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Abstract: This paper presents results produced by a domain-independent system development
model that enables objective and quantitative calculation of certain development cycle characteristics.
The presentation recounts the model’s motivation and includes an outline of the model’s structure.
The outline shows that the model is constructive. As such, it provides an explanatory mechanism
for the results that it produces, not just a representation of qualitative observations or measured
data. The model is a Statistical Agent-based Model of Development and Evaluation (SAbMDE);
and it appears to be novel with respect to previous design theory and methodology work. This paper
focuses on one development cycle characteristic: resource utilization. The model’s resource estimation
capability is compared to Boehm’s long-used software development estimation techniques. His Cone
of Uncertainty (COU) captures project estimation accuracy empirically at project start but intuitively
over a project’s duration. SAbMDE calculates estimation accuracy at start up and over project
duration; and SAbMDE duplicates the COU’s empirical values. Additionally, SAbMDE produces
results very similar to the Constructive Cost Model (COCOMO) effort estimation for a wide range of
input values.

Keywords: resource estimation; design theory and methodology; decision theory; COCOMO

1. Introduction

A development cycle model represents the phases of system and/or product development. There
are many such models currently in use. For example, Microsoft offers their Security Development
Lifecycle [1,2]. The National Institute of Standards and Technology (NIST) and other government
organizations specify standards and instructions [3,4] that are necessarily incorporated by industry [5,6].
Researchers such as [7], have often enumerated and compared various methodologies. However,
all these models and methodologies represent a developer’s effort to convert an idea into an end
product. The models describe the intermediate requirement, design, and implementation phases as
well as the testing phase that maintains the integrity of the conversion process. Figure 1 illustrates this
representation in broad terms.

The conventional models are usually expressed as best practices, guidance, and policies [8,9].
For that reason, the models’ effectiveness depends strongly on the skill and will of the developers
who interpret and execute the models [10]. The models are qualitative; it is difficult to apply them
objectively and consistently. Many quantitative function- and/or phase-specific sub-models exist:
software reliability growth modes (SRGM) [11], technical debt [12], run-time behavior extraction [13,14],
and more. However, the sub-models typically measure output from an existing system. Consequently,
they analyze history rather than predict possibilities. In addition, the sub-models represent
development phases differently, so differently that the idea of an end-to-end development cycle model
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has seemed out of reach. Even so, there is some consensus in the design theory and methodology
(DTM) community that a phase-independent underlying model exists. The literature reviews [15,16]
state this consensus; and [17] describes the evolution of that consensus. There is also evidence of this
thinking outside of the DTM community. For example, while formulating a theoretical foundation
for building construction, Antunes and Gonzalez [18] state, “In this research, construction is not
restricted to civil engineering and architecture, but comprehends a broader understanding of building,
putting up, setting up, establishing and assembling. Construction is the materialization of a concept
through design, taking into account functional requirements and technical specifications for a project
product utilizing specialized labour.” Antunes and the Statistical Agent-based Model of Development
and Evaluation (SAbMDE) both envision underlying domain-independent models. The Defense
Advanced Research Projects Agency (DARPA) is one of the organizations that fuels renewed interest
in the underlying model by soliciting the research results [19–22] that such a model might promise.
The increasing complexity of modern systems [23,24] is a major reason for the renewal.

Figure 1. Development modeling framework.

2. Proposed Model

Figure 1 also illustrates an underlying model candidate: the Statistical Agent-based Model of
Development and Evaluation (SAbMDE). SAbMDE joins with those [25] who accept development
as an inherently human process and builds on a neuroscience foundation [26–28] of agent mind,
body, and environment interaction. SAbMDE then uses process algebra ideas, such as Wang’s [29,30],
to represent each development phase so that analytical techniques can be uniformly applied across the
entire development cycle. Wang has shown [31] that a desired end product (DEP) can be developed by
sequentially composing intermediate products (IP) from sets of fundamental composable elements:
processes and relations. SAbMDE introduces an agent who decides which elements to compose.
A correct decision set produces a sequence of compositions that become an end product, hopefully,
the DEP. SAbMDE recognizes (a) that each decision is one of a set of alternatives, (b) that the hierarchical
super-set of alternatives forms a development space (DSpace), and (c) that the correct DEP decision
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set is the best of many development paths (DPaths) through DSpace. The model’s foundation reflects
itself in this representation via three inter-related sub-models: Agent, Development, and Evaluation.
Model D houses the algorithms and structures that quantitatively define DSpace as well as the tools
for DSpace navigation and traversal. Model E contains the testing and evaluation mechanism that
informs the decisions that compel DSpace compositions. Model A emulates a development agent’s
perception, experience, vocabulary, and other human factors needed to create the Model E tests
and to evaluate their results. Because each DSpace composition is connected by a decision to an
evaluation of test results, there is an ESpace that mirrors DSpace. Because each ESpace test and/or
evaluation maps to an agent’s perception and vocabulary, there is an ASpace that mirrors ESpace.
These spaces, generically XSpaces, have the same form and share a mathematical description. When
executed together, Models A, D, and E represent a development cycle quantitatively and flexibly. This
capability allows SAbMDE to hypothesize that DSpace characteristics constrain and guide an agent’s
decision-making in ways that conventional development cycle models can not. SAbMDE constructs
DSpace from sets of composable elements: vocabulary items, V, and relations, R. For example, (1) and
(2) are the basis of the simple DSpace fragment in Figure 2. Composable elements are supplied directly
by an agent or extracted from documents by simple parsing or more sophisticated techniques such as
those applied by Park and Kim [32].

V = {v0, v1, v2, v3} (1)

R = {r0} (2)

The construction begins at composition index 0 (l = 0) with an empty set. Construction continues
by enumerating the composable elements at l = 1, and then by using the cross-product operator to
compose all the combinations of composable elements for l > 1. As a result, at every DSpace node
(DNode) for l > 1, an agent decision-maker has exactly |V||R| options from which to choose. Note
that at l = 1, only the vocabulary items are listed because composition is the same as vocabulary
item selection at this composition index; relations have been enumerated but not applied. DSpace is
characterized by the choice of composable elements, the numbers of types of composable elements,
|V| and |R|), and the number of compositions, L, required to produce the DEP.

Figure 2. A simple development space (DSpace) excerpt with highlighted development paths (DPaths).
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A development agent navigates or traverses DSpace by deciding which DNode to compose next.
Figure 2 shows a DPath. Note that the DPath is not a direct one. The decision to traverse to DNode e
was a mistake that had to be corrected. An evaluation of DNodes f and k confirmed the error. Thus,
the actual DPath is contorted. At each DNode, the structure of DSpace offers a probability floor for the
agent’s likelihood of making a successful decision, i.e., one that leads to the DEP. Those floor values
are defined by (3)–(5); and they correspond to random choices. In real situations, agents act with some
level of skill. To recognize this skill, the DNode probabilities are scaled with a 0–10 (random–perfect)
index, fs, as in (6).

p(l) =



0 , l= 0

1
|V| , l= 1

1
|V||R| , l >1

(3)

u =
1
|V| (4)

q =
1

|V||R| =
1
Q

(5)

p = x +
fs

10
(1− x), fs = 0, 1, ...10 and x = u or q (6)

With this brief outline and with the details to follow, SAbMDE proposes to quantitatively model
development processes. This paper supports that proposal by focusing on one aspect of that modeling:
resource estimation.

3. Related Work

Resource estimation is critical to any project management effort; and, as might be expected, there
is a rich history of modeling efforts to make estimates accurately and efficiently. This is certainly true
in the software development domain. Several researchers, e.g., [33–36], have compared, cataloged,
and categorized the various software estimation methods. The categories include model-based,
expertise-based, learning-oriented, dynamics-based, regression, and Bayesian. Over time, researchers
have explored these techniques extensively. Trendowicz has even defined a set of requirements that
should be considered when selecting an estimation method. Having done so, he states, “An analysis
of existing estimation methods with respect to industrial objectives and derived requirements indicates a few
leading methods that meet most of the requirements; although no single method satisfies all requirements.”

Unfortunately, the results of the researchers’ comparisons are also not encouraging. For example,
Trendowicz [34] concludes, “The discrepancy between what is needed by the software industry and what
is actually provided by the research community indicates that further research should, in general, focus on
providing estimation methods that keep up with current industrial needs and abilities.” And, Boehm et al. [33]
conclude, “The important lesson to take from this paper is that no one method or model should be preferred over
all others. The key to arriving at sound estimates is to use a variety of methods and tools and then investigating
the reasons why the estimates provided by one might differ significantly from those provided by another.” Basha
and Dhavachelvan [37] agree with Boehm: “The primary conclusion is that no single technique is best
for all situations, and that a careful comparison of the results of several approaches is most likely to produce
realistic estimates.”

Vera et al. [35] approach the estimation method selection problem from a different angle. They
attempt to identify a taxonomy so that would-be estimators can speak clearly about the methodological
options available to them. In answer to their first research question (RQ1) about Software Development
Estimation (SDEE), they conclude, “Concerning the RQ1 this work determined that there is not a widely
accepted taxonomy, since there are too many relevant and almost independent criteria to classify the SDEE
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techniques. Moreover, the hierarchical structure used to represent the taxonomies is not much useful to help
identify clusters of techniques potentially useful for a software organization. This is probably true also to organize
the knowledge in this study domain.”

There appears to be a consensus that the state-of-the-art of software effort estimation is not ideal.
The implication is that a better effort estimation method is needed.

4. Results

This paper hypothesizes that one characteristic of the proposed model is the ability to compute
the effort required to complete a project. In the language of the proposed model, completing a project is
traversing a DSpace along a DPath that leads to a DEP. This section derives and describes the methods
and calculations needed to make the traversal. After this section, the calculations are discussed; and
then conclusions are drawn.

The estimation calculations are presented in four parts. First is the definition of the components
of a resource estimation calculation: DSpace traversal, a pricing scheme, and the cost computation
procedure. Then, SAbMDE resource estimation results are compared to the empirically-derived
Constructive Cost Model (COCOMO) [38] effort estimation results.

4.1. DSpace Traversal

The ideal traversal of a DSpace to a specified DEP requires a sequence of L correct composition
decisions. What is an agent’s likelihood of making L correct decisions in a row? The structure of
DSpace is a graph, a tree, that defines the minimal probability of a correct decision. At any DNode,
that probability is the inverse of an agent’s choice of DPath alternatives as in (3). Because, at each
DNode, an agent’s next-node traversal decision is independent of any previous such decision [39],
a DPath can be treated like a Markov Chain. The Markov Chain probability is described by (7) and,
after insertion of (3), by (8).

p(L) = p(1)
L

∏
l=2

p(l|(l − 1))) (7)

p(l) = |V|(−2l+1)|R|(−2l+3) (8)

After substitution of simplifying transforms, (4) and (5), the Markov Chain probability becomes (9).

p(l) = u2q(2l−3) (9)

Figure 3 is a graph of (9) scaled with (6). It shows that, in all but the case of the perfect
decision-maker, the likelihood of successfully traversing a DEP DPath is low. Even the skill index
9 agent has only a 50% chance of getting four sequential decisions correct. It is clear that every
agent that attempts a DSpace traversal will make mistakes, some more than others. This is not an
unexpected result. One implication is that only agents with maximum skill should be decision-makers.
Another implication is that whatever method an agent uses to make a decision should be re-calibrated
frequently to prevent the agent from sliding down the multi-decision probability curve.
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Figure 3. Probability of sequential decision success.

4.2. SAbMDE Resource Utilization

Begin an estimate of the resource utilization associated with a DPath by assigning a price to each
vocabulary item and relation. Then, with an appropriate function, assign a price to the act of their
composition. Similarly, assign a price to their decomposition. The definitions and equations below
describe a simple pricing system.

Pv = vocabulary item price, actual or normalized

Pr = relation price, actual or normalized

gcp(Pv, Pr) = composition pricing function

gdp(Pv, Pr) = decomposition pricing function

fb = backtrack factor

lb = backtrack length

n = number of decision re-tries

gcp(Pv, Pr) = (Pv + Pr) (10)

gdp(Pv, Pr) = fbgcp(Pv, Pr) (11)

P = gcp + (n− 1)lbgdp (12)

Finally, calculate a DPath’s resource utilization by summing the composition prices for each
product in the DPath. Such a summation for as-yet untraversed portions of the DPath is an estimate of
the resources to be utilized. As noted previously, only a perfect agent can make the perfect decision
set to reach a DEP. All other agents will make incorrect decisions. Of course, agents must attempt to
complete a project; so when an agent discovers an incorrect decision, they will likely undo that decision
and try again. The number of retries is a function of the agent’s skill index and the number of alternative
choices as defined by the DSpace. An agent retries by selecting one of the alternatives, evaluating the
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selection, and again discarding incorrect selections. The hypergeometric distribution [40] in (13) can
describe this process.

pc(km) =

(
KM
km

)(
M− KM
m− km

)
(

M
m

) (13)

where
M = |V||R|, KM = Mpskill , km = 0

The (13) variables are interpreted as follows. For each skill index, there is a probability, pskill ,
of making a correct decision. For a decision population size, M, pskill is equivalent to having a correct
decision population size, KM. Given these values, the hypergeometric distribution can calculate the
probability that a sample of size m will have km correct decisions. Setting km = 0 and choosing a
small probability criterion, pc(km), corresponds to calculating an upper limit on the number of retries,
n = km, that will guarantee a correct decision. Table 1 is an excerpted example of this calculation
for a pskill corresponding to skill index=0, M = 100, KM = 1, and a 0.1 probability criterion, pc(km).
The table shows that as many as 90 retries are required to ensure a 90% chance of decision success.

Table 1. Hypergeometric retry count example.

n P(n)
1 0.99
2 0.98
3 0.97
— —
88 0.12
89 0.11
90 0.10
91 0.09
92 0.08

When an agent makes an incorrect decision, the agent may continue on the incorrect DPath for
some number of compositions. Once the error is discovered, the agent will likely return to the last
correct decision and retry; and the no longer needed compositions will be decomposed during the
return trip. Equations (11) and (12) handle the added resource utilization with the backtrack length
and backtrack factor parameters. The latter assumes that the price of composition and decomposition
differ. Figure 4 shows resource utilization estimates calculated as described above. These estimates
were calculated using skill index 7, with vocabulary item and relation prices of 1 and 10, respectively,
and with backtrack length and backtrack factor values of 1 and 1.5, respectively. In keeping with the
last Markov Chain implication noted above, estimates are repeated at each composition index of the
20-composition project.

For each graph trace, the resource utilization value on the far right (l = 19) is the estimate for the
remainder of the project as viewed from the composition index of the origin of the trace. When only
those far right values were plotted as a function of their origins (l = 0, 1, 2, . . . ), they appear as shown
in Figure 5 which includes estimates for each skill index.

Table 2 shows that, at composition index 0, the high skill index estimate values are approximately
16 times the low estimate values. The Figure 5 estimates were computed with vocabulary item and
relation prices of 5 and 8 respectively. Figure 6 shows the 16:1 skill indices computed for other prices.
It shows that these indices vary only slightly with price, and even then, only at the smallest prices.
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Figure 4. Cumulative resource utilization as estimated from each composition index (l).

Figure 5. Cumulative resource utilization.

Table 2. 16:1 Estimate Ratios by Skill Index.

Low Skill Index
High Skill Index

10.00 9.25 9.00 8.00
0.00 111.00 38.50 21.00
1.00 111.00 38.50 21.00
1.33 16.00
1.82 16.00
2.00 31.00 16.00 11.00 6.00



Appl. Sci. 2020, 10, 5013 9 of 16

Figure 6. Skill Indices for 16:1 estimate ratios by price.

When the 16:1 ratio skill index calculation is done with fixed price but with varying backtrack
parameter values, as in Table 3, there is also only a slight variation.

Table 3. 16:1 Estimate Ratios by Backtrack Parameters.

Backtrack Factor
Backtrack Length
1 2 3

0.00 10.26 9.82 9.67
0.10 10.18 9.78 9.64
0.25 10.08 9.73 9.61
0.50 9.96 9.67 9.57
0.75 9.88 9.63 9.54
1.00 9.82 9.60 9.52
1.50 9.73 9.55 9.49
2.00 9.67 9.52 9.47
3.00 9.60 9.49 9.45
4.00 9.55 9.46 9.43
5.00 9.52 9.45 9.42

The 16:1 ratio of high to low estimate values as a function of skill index, as revealed by the effort
estimation procedure, appears to be a nearly invariant characteristic of DSpace.

4.3. COCOMO Effort Estimation

The 16:1 ratio is noteworthy because it is very similar to empirical data captured in Boehm’s [41]
(p. 311) Cone of Uncertainty (COU). This similarity encourages additional comparison with COCOMO
estimation [38]. Equations (14) and (15) are the COCOMO effort estimation formula that computes the
Person-Months (PM) required by a project. The formula is an exponential regression curve based on
code size and other variables derived from analysis of project data. Code size, Size, is measured in
thousands of lines of source code (KLOC).

PMNS = A(SizeE)
nh

∏
i=1

EMi (14)

where E = B + 0.01
5

∑
j=1

SFj (15)

The project-related Scale Factors (SF) and the developer-related Effort Multipliers (EM) are
computed from subjective data. An estimator observes, surveys, and otherwise gathers data that is
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then ranked with the scales in Tables 4 and 5. The regression parameters A through E calibrate the
model to the available data. Tables 6 and 7 show values calibrated to the COCOMO data set.

Table 4. COCOMO Scale Factors.

Scale Factors
Scale Factor Range

Very Low Low Normal High Very High Extra High
PREC 6.20 4.96 3.72 2.48 1.24 0.00
FLEX 5.07 4.05 3.04 2.03 1.01 0.00
RESL 7.07 5.65 4.24 2.83 1.41 0.00

TEAM 5.48 4.38 3.29 2.19 1.10 0.00
PMAT 7.80 6.24 4.68 3.12 1.56 0.00
Sum 31.62 25.28 18.97 12.65 6.32 0.00

Table 5. COCOMO Effort Multipliers.

Effort Multipliers
Effort Multiplier Range

Very Low Low Normal High Very High
ACAP 1.42 1.19 1.00 0.85 0.71
PCAP 1.34 1.15 1.00 0.88 0.08
PCON 1.29 1.12 1.00 0.90 0.81
APEX 1.22 1.10 1.00 0.88 0.81
PLEX 1.19 1.09 1.00 0.91 0.85
LTEX 1.20 1.09 1.00 0.91 0.84

Others 1.00 1.00 1.00 1.00 1.00
Product 4.28 2.00 1.00 0.49 0.03

Table 6. COCOMO Regression Parameters A–D.

Names Values
KLOC 100

A 2.94
B 0.91
C 3.67
D 0.28

Table 7. COCOMO Regression Parameters SF, EM, and E ranges.

Names
Values

Min(Effort) Max(Effort)
Effort Multipliers 4.28 0.03

Scale Factors 31.62 6.32
E 1.23 0.97

Figure 7 shows COCOMO estimates calculated with the parameters above and for a range of code
sizes. In anticipation of comparison with SAbMDE estimates, only the upper limit estimate values,
those for E = 1.23, were plotted.
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Figure 7. Constructive Cost Model (COCOMO) effort estimation for various program sizes measured
in thousands of lines of source code (KLOC).

4.4. SAbMDE–COCOMO Comparison

The successful comparison of SAbMDE resource utilization and COCOMO effort estimates
requires a slight adjustment of the independent variable that indexes the SAbMDE resource utilization
values. For SAbMDE, skill index = 0 indicates that an agent makes random composition decisions;
whereas skill index = 10 indicates perfect decisions. However, for COCOMO, skill index = 0 indicates
a minimal (non-random) level of skill whereas skill index = 10 indicates a maximum skill level that is
less than perfect. This was described by Boehm [38] (p. 31), e.g., ”Analyst teams that fall in the fifteenth
percentile are rated very low and those that fall in the ninetieth percentile are rated as very high.” To resolve
these scaling differences, SAbMDE skill indices 0 and 10 were removed. SAbMDE skill indices 1 and 9
were matched to COCOMO skill indices 0 and 10; and the remaining SAbMDE skill index intervals
were stretched by 10/8 to fit the new end points. The result of this adjustment is shown in Table 8.
The new 9-point scale now has the same meaning for both SAbMDE and COCOMO estimate values.
Table 8 also shows the corresponding Scaled EM values.

Table 8. Skill Index and COCOMO Regression Parameter E, Adjusted.

Standard
COCOMO

Skill Index Scaled EM
0.00 4.28
1.00 3.85
2.00 3.43
3.00 3.00
4.00 2.58
5.00 2.15
6.00 1.73
7.00 1.30
8.00 0.88
9.00 0.45

10.00 0.03

Truncated
SAbME

Skill Index
1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Adjusted
SAbME COCOMO

Skill Index Scaled EM
0.00 4.28

1.25 3.74

2.50 3.21

3.75 2.68

5.00 2.15

6.25 1.62

7.50 1.09

8.75 0.56

10.00 0.03
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When the Figure 7 COCOMO and SAbMDE estimates are recalculated with their corresponding
adjusted skill indices, the estimates can be compared confidently. The comparison, COCOMO with
SAbMDE estimates overlaid, is shown graphically in Figure 8.

Figure 8. Statistical Agent-based Model of Development and Evaluation (SAbMDE)-to-COCOMO
effort estimation comparison for various KLOC values.

The SAbMDE and COCOMO estimates, Si and Ci, were closely matched by setting initial
composable element prices, gcp(1, 1) from (10), and then incrementally increasing those prices until
the estimates’ mean sum of differences (MSD) were minimized using (16). The minimization was
performed with a simple brute force technique. The minimization target on the right-hand side of (17)
is calculated by applying a minimization criterion, ε, to the mean sum of the COCOMO estimate for a
given KLOC value. For example, ε = 0.1.

msd =
1
N

N

∑
i=0
|Ci − Si| (16)

msd ≤ ε

N

N

∑
i=0
|Ci| (17)

The SAbMDE and COCOMO estimates compare favorably over their common skill index ranges.
They compare even more favorably over a central range, skill index from 3 to 7; and it was this central
range that was used for the MSD matching.

5. Discussion

The estimate correlations are important; but other factors should also be considered. On one
hand, COCOMO is a well thought out curve fit to a well-known, long-used data set. Using COCOMO
is a matter of gathering information about a project in its very earliest stages, casting that data in
terms of the COCOMO regression parameters, and taking into account any differences between the
COCOMO data set projects and the project being estimated. Once this is done, the actual calculation
takes seconds to complete. The results assume that the estimate is made at the beginning of the project.
Also, the results are designed to apply to projects that use the Waterfall or the Spiral development
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methodology [38] (p. 44). On the other hand, using SAbMDE requires an agent to select the number of
compositions to represent the current project at its current maturity level, to enumerate the composable
elements associated with those compositions, and then to assign prices to the composable elements.
Once this is done, the actual calculation takes seconds to complete. The calculation can adjusted easily
as the current project evolves. An estimate can be performed as frequently as needed. The results
are methodology-agnostic. SAbMDE is a work in progress. Further mathematical and software
development is necessary. Although the model reproduces COCOMO results quite well and has
been shown to match certain accepted characteristics of other design theories, additional validation is
necessary and underway. Because the modeling concept is new and because user interface requirements
are challenging, practical deployment of the model could be problematic; however, these issues are
being given due consideration.

6. Conclusions

The focus of this work has been development resource estimation. This work has demonstrated
that a constructive technique for estimating development resource utilization is possible and that it
produces results very similar to the COCOMO technique currently used for software development.
A constructive technique has the advantage of allowing its user to understand the mechanism by
which its results were generated. However, SAbMDE has demonstrated several additional benefits.
It calculates using the current project’s characteristics, not historical values of other projects. It can be
applied and re-applied throughout the development cycle to ensure use of the most current project
data. It identifies project prediction limits and calculates project resource utilization bounds. Its input
can be captured more objectively. SAbMDE does not depend on a specific development methodology.
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Abbreviations

The following nomenclature is used in this manuscript:

Symbols Definitions

Ci COCOMO estimate values

ε msd minimization criterion

fb backtrack factor, the ratio of decomposition to composition price

fs skill index value

gcp function that computes the price of composition

gdp function that computes the price of decomposition

km hypergeometric distribution tagged sample size

KM hypergeometric distribution tagged population size

l composition index

lb
backtrack length, the number of incorrect compositions performed after a bad
decision and prior to recognition of that bad decision; conversely, the number of
decompositions required to be back on track.

L number of composition levels needed to compose a DEP

msd mean sum of differences

m hypergeometric distribution sample size
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M hypergeometric distribution population size

n number of retries needed to select the correct DNode

N number of skill index values over which msd summation is averaged

p generic probability variable

pc hypergeometic distribution decision probability criterion

Pr relation price

pskill probability associated with a skill index value

Pv vocabulary item price

q probability associated with DNode selection

Q product of V and R

R set of relations

r member of the set of relations

Si SAbMDE estimate values

skill, skillindex index with range [0,10] that ranks an agent’s skill level, see fs

u probability associated with vocabulary item selection

v member of the set of vocabulary items

V set of vocabulary items

x placeholder variable
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