Food Chains and Food Webs in Aquatic Ecosystems
Abstract
:1. Introduction
2. Papers in This Special Issue
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carrillo, P.; Medina-Sánchez, J.; Villar-Argaiz, M.; Delgado-Molina, J.; Bullejos Carrillo, F.J. Complex interactions in microbial food webs: Stoichiometric and functional approaches. Limnetica 2006, 25, 189–204. [Google Scholar]
- Wallace, R.L.; Snell, T.W.; Claudia, R.; Thomas, N. Rotifera Vol. 1: Biology, Ecology and Systematics, 2nd ed.; Backhuys: Leiden, The Netherlands, 2006. [Google Scholar]
- Pree, B.; Larsen, A.; Egge, J.K.; Simonelli, P.; Madhusoodhanan, R.; Tsagaraki, T.M.; Våge, S.; Erga, S.R.; Bratbak, G.; Thingstad, T.F. Dampened copepod-mediated trophic cascades in a microzooplankton-dominated microbial food web: A mesocosm study. Limnol. Oceanogr. 2017, 62, 1031–1044. [Google Scholar] [CrossRef]
- Oh, H.-J.; Jeong, H.-G.; Nam, G.-S.; Oda, Y.; Dai, W.; Lee, E.-H.; Kong, D.; Hwang, S.-J.; Chang, K.-H. Comparison of taxon-based and trophi-based response patterns of rotifer community to water quality: Applicability of the rotifer functional group as an indicator of water quality. Anim. Cells Syst. 2017, 21, 133–140. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; Dewaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Barnes, M.A.; Turner, C.R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 2016, 17, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Kress, W.J.; García-Robledo, C.; Uriarte, M.; Erickson, D.L. DNA barcodes for ecology, evolution, and conservation. Trends Ecol. Evol. 2015, 30, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Symondson, W.O.C. Molecular identification of prey in predator diets. Mol. Ecol. 2002, 11, 627–641. [Google Scholar] [CrossRef] [PubMed]
- Carreon-Martinez, L.; Johnson, T.B.; Ludsin, S.A.; Heath, D.D. Utilization of stomach content DNA to determine diet diversity in piscivorous fishes. J. Fish Biol. 2011, 78, 1170–1182. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.; Gim, J.-A.; Jeong, K.-S.; Kim, H.-S.; Joo, G.-J. Application of DNA barcoding for identification of freshwater carnivorous fish diets: Is number of prey items dependent on size class for Micropterus salmoides? Ecol. Evol. 2014, 4, 219–229. [Google Scholar] [CrossRef]
- Jo, H.; Ventura, M.; Vidal, N.; Gim, J.-S.; Buchaca, T.; Barmuta, L.A.; Jeppesen, E.; Joo, G.-J. Discovering hidden biodiversity: The use of complementary monitoring of fish diet based on DNA barcoding in freshwater ecosystems. Ecol. Evol. 2016, 6, 219–232. [Google Scholar] [CrossRef] [Green Version]
- Lydy, M.J.; Belden, J.B.; Ternes, M.A. Effects of temperature on the toxicity of m-parathion, chlorpyrifos, and pentachlorobenzene to Chironomus tentans. Arch. Environ. Contam. Toxicol. 1999, 37, 542–547. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, W.; Mai, K.; Xu, W.; Zhong, X. Effects of dietary zinc on gene expression of antioxidant enzymes and heat shock proteins in hepatopancreas of abalone Haliotis discus hannai. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2011, 154, 1–6. [Google Scholar] [CrossRef]
- Carnevali, S.; Petruzzelli, S.; Longoni, B.; Vanacore, R.; Barale, R.; Cipollini, M.; Scatena, F.; Paggiaro, P.; Celi, A.; Giuntini, C. Cigarette smoke extract induces oxidative stress and apoptosis in human lung fibroblasts. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003, 284, L955–L963. [Google Scholar] [CrossRef] [Green Version]
- Vinagre, C.; Madeira, D.; Mendonça, V.; Dias, M.; Roma, J.; Diniz, M.S. Effect of increasing temperature in the differential activity of oxidative stress biomarkers in various tissues of the Rock goby, Gobius paganellus. Mar. Environ. Res. 2014, 97, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Pratt, W.B. The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid receptor. J. Biol. Chem. 1993, 268, 21455–21458. [Google Scholar] [PubMed]
- Csermely, P.; Schnaider, T.; Soti, C.; Prohászka, Z.; Nardai, G. The 90-kDa molecular chaperone family: Structure, function, and clinical applications. A comprehensive review. Pharmacol. Ther. 1998, 79, 129–168. [Google Scholar] [CrossRef]
- Chang, E.S.; Chang, S.A.; Kwllwe, R.; Reddy, P.S.; Snyder, M.J.; Spees, J.L. Quantification of stress in lobsters: Crustacean hyperglycemic hormone, stress proteins, and gene expression. Am. Zool. 1999, 39, 487–495. [Google Scholar] [CrossRef] [Green Version]
- Park, K.; Park, J.; Kim, J.; Kwak, I.-S. Biological and molecular responses of Chironomus riparius (Diptera, Chironomidae) to herbicide 2,4-D (2,4-dichlorophenoxyacetic acid). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2010, 151, 439–446. [Google Scholar] [CrossRef]
- Caputi, S.S.; Careddu, G.; Calizza, E.; Fiorentino, F.; Maccapan, D.; Rossi, L.; Costantini, M.L. Changing isotopic food webs of two economically important fish in Mediterranean coastal lakes with different trophic status. Appl. Sci. 2020, 10, 2756. [Google Scholar] [CrossRef]
- Oh, H.-J.; Krogh, P.; Jeong, H.-G.; Joo, G.-J.; Kwak, I.-S.; Hwang, S.-J.; Gim, J.-S.; Chang, K.-H.; Jo, H. Pretreatment method for DNA barcoding to analyze gut contents of rotifers. Appl. Sci. 2020, 10, 1064. [Google Scholar] [CrossRef] [Green Version]
- Jo, H.; Kim, D.-K.; Park, K.; Kwak, I.-S. Discrimination of spatial distribution of aquatic organisms in a coastal ecosystem using eDNA. Appl. Sci. 2019, 9, 3450. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-K.; Park, K.; Jo, H.; Kwak, I.-S. Comparison of water sampling between environmental DNA metabarcoding and conventional microscopic identification: A case study in Gwangyang Bay, South Korea. Appl. Sci. 2019, 9, 3272. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-K.; Jo, H.; Park, K.; Kwak, I.-S. Assessing spatial distribution of benthic macroinvertebrate communities associated with surrounding land cover and water quality. Appl. Sci. 2019, 9, 5162. [Google Scholar] [CrossRef] [Green Version]
- Park, K.; Kim, W.-S.; Kwak, I.-S. Effects of di-(2-ethylhexyl) phthalate on transcriptional expression of cellular protection-related HSP60 and HSP67B2 genes in the mud crab Macrophthalmus japonicus. Appl. Sci. 2020, 10, 2766. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwak, I.-S.; Park, Y.-S. Food Chains and Food Webs in Aquatic Ecosystems. Appl. Sci. 2020, 10, 5012. https://doi.org/10.3390/app10145012
Kwak I-S, Park Y-S. Food Chains and Food Webs in Aquatic Ecosystems. Applied Sciences. 2020; 10(14):5012. https://doi.org/10.3390/app10145012
Chicago/Turabian StyleKwak, Ihn-Sil, and Young-Seuk Park. 2020. "Food Chains and Food Webs in Aquatic Ecosystems" Applied Sciences 10, no. 14: 5012. https://doi.org/10.3390/app10145012
APA StyleKwak, I. -S., & Park, Y. -S. (2020). Food Chains and Food Webs in Aquatic Ecosystems. Applied Sciences, 10(14), 5012. https://doi.org/10.3390/app10145012