obtained by target prediction. First of all, the unreasonable target prediction can be found
through its partitioning results. According to the above clustering centers of existing targets, an

initial partition P1 =
{

W(i)
}Jk−1

i=1
is obtained by clustering, where W(i) denotes the ith subset in the

initial partition P1. By comparing the expected number λ of measurements from the same target
with the measured number

∣∣∣W(i)
∣∣∣ of each subset, the unreasonable subsets and their corresponding

target predictions can be found. For each subset in P1, if the condition |W
(i)|

λ ≥ 2 is satisfied, this
means it wrongly contains measurements of more than one target due to its clustering center. The
corresponding target prediction of this clustering center is considered unreasonable. Second, the

corresponding correct target number of each unreasonable subset can be roughly estimated by |W
(i)|

λ .
To correct the unreasonable target prediction, the unreasonable target prediction should be replaced by
alternative points, the number of which is the estimated correct target number.

At last, based on geometry, the locations of alternative points can be determined by the spatial
distribution of the target prediction and measurements. Through analyzing the distribution of the
measurements and target prediction, the prediction x(i)k|k−1 corresponding to ith unreasonable subset

W(i) can be approximated as the geometrical center of a polygon composed of real clusters’ centers.
It can be seen in Figure a, which represents the spatial distribution of four true clusters of measurements
that are observed from four crossed extended targets. Target number underestimation occurs in this
tracking scenario with tracks-crossed, i.e., these measurements from four targets are mistakenly put
into one subset according to the clustering center calculated by the target prediction. From Figure 1a,
the target prediction can be treated as the geometrical center of the polygon composed of these true
target centers. Thus, the alternative points can be roughly approximated by the vertices of polygons,
as shown in Figure 1b.

 The center of the cluster

 Predicted target state

 Measurements

(a)

q

( )
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i

j
n

p
q- -

TH

 The alternative points of predicted target state

 Predicted target state

 Measurements

(b)

Figure 1. The measurement distribution in unreasonable subset. (a) The geometrical distribution of the
target prediction and the centers of 4 clusters. (b) The selection of alternative points in prediction-driven
measurement sub-partitioning (PMS) algorithm.
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According to the above analysis of the spatial distribution of the measurements and x(i)k|k−1 , we

consider replacing the predicted target state x(i)k|k−1 with reasonable alternative points (e.g., the vertices
of a regular polygon) based on the geometry thought. Thus, the position (pj,x, pj,y) of alternative point
can be calculated as follows,

pj,x = x(i)k|k−1,x + TH × cos(θ − 2π(j−1)
ni

)

pj,y = x(i)k|k−1,y + TH × sin(θ − 2π(j−1)
ni

)
(3)

where θ = arctan

(
p1,y−x(i)k|k−1 ,y

p1,x−x(i)k|k−1x

)
is the angle between the X-axis and the line passing through p1 and

x(i)k|k−1 , TH is the distance between x(i)k|k−1 and the first alternative point which is decided according

to the distribution of the distances between x(i)k|k−1 and the measurements, and j = 2, · · ·, ni. As the
number of polygon vertices, ni is the expected target number of the underestimated subsets.

The above strategy is more reliable and effective than the existing measurement partitioning
algorithm (e.g., sub-partitioning algorithm) for repartitioning unreasonable subsets. Take Figure 2 as an
example. There is a measurement set consists of Nz,k = 31 measurements (originated from three closely
spaced targets). From Figure 2a, we can see that sub-partitioning cannot partition the measurements
into three relatively accurate subsets, which unreasonably treats the distant measurement as an
individual subset. Compared with sub-partitioning, our method successfully divides the set of
densely distributed measurements into three subsets (as shown in Figure 2b), which has more
accurate measurements partitioning results and fits well with the tracking of extended targets with
tracks-crossed.
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Figure 2. Sub-partitioning vs. prediction-driven measurement sub-partitioning. (a) The measurements
are partitioned by sub-partitioning; (b) The measurements are partitioned by prediction-driven
measurement sub-partitioning.

After getting the clustering centers (including the alternative points of the unreasonable target
predictions), a new partition can be obtained by K-means++ clustering, i.e., put the measurements closet

to the above position into the same subset. Suppose that XS,k|k−1 =
{

x(i)k|k−1

}Jk−1

i=1
is the predictions of

existing targets, Zk is the measurement set at time k, Nz,k is the number of the observed measurements,
and Jk−1 is the estimated number of targets at time k − 1. The whole procedure of the proposed
algorithm is detailed as follows.

Step 1. The lower and upper threshold of target number is calculated as KL = Jk−1 and KU =

Jk−1 + Jβ,k × Jk−1 + Jγ,k, respectively. For each K value, there is an individual partition containing K
subsets. Here, Jβ,k and Jγ,k are approximated by 1 and Jk−1, respectively.
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Step 2. Judge whether the underestimation problem exists in the subsets of the first partition by
using Nz,k

λ − Jk−1. If Nz,k
λ − Jk−1 ≥ 1, it means that the number of targets has been underestimated at

the previous time k− 1, where λ is the expected number of observed measurements from each target
and equal to the Poisson rate.

Step 3. For each K value, the initial clustering centers C Jk−1 =
{

c1, · · ·, cJk−1

}
are obtained by the

predicted positions of survival targets, and the initial partition P1 =
{

W(i)
}Jk−1

i=1
is gained by C Jk−1 ,

where W(i) is the ith subset. For each subset W(i) ∈ P1, |W
(i)|

λ ≥ 2 is used to find the underestimated

subset and corresponding predicted state x(i)k|k−1 , where
∣∣∣W(i)

∣∣∣ is the number of observed measurements

in ith subset. Round |W
(i)|

λ up to the nearest whole number ni, and let ni as the number of the alternative

points of the predicted state x(i)k|k−1 . In this case, the predicted state x(i)k|k−1 needs to be replaced by ni

alternative points Pni =
{

pj
}ni

j=1. This strategy may help us to obtain the alternative initial clustering

centers Ci
ni =

{
ci

j

}ni

j=1
, where ci

j is determined according to pj.

Step 4. Calculate the distance between each measurement and the predicted state x(i)k|k−1 , and sort
them from smallest to largest. Afterward, the one in the middle is selected as the first alternative initial
clustering center ci

1. The distance between ci
1 and x(i)k|k−1 is denoted by TH. Let ci

1 be the first alternative

point p1. The other ni − 1 alternative points Pni−1 = {p2, p3, · · ·, pni} can be considered as the vertexes
of a regular polygon, and their locations are calculated by Equation (3). Then, all alternative points
Pni =

{
p1, Pni−1} are obtained to replace the corresponding predicted state x(i)k|k−1 .

Step 5. Compute K-means clustering centers Ci
ni−1 =

{
ci

j

}ni

j=2
with alternative points Pni−1.

Then, the alternative initial clustering center set Ci
ni =

{
ci

1
, Ci

ni−1

}
is obtained to replace the

corresponding clustering center gained by x(i)k|k−1 in C Jk−1 .
Step 6. Repeat Steps 3–5 until finishing selecting the alternative initial clustering centers

Cunder =
{

Ci
ni

}N

i=1
in all the underestimated subsets, where N is the number of the underestimated

subsets. These centers are included into C Jk−1 . Other K − Jk−1 measurements are selected as

CK−Jk−1 =
{

cJk−1+1, cJk−1+2, · · ·, cK
}

, which satisfy the selection probability D(z(i)k )
2

∑
zk∈Zk

D(zk)
2 , where D(x)

is the shortest distance from a measurement z(i)k to the closest initial center.

Step 7. Jk−1 is changed to be J∗k−1 = Jk−1 − N +
N
∑

i=1
ni, where N is the number of the

underestimated subsets and ni is the expected target number of the ith subset. Accordingly, the

lower bound is KL = J∗k−1 = Jk−1 − N +
N
∑

i=1
ni and the upper bound is KU = J∗k−1 + Jβ,k × J∗k−1 + Jγ,k.

Step 8. CK−Jk−1 and CK are merged into CK = CK−Jk−1 ∪ C Jk−1 as the whole clustering center set.
Compute K-means clustering to get the final measurement partitioning results. The pseudocode of the
proposed method is given in Algorithm 1.
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Algorithm 1 Prediction-driven measurement sub-partitioning algorithm.

Input: Zk: the set of measurements; Nz,k: the number of measurements; XS,k|k−1: predictions for

existing targets; Jk−1: the number of targets at time k− 1; λ: the expected number of measurements

from one target; fpre (X, Z): a function using target predictions to obtain clustering centers;

finitialP (K, C, Z): K-means clustering function with only one iteration; falter (n, c, Z): a function to

compute alternative clustering centers; fK (K, Z): K-means++’s initial clustering center selection

function; fP (K, C, Z): K-means clustering function;
Output: partitions {PK}KU

K=KL

1: KL = Jk−1, KU = Jk−1 + Jβ,k × Jk−1 + Jγ,k;
2: Obtain C Jk−1 :{ci}

Jk−1
i=1 = fpre

(
XS,k|k−1 , Zk

)
;

3: if Nz,k
/

λ− Jk−1 ≥ 1 then
4: First partitioning:

{
W(i)

}Jk−1

i=1
= finitialP

(
Jk−1, C Jk−1 , Zk

)
;

5: J∗k−1 = Jk−1;
6: for i = 1 : Jk−1 do
7: if |W

(i)|
λ then

8: ni ← ROUND
(
|W(i)|

λ

)
;

9: Find alternative centers: Ci
ni
= falter (ni, ci, Zk);

10: Delete the center ci in C Jk−1

11: Augment the new centers: C Jk−1 = C Jk−1 ∪ Ci
ni

;
12: J∗k−1 = J∗k−1 − 1 + ni;
13: end if
14: end for
15: KL = J∗k−1,KU = J∗k−1 + Jβ,k × J∗k−1 + Jγ,k;
16: end if
17: while KL ≤ K ≤ KU do
18: Obtain CK−Jk−1 : {ci}K

i=J∗k−1+1 = fK (K− Jk−1, Zk);
19: Obtain the whole clustering center set CK: CK = C Jk−1 ∪ CK−Jk−1 ;
20: Measurements partitioning: PK =

{
W(i)

}K

i=1
= fP

(
K, CK, Zk

)
;

21: K = K + 1;
22: end while

Remark 1. The above algorithm flexibly utilizes predictions of existing targets to obtain more accurate
measurement partitioning results. Moreover, the unreasonable target predictions are replaced by more reasonable
alternative points, which fits well in the tracking scenarios with extended targets spatially close (e.g., targets
with tracks-crossed) when the number of targets is underestimated. Note that this strategy aims to make the use
of target predictions more robust, which does not add extra partitions to improve the accuracy of partitions. Due
to its concise mathematical forms and favorable properties, PMS can be easily integrated into the framework of
ET-PHD filter, achieving higher tracking performance.

4. A Target Tracking Approach Based on Prediction-Driven Measurement Sub-Partitioning

As mentioned above, the proposed prediction-driven measurement sub-partitioning algorithm
can be integrated into various filters to track multiple extended targets due to its concise mathematical
forms and favorable properties. Thus, a multiple extended target tracking approach based on PMS
is proposed.
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Based on the assumption of the measurement model that measurements are distributed around a
target reference point approximately, the target state vector x(i)k = [m(i)

k , x∗k ]
T consists of only the target

position m(i)
k and velocity x∗k without any parameter of target’s size and shape. Note that this is the

basic structure of the target state vector, in which the parameters for spatial extent can be included
according to other models of target extension. It makes our approach easily extended to other filters
for tracking extended targets with the complicated spatial extent.

To deal with the tracking scenario with clutters and unknown associates between measurements
and targets, measurements and target states are modeled as random finite sets (RFS), respectively, i.e.,

Xk−1 =
{

x(i)k−1

}Nx,k−1

i=1
, Zk =

{
z(i)k

}Nz,k

i=1
. Nx,k−1 is the number of targets estimated at time k− 1 and Nz,k

is the number of measurements obtained at time k. The corresponding dynamic model of each target
state in the Xk−1 and the measurement model of each measurement in Zk are assumed as follows,

x(i)k = Fk−1x(i)k−1 + wk−1 (4)

z(i)k = Hkx(i)k−1 + ek (5)

where Fk−1 is the state transition matrix, wk−1 is the independent Gaussian white noise with the
covariance Qk−1, Hk is the measurement matrix, and ek is Gaussian white noise with the covariance Rk.

The proposed extended target tracking approach includes the prediction, measurement
partitioning, and update, which are detailed as follows.

4.1. Prediction

The predicted intensity Dk|k−1 (x), which contains the intensity for newly born targets, spawned
targets and existing targets, can be given as follows,

Dk|k−1 (x) =
Jk|k−1

∑
j=1

ω
(j)
k|k−1N

(
x; m(j)

k|k−1 , P(j)
k|k−1

)
(6)

where Jk|k−1 is the predicted number of Gaussian components, ω
(j)
k|k−1 is the predicted weight of the

Gaussian component, m(j)
k|k−1 is the predicted mean of the Gaussian component, and P(j)

k|k−1 is the
predicted covariance of the Gaussian component.

Note that the proposed PMS only uses the predicted intensity for existing targets. Given the initial
intensity Dk−1(x), the predicted intensity DS,k|k−1 (x) for existing targets can be calculated as follows,

DS,k|k−1 (x) = pS (x)
Jk−1

∑
j=1

ω
(j)
k−1N

(
x; m(j)

S,k|k−1 , P(j)
S,k|k−1

)
(7)

m(j)
S,k|k−1 = Fk−1m(j)

k−1 (8)

P(j)
S,k|k−1 = Qk−1 + Fk−1P(j)

k−1FT
k−1 (9)

where pS (x) is the survival probability, m(j)
S,k|k−1 is the transition mean of the Gaussian component,

P(j)
S,k|k−1 is the transition covariance of the Gaussian component, ω

(j)
k−1 is the weight of the Gaussian

component at time k− 1, m(j)
k−1 is the mean of the Gaussian component at time k− 1, and P(j)

k−1 is the
covariance of the Gaussian component at time k− 1.
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4.2. Measurement Partitioning

The measurement partitioning is indispensable to MCETT and aims to make measurements
(originated from the same target) divided into the same subset. As an integral part of ET-PHD filter, it
would greatly affect the stability of the subsequent tracking algorithm and the estimation accuracy of
both the target state and number. Besides, the computational burden of the measurements partitioning
is also a key factor affecting the speed of multiple extended target tracking. Target predictions can be
used to partition the measurements to obtain relatively accurate partitioning results. However, they
are likely to cause measurements that are inaccurately divided when the cardinality underestimation
problem occurs. There is a pressing need to modify it for improving the performance in the target
number and state estimation.

Based on PMS, the measurement set can be partitioned as accurately as possible. The range of K
value is also narrowed, i.e., the lower and upper bounds of the interval [KL, KU ] are set as KL = Jk−1
and KU = Jk−1 + Jβ,k × Jk−1 + Jγ,k, respectively. This strategy reduces the partition number and
decreases the computational complexity greatly. Note that the predictive information is fully used
to obtain the clustering centers. More importantly, the problem of underestimation in the target
number is considered and solved explicitly. Nz,k

λ − Jk−1 ≥ 1 is presented to judge whether there is

the underestimation of the target number, and |W
(i)|

λ ≥ 2 is used to find the underestimated subset
and corresponding predicted state if the condition is satisfied (i.e., the number of targets have been
underestimated). In this way, ni alternative points of the predicted state can be found by introducing
the Geometry of a regular polygon, which serves to determine the alternative initial centers of the
underestimated subset. The whole procedures of PMS are detailed in Algorithm 1.

4.3. Update

As the accurate measurement partitioning results can be obtained by the PMS, the subsets of each
partition is used to update each predicted Gaussian Mixture components. By using the measurement
pseudo-likelihood function LZk (x), the update equation is given by

Dk|k(x) = LZk (x)Dk|k−1(x) (10)

LZk (x) = 1− (1− e−γ(x))pD(x)︸ ︷︷ ︸
No detections of the target

+

e−γ(x)pD(x)× ∑
P∠Zk

ωP ∑
W∈P

γ(x)|W|

dW
· ∏

zk∈W

φzk (x)
λkck(zk)︸ ︷︷ ︸

At least one detection of the target

(11)

where Dk|k(x) is the posterior intensity, Dk|k−1(x) is the predicted intensity, pD(x) is the detection
probability of target, γ(x) is the expected number of measurements from the target, φzk (x) is the
Gaussian likelihood function of the generate measurement for a single target, λk is the mean of clutter
measurements, and ck(zk) is the spatial distribution of the clutter over the surveillance volume. Note
that the non-negative coefficients ωP and dW are defined for P and W, respectively. P∠Zk denotes that
there are P partitions, each of which is able to divides the measurement set Zk into several non-empty
subsets, and W ∈ P denotes that W is a subset in the partition P.

LZk (x) can be separated into two parts according to the situation of measurement detection.
Thus, the above update equation can be evolved to a more clear form containing two aspects (i.e., the
update in the case with no detection of targets and the update in the case with detection of targets),
which are as follows,

Dk|k(x) = DND
k|k (x) + ∑

P∠Zk

∑
W∈P

DD
k|k(x, W) (12)
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where DND
k|k (x) serves to the case of non-detected targets and DD

k|k(x, W) serves to the case of detected

targets. In these cases, ω
(j)
k|k is used to denote the updated weight of the Gaussian component, m(j)

k|k

is the updated mean of the Gaussian component, and P(j)
k|k is the updated covariance of the Gaussian

component.
The update for no detection case is given as follows,

DND
k|k (x) =

Jk|k−1

∑
j=1

ω
(j)
k|kN (x; m(j)

k|k, P(j)
k|k ) (13)

ω
(j)
k|k = (1− (1− e−γ(j))pD

(j))ω
(j)
k|k−1 (14)

m(j)
k|k = m(j)

k|k−1, P(j)
k|k = P(j)

k|k−1 (15)

where pD(j) is the detection probability of target and γ(j) is the expected number of measurements
from the target.

The update for detected targets is

DD
k|k(x, W) =

Jk|k−1

∑
j=1

ω
(j)
k|kN (x; m(j)

k|k, P(j)
k|k ) (16)

ω
(j)
k|k = ωP

Γ(j)pD
(j)

dW
Φ(j)

W ω
(j)
k|k−1 (17)

ωP =
∏W∈P dW

∑P′∠Z′ ∏W ′∈P′ dW
′ (18)

dW = δ|W|,1 +
Jk|k−1

∑
j=1

Γ(j)pD
(j)Φ(j)

W ω
(j)
k|k−1 (19)

where the coefficient Γ(j) and Φ(j)
W are

Γ(j) = e−γ(j)(γ(j))|W|, Φ(j)
W = φW

(j) ∏
zk∈W

1
λkck(zk)

(20)

δ|W|,1 is the Kronecker delta and the coefficient φ
(j)
W is

φW
(j) = N (zW |HKm(j)

k|k−1, RK + HKP(j)
k|k−1HT

K) (21)

HK =
[

HT
k , HT

k , · · ·, HT
k

]T

︸ ︷︷ ︸
|W|times

(22)

RK = BLKdiag (Rk, Rk, · · ·, Rk)︸ ︷︷ ︸
|W|times

(23)

Here, the standard Kalman filter is used to obtain the mean m(j)
k|k and covariance P(j)

k|k of the
Gaussian components.
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m(j)
k|k = m(j)

k|k−1 + K(j)
k




z1
...
z|W|

− HKm(j)
k|k−1

 (24)

P(j)
k|k = (I−K(j)

k HK)P(j)
k|k−1 (25)

K(j)
k = P(j)

k|k−1HT
K(RK + HKP(j)

k|k−1HT
K)
−1 (26)

where K(j)
k denotes the matrix of Kalman filter gain.

To sum up, the proposed multiple close-spaced extended target tracking approach is summarized
as follows.

Step 1. Calculate the predicted intensity:

m(j)
k−1 → m(j)

k|k−1 , P(j)
k−1 → P(j)

k|k−1 , ω
(j)
k−1 → ω

(j)
k|k−1 (27)

Step 2. Determine the range of K value:

Jk−1 + Jβ,k × Jk−1 + Jγ,k → KU (28)

Jk−1 → KL (29)

Step 3. Select the initial clustering centers C Jk−1 by using the predictive information and obtain
the first partition P1 based on the above centers:

m(j)
S,k|k−1 → cj ∈ C Jk−1 (30)

Zk → P1 =
{

W(i)
}Jk−1

i=1
(31)

Step 4. Partition measurements: If Nz,k
λ − Jk−1 ≥ 1, it implies that the target number has been

underestimated. Then, execute PMS to find the alternative initial centers of the estimated subsets in P1,
which contributes to more accurate partitioning results when extended targets cross each other.

PMS→ P = {P1, P2, · · ·} (32)

If this judgment condition is not satisfied, PMS directly uses the predictions of existing targets to
obtain the clustering centers and partition the measurement set.

Step 5. Update the predicted intensity:

m(j)
k|k−1 → m(j)

k|k , P(j)
k|k−1 → P(j)

k|k , ω
(j)
k|k−1 → ω

(j)
k|k (33)

5. Simulation Results and Performance Evaluation

In this section, the effectiveness of the proposed MCETT approach based on prediction-driven
measurement sub-partitioning (PMS) for tracking of closely spaced targets is illustrated by comparing
the proposed MCETT approach with the existing MCETT approaches based on different measurements
partitioning strategies:

(1) PP: The MCETT approach using the measurement partitioning of the work in [37].
(2) SP: The MCETT approach using the measurement partitioning of the work in [27].
(3) DP: The MCETT approach using the distance-based partitioning.
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To better illustrate the tracking performance of multiple extended targets, a typical simulation
scenario is considered: (A) Tracking of extended targets with typical tracks, which contains the crossing
targets, spawned targets, and newborn targets. To further illustrate the tracking performance of closely
spaced targets, two more specific simulation scenarios of MCETT are considered: (B) Tracking of
extended targets with paralleled tracks; (C) Tracking of extended targets with crossed tracks. In each
simulation scenario, there is a stationary sensor platform and multiple moving extended targets
and approaches are initialized with the same target state and number without further information.
Moreover, there are clutter measurements distributed randomly, and the measurements of each target
may be not detected by the sensor at per time step. Both of these bring great difficulties to accurately
track multiple extended targets.

We calculate the performance in the computational burden, target number estimation, and
optimal sub-pattern assignment (OSPA) distance [41]. Note that the OSPA distance is chosen as
the measure to evaluate the tracking performance. The computation time and partition number of
measurements are jointly used to reflect the computational burden of the algorithm in simulations.
The computational complexities for these approaches are compared in the CPU running time and
simulations are implemented by MATLAB on Intel(R) Core(TM) i3-2130, 3.40 GHz, and 4 GB RAM.
The detailed discussions and analysis are as follows.

5.1. Performance Evaluation in Tracking of Extended Targets with Typical Tracks

Scenario A is a typical tracking scenario with clutter and missed detection. It contains the tracking
of crossed targets, newborn targets, and spawned targets. The true tracks and measurements are
illustrated in Figure 3. Both of two targets were born at k = 1 s and died at k = 100 s. They are crossed
at k = 50 s. At k = 67 s, there is a target newborn and a target spawned from the existing target.
Especially when a new target is spawned from the existing target, the locations of these two targets are
very close. It is another typical form of tracking closely spaced targets.
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Y
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Target 1:
born at k=1;
dies at k=100

Target 3:
born at k=67;
dies at k=100

Target 2:
born at k=1;
dies at k=100

Target 4:
spawned at k=67;
dies at k=100

Figure 3. True tracks and measurements with clutter. Green square is the beginning point of the track;
red circle is the end point of the track.

In this scenario, the surveillance area is [−1000 1000]× [−1000 1000]. The target state contains the
position and velocity, i.e., Xk = [xk, yk, ẋk, ẏk]

T, where (xk, yk) and (ẋk, ẏk) are the position and velocity
in the two-dimensional Cartesian coordinate system, respectively. It is assumed that each target
generates measurements with the Poisson distribution (the Poisson rate is γ(i) = 10, ∀i). The clutter
measurements are also generated with λ = 10 at each time step. The observed measurement is denoted

as z(j)
k =

[
x(j)

k , y(j)
k

]T
. The probability of detection and survival are set to pS = 0.99 and pD = 0.99,

respectively.
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Each extended target is supposed to perform a nearly constant velocity motion model with the
sampling interval T = 1 s, and the dynamic and measurements models are as follows,

fk|k−1 (xk |xk−1 ) = N (xk; Fxk, Q) (34)

gk (zk |xk ) = N (zk;Hxk, R) (35)

where N (x; m, P) is a Gaussian density with mean m and covariance P. Here, F is the state transition
matrix, Q is the process noise covariance, H is the measurement matrix, and Rk is the observation
noise covariance. They have the following forms,

F =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 , Q = σ2
W

[
T2

2 0 T 0
0 T2

2 0 T

]T

H =

[
1 0 0 0
0 1 0 0

]
, Rk = σ2

e I2

where σW = 2 m/s2 is the standard deviation of process noise and σe = 20 m is the standard deviation
of measurement noise. The birth intensity for the existing targets is

Db(x) = 0.1N (x; m(1)
b , Pb) + 0.1N (x; m(2)

b , Pb) (36)

where m(1)
b = [250, 250, 0, 0]T , m(2)

b = [−250,−250, 0, 0]T , and Pb = diag ([100, 100, 25, 25]).
Figure 4 gives the comparison results of target number estimation. It can be seen that PMS has a

more accurate estimation of target number than DP, PP and SP especially when a new target is spawned
from the existing target at k = 67 s. This is because PMS finds relatively accurate alternative points
to replace unreasonable target predictions according to the geometry of a regular polygon, which
facilitates partitioning the measurements more accurately to avoid the target number underestimation.
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Figure 4. The comparison of four approaches in target number estimation.

For further evaluating the tracking performance of PMS, we compare it with DP, PP, and SP
by using the OSPA distance. As shown in Figure 5, PMS outperforms DP, especially when targets
are spatially close (i.e., targets are crossed at k = 50 s and a new target is spawned at k = 67 s).
Compared with SP, we can see that PMS has the better performance in estimation of the target number
and state due to their higher precision of the measurements partitioning. This facilitates the accurate
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estimation of the target state and number in the subsequent filtering. It also demonstrates that PMS’s
strategy of replacing unreasonable target predictions with alternative points is more reliable than the
loss function of the K-means++ clustering, which is very likely to inaccurately repartition the subsets.
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Figure 5. The comparison of four approaches in optimal sub-pattern assignment (OSPA) distance.

Specifically for PP, its tracking performance is much lower than others. This main reason is that
missed detection is likely to bring unreasonable partitioning results of the measurement set, not to
mention that only one partition is obtained according to target predictions, which affects the MCETT
performance directly. Moreover, PP cannot handle well the tracking of crossed targets, newborn targets,
and spawned targets due to the dependence of target predictions. Unlike PP, PMS fully considers the
possible changes of target number to narrow the range of partition number and uses the predicted
target state to determine the possible clustering centers, which guarantees the accurate partition of the
measurement set to improve the performance of multiple extended target tracking greatly.

As predictions of the target state and number help PMS obtain the relatively accurate partitioning
results, it can be seen that compared with DP, the predictive information is more reliable than the
distance information (may contain the distance between clutters with each other) for measurements
partitioning when lots of clutters exist in the surveillance area. To sum up, PMS is more reliable than
DP, SP, and PP. It has the better tracking performance.

Figures 6 and 7 give the partitioning number and computation time of four approaches,
respectively. From the comparison results, we can see that the number of measurements partitioning
increases as the number of extended targets increases. In other words, the greater the number of
measurements partitioning is, the longer the computation time is. Thus, the number of measurements
partitioning is the major determinant of the computational burden of different MCETT approaches.
Compared with DP and SP, PMS spends less time because it does not need to partition the
measurements as much as DP and SP do. This demonstrates that the proposed approach (i.e., PMS)
is superior to existing approaches in measurements partitioning for real-time tracking of multiple
extended targets. Although PP has the least partition number and computational time, its tracking
performance is worse than other algorithms from Figure 5.
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Figure 6. The comparison of four approaches in partitioning number.
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Figure 7. The comparison of four approaches in computation time (seconds).

From Figures 4–6, it can be concluded that our approach can handle well the tracking of existing
targets, newborn targets, and spawned targets. It not only reduces the computational burden largely
for practical tracking applications, but more importantly improves the MCETT performance greatly.
Note that this subsection proves that the proposed measurement partitioning algorithm outperforms
other existing ones in the typical tracking scenario (including the crossed targets, newborn targets, and
spawned targets). For the tracking scenario with closely spaced targets, the tracking performance of
the proposed MCETT approach based on PMS needs to be further evaluated in more specific tracking
scenarios (i.e., subsections B and C), which is to be demonstrated later.

5.2. Performance Evaluation in Tracking of Extended Targets with Paralleled Tracks

PMS aims to deal with the measurement partitioning problem of closely spaced extended targets.
Therefore, in this part, a multiple extended target tracking scenario (i.e., Scenario B) is designed to
further evaluate the tracking performance of the proposed MCETT based on PMS. The true tracks (i.e.,
black solid lines) and measurements with clutter (i.e., black dots) are illustrated in Figure 8. The tracks
of these targets are paralleled all the time, which is a typical scenario and brings a huge challenge for
MCETT. Both of two extended targets were born at k = 1 s and died at k = 100 s. The targets’ birth
intensity is

Db(x) = 0.1N (x; m(1)
b , Pb) + 0.1N (x; m(2)

b , Pb) (37)
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where m(1)
b = [250, 250, 0, 0]T , m(2)

b = [250, 180, 0, 0]T , and Pb = diag ([100, 100, 25, 25]). The other
simulation parameters are the same as those of the extended targets in Scenario A.

As is shown in Figure 9, PMS has much better performance than DP, SP, and PP in the target
number estimation. Especially compared with PP, the estimate of the target number in PMS is more
accurate. This is because PP directly fixes the predicted mean as the centroid of a target, which is likely
to cause the non-information subsets. Unlike PP, PMS only uses the predicted mean of a target to find
its possible centroid, which is more flexible and improves the accuracy of partition results. Besides,
Figure 9 also implies that the strategy used in PMS is more effective than that of SP, in which K-means++
clustering is utilized to repartition the unreasonable subsets. Although SP can, to some extent, handle
the partitioning problem in DP due to the dense distribution of measurements, the degradation of
target number estimation performance still cannot be avoided, i.e., relatively accurate partitioning
results are not available in some cases. This lies in the loss function of K-means++ clustering, which
is very likely to obtain inaccurate repartitioning results. However, in PMS, the unreasonable target
prediction is reasonably replaced by the alternative points so that measurements are divided into two
subsets rather than one subset, which contributes to better target number estimation performance.
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Figure 8. True tracks and measurements with clutter. Green square is the beginning point of the track;
red circle is the end point of the track.
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Figure 9. The comparison of four approaches in target number estimation.

Figure 10 shows the OSPA distance of the compared approaches. In this figure, PMS has much
better tracking performance than DP, SP, and PP. This reflects that the strategy of predicted position is
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more reliable than K-means++ in SP. This figure also illustrates that the predictive information (instead
of the distance information) is more appropriate to be utilized for measurements partitioning, because
the distance information is very likely to wrongly divide the measurements from more than one target
into one subset in closely spaced target tracking.

The comparison of partitioning number is shown in Figure 11. Compared with DP and SP,
PMS uses fewer partitions, which can greatly reduce the computational burden. Combined with the
comparison results of the estimation performance of the target number and state in Figure 10, it can
be seen that the tracking performance by PMS does not degrade due to the reduction of the partition
number. This is because the strategy in PMS is useful to obtain relatively accurate partitioning results.
Besides, from Figure 11, PP has the lowest number of partitioning, only one partition. However,
its tracking performance is worse than PMS because PP may obtain non-information partitions,
which undoubtedly causes an inaccurate estimation of target number and state. Thus, we conclude
that the good tracking performance depends on the accurate measurements partitioning, instead of
merely the number of partitions.
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Figure 10. The comparison of four approaches in OSPA distance.
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Figure 11. The comparison of four approaches in partitioning number.

The computation time of these four algorithms is given in Figure 12. Combined with the partition
number results from Figure 11, we can see that partition number is the main factor affecting the
computational time. The computational time increases with the increase of partition number. Due to
the lower partition number compared with DP and SP, PMS saves a lot of computational time, which
is very significant for real-time target tracking. More importantly, from the above total figures, the
tracking performance of PMS remains accurate, which is much better than DP, SP, and PP.
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Figure 12. The comparison of four approaches in computation time (seconds).

To sum up, PMS outperforms other approaches when tracking of extended targets with
tracks-paralleled. Its computation burden is greatly reduced without the loss of tracking performance.

5.3. Performance Evaluation in Tracking of Extended Targets with Crossed Tracks

From the above analysis, it can be seen that using alternative points to replace the unreasonable
target prediction is useful to obtain relatively accurate measurement partitioning results, which makes
PMS effectively solve the cardinality underestimation problem of closely spaced targets. To further
evaluate the tracking performance of MCETT approach using PMS, a multiple extended target tracking
scenario (i.e., Scenario C) is designed, in which the tracks are crossed. Figure 13 shows the true
trajectories of the extended targets with cluttered measurements in Scenario C. All extended targets
were born at k = 1 s and died at k = 100 s. Roughly from k = 45 s to k = 55 s, all these targets are
getting very spatially close and crossing from each other, which is another typical scenario for tracking
of multiple extended targets. This scenario, in which the dense distribution of measurements bring
huge difficulty for measurement partitioning, is suitable to test the proposed measurement partitioning
algorithm, i.e., PMS. The birth intensity is

Db(x) = 0.1N (x; m(1)
b , Pb) + 0.1N (x; m(2)

b , Pb)+

0.1N (x; m(3)
b , Pb) + 0.1N (x; m(4)

b , Pb)+

0.1N (x; m(5)
b , Pb) + 0.1N (x; m(6)

b , Pb)

(38)

where m(1)
b = [−500, 250, 0, 0]T, m(2)

b = [250, 500, 0, 0]T, m(3)
b = [250,−500, 0, 0]T, m(4)

b =

[−500,−250, 0, 0]T, m(5)
b = [−50, 450, 0, 0]T, m(6)

b = [450, 50, 0, 0]T and Pb = diag ([100, 100, 25, 25]).
The other simulation parameters are the same as those of the extended targets in Scenario A.

In this scenario, PMS is less affected by the underestimated target number when tracking of
extended targets with tracks crossed and outperforms other measurement partitioning algorithms
(i.e., DP, SP, and PP). The target number estimation of four approaches is shown in Figure 14. It can
be seen that PMS has a much better estimation performance of target number than PP and the other
two approaches. Especially when targets are crossing, PMS uses the alternative points to replace
the unreasonable target predictions, which can greatly avoid inaccurate measurement partitions, i.e.,
measurements are accurately divided into six subsets rather than one subset. Compared with DP and
SP, which wrongly divide the measurements generated from more than one target into one subset
when the measurements are densely distributed, this contributes to better performance in estimation
of the target number.
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Figure 13. True tracks and measurements with clutter. Green square is the beginning point of the track;
red circle is the end point of the track.
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Figure 14. The comparison of four approaches in target number estimation.

The OSPA distance of the compared approaches is shown in Figure 15. From Figure 15, we
can see that PMS has much better tracking performance than DP, SP, and PP. The main reason for
this is that the tracking performance of the PMS is closely related to the target predictions. More
importantly, the unreasonable target predictions are replaced by other suitable alternative points,
which greatly improve the accuracy of measurement partitioning results. Besides, considering that the
target prediction is calculated by the precious target estimation, the more accurate the target estimation
is, the more reliable information the target states prediction provides. This facilitates more accurate
partitions of the measurement set and more accurate target estimation. Accordingly, the MCETT
performance of PMS will get better and better. Figure 15 also illustrates that PMS is more appropriate
to be utilized for tracking of crossed targets. In this case, distance information falls to accurately
divide the measurements because of the density distribution of measurements. Though SP works
better than DP by using K-means++ clustering, the loss function of K-means++ clustering may lead to
the unreasonable subsets, which makes the degradation of target tracking performance. Here, PMS
uses the alternative points to replace the unreasonable target predictions and obtain more accurate
partitions, which greatly improves the target tracking performance.
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Figure 15. The comparison of four approaches in OSPA distance.

The comparison of partitioning number is shown in Figure 16. The partition number of PMS is
much lower than that of DP and SP. From k = 45 s to k = 55 s, the partition number of DP and SP is a
little lower than PMS because measurements are densely distributed making the number of distance
thresholds reduced. However, combined with the comparison of tracking performance in Figure 15 ,
it can be seen that the partitions obtained according to these distance thresholds contribute little to the
tracking performance. Unlike DP and SP, when targets are crossing, PMS still has almost the same
number of measurement partitions as that at previous time steps. Moreover, these partitions obtained
by PMS are more accurate than these of DP and SP (as seen in Figure 15). It means that PMS does
not add computation time to achieve better tracking performance in this scenario. Because PMS only
replaces the unreasonable target predictions in each partition by alternative points to obtain more
reliable target centers, which does not increase the extra partitions. The analysis of PP and PMS is
detailed in the above subsection.
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Figure 16. The comparison of four approaches in partitioning number.

Here, the computation time of four algorithms is given in Figure 17. Combined with Figure 16,
we can see that the computation time decreases rapidly when the number of partitions decreases,
which implies that the number of partitions can directly affect the tracking speed.

In summary, simulation results and performance evaluation demonstrate that our approach
outperforms approaches in Scenarios A, B, and C. It can save much computational time because of the
limited range of partitioning numbers. Besides, the strategy of using modified predictive information
is proved to be more reliable for obtaining better tracking performance. In a word, the tracking
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approach based on PMS can successfully realize the adaptive tracking of multiple closely spaced
extended targets.
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Figure 17. The comparison of four approaches in computation time (seconds).

6. Discussion

As shown in the above simulation results, the tracking performance of the distance-based
measurement partitioning algorithms (e.g., SP and DP) is at the cost of computational burden.
Compared with the distance-based measurement partitioning algorithms, the measurement
partitioning algorithms based on target predictions have less computational burden for a complete
target tracking cycle. This is because only one partition is used for measurement partitioning. However,
these algorithms (e.g., PP) may not obtain stable and accurate target tracking performance in the missed
detection scenarios due to the dependence of target predictions. Additionally, DP and PP are very
likely to underestimate the target number when targets are crossed or parallel. Although SP has a
specific strategy for repartitioning the unreasonable subsets, the accuracy of partitioning results needs
to be further improved without a loss of computational burden.

Unlike PP, PMS deals well with the clutter and missed detection scenarios. Moreover, it obtains
more accurate estimation performance of the target state and number compared with DP and SP,
especially for tracking closely spaced targets. The main reason is that PMS only uses the predicted
location of the survival target to obtain the most likely partitions, which facilitates eliminating the
inaccurate partitions. More importantly, it fully considers and effectively solves the measurement
partitioning problem that the predictive information is not suitable for partitioning the set of
measurements in the tracking scenario with targets spatially close. Note that this modification of target
predictions does not add extra partitions to achieve better tracking performance. With the limitation of
partition number, PMS has a higher tracking speed than DP and SP to achieve accurate estimates of
target number and state, which is significant for applications in a real-time target tracking scenario.

7. Conclusions

To improve the MCETT performance in the tracking scenario with spatially close targets and
to reduce the computational burden, an effective prediction-driven measurement sub-partitioning
algorithm (PMS) has been proposed in this paper. By utilizing the target predictions and considering
the most likely partitions, PMS can obtain high partitioning accuracy without spending too much
time. Moreover, to further improve the robustness of predicted information, the bias predictive
information is fully discussed when the number of targets is underestimated in many practical tracking
scenarios. More importantly, these target predictions are reasonably replaced by the alternative points
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with a correct number to repartition the inaccurate subsets, which is its major advantage over other
existing approaches.

Due to the concise mathematical forms and favorable measurement partitioning strategies, PMS is
simple to implement. This facilitates the derivation of an efficient MCETT approach in the framework
of the ET-PHD filter and enables one to estimate the target number and state jointly with promising
effectiveness. Furthermore, the cardinality underestimation in closely spaced extended target number
may be avoided. Therefore, a large range of the measurement partitioning problems in MCETT
can be handled. Simulation results demonstrate that our approach has much less computational
time than other existing approaches without degrading tracking performance. In summary, our
approach may pave the way for fast and accurate tracking of multiple extended targets in noise and
clutter environments.
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Notations

m(j),d
k+1|k The first d components of the prediction mean of jth GIW component

X̂(j)
k+1|k The extension estimate of jth GIW component

z(i)k The ith measurement
∆d(p) A value calculated by the inverse χ2 distribution
K The target number
Jk−1 The number of targets at time step k− 1
Jγ,k The number of newborn targets
Jβ,k The number of spawned targets
Np The partition number
P1 The initial partition
W(i) The ith subset∣∣∣W(i)

∣∣∣ The number of measurements in subset W(i)

x(i)k|k−1 The prediction corresponding to ith unreasonable subset W(i)

λ The expected number of measurements generated from one target
(pj,x, pj,y) The position of alternative point
p1 The first alternative point

TH The distance between x(i)k|k−1 and p1

XS,k|k−1 =
{

x(i)k|k−1

}Jk−1

i=1
The set of predictions of existing targets

Zk The set of measurements observed at time step k
Nz,k The number of measurements in Zk
KL The lower threshold of target number
KU The upper threshold of target number
C Jk−1 The set of Jk−1 initial clustering centers
Pni The set of ni alternative points
ni The number of alternative points for one target prediction
Pni−1 The set of ni − 1 alternative points
pj The jth alternative point
Ci

ni
The set of ni alternative initial clustering centers
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Ci
ni−1 The set of ni − 1 alternative initial clustering centers

cj
1 The first alternative initial clustering center

Cunder Alternative initial clustering centers for all underestimated subsets
N The number of underestimated subsets
J∗k−1 The new number of initial clustering centers after merging all alternative initial

clustering centers into C Jk−1

CK−Jk−1 The set of other K− Jk−1 initial clustering centers
CK The set of all K initial clustering centers
Dk|k−1 (x) The predicted intensity
Dk|k (x) The predicted intensity
LZk (x) The measurement pseudo-likelihood function
DND

k|k (x) The intensity for the case of non-detected targets

DND
k|k (x, W) The intensity for the case of detected targets
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