Modeling the Long-Term Deformation of a Geodesic Spherical Frame Structure Made from Wood Plastic Composite Lumber
Abstract
:1. Introduction
2. Experimental
2.1. Material
2.2. WPC Specimen Preparation
2.3. Quasi-Static Testing
2.4. 200-Day Creep Experimental Setup
2.5. Finite Element Modeling of Time-Dependent Deformation of WPC Specimens
3. Results and Discussions
3.1. Application of 1D Norton-Bailey Time-Hardening Power Law
3.2. Modeling the Long-Term Deformation of an Aquacultural Geodesic Spherical Rigid Frame Structure Made from WPC Lumber
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Slaughter, A.E. Design and Fatigue of a Structural Wood-Plastic Composite. Master’s Thesis, Washington State University, Pullman, WA, USA, 2004. [Google Scholar]
- Alvarez-Valencia, D.; Dagher, H.J.; Davids, W.G.; Lopez-Anido, R.A.; Gardner, D.J. Structural performance of wood plastic composite sheet piling. J. Mater. Civ. Eng. 2010, 22, 1235–1243. [Google Scholar] [CrossRef]
- Gardner, D.; Han, Y. Towards structural wood-plastic composites: Technical innovations. In Proceedings of the 6th Meeting of the Nordic-Baltic Network in Wood Material Science and Engineering (WSE), Tallinn, Estonia, 21–22 October 2010. [Google Scholar]
- Haiar, K.J. Performance and Design of Prototype Wood-Plastic Composite Sections. Master’s Thesis, Washington State University, Pullman, WA, USA, 2000. [Google Scholar]
- Hamel, S.E. Modeling the Time-Dependent Flexural Response of Wood-Plastic Composite Materials. Ph.D. Thesis, University of Wisconsin-Madison, Madison, WI, USA, 2011. [Google Scholar]
- Dura, M.J. Behavior of Hybrid Wood Plastic Composite-Fiber Reinforced Polymer Structural Members for Use in Sustained Loading Applications. Bachelor’s Thesis, The University of Maine, Orono, ME, USA, 2005. Available online: https://digitalcommons.library.umaine.edu/etd/853 (accessed on 15 December 2019).
- Kahl, M. Structural Design of Hollow Extruded WPC Sheet Piling. Bachelor’s Thesis, The University of Maine, Orono, ME, USA, 2006. Available online: https://digitalcommons.library.umaine.edu/etd/117 (accessed on 23 November 2019).
- Bright, K.D.; Smith, P.M. Perceptions of new and established waterfront materials by US marine decision makers. Wood Fiber Sci. 2007, 34, 186–204. [Google Scholar]
- Tamrakar, S.; Lopez-Anido, R.A. Water absorption of wood polypropylene composite sheet piles and its influence on mechanical properties. Constr. Build. Mater. 2011, 25, 3977–3988. [Google Scholar] [CrossRef]
- Alrubaie, M.A.A.; Lopez-Anido, R.A.; Gardner, D.J.; Tajvidi, M.; Han, Y. Experimental investigation of the hygrothermal creep strain of wood–plastic composite lumber made from thermally modified wood. J. Thermoplast. Compos. Mater. 2019. [Google Scholar] [CrossRef]
- Alrubaie, M.A.A.; Lopez-Anido, R.A.; Gardner, D.J.; Tajvidi, M.; Han, Y. Modeling the hygrothermal creep behavior of wood plastic composite (WPC) lumber made from thermally modified wood. J. Thermoplast. Compos. Mater. 2019. [Google Scholar] [CrossRef]
- Alrubaie, M.A.A.; Lopez-Anido, R.A.; Gardner, D.J. Flexural Creep Behavior of High-Density Polyethylene Lumber and Wood Plastic Composite Lumber Made from Thermally Modified Wood. Polymers 2020, 12, 262. [Google Scholar] [CrossRef] [Green Version]
- Alrubaie, M.A. Investigating the Time-dependent and the Mechanical Behavior of Wood Plastic Composite Lumber Made from Thermally Modified Wood in the Use of Marine Aquacultural Structures. Bachelor’s Thesis, The University of Maine, Orono, ME, USA, 2019. Available online: https://digitalcommons.library.umaine.edu/etd/3026 (accessed on 16 April 2020).
- Gardner, D.J. Development of Structural Wood Plastic Composite Timber for Innovative Marine Application, in Research Reinvestment Funds (RRF) Seed Grant Program; The University of Maine: Orono, ME, USA, 2015; p. 23. [Google Scholar]
- DeCew, J.; Tsukrov, I.; Risso, A.; Swift, M.R.; Celikkol, B. Modeling of dynamic behavior of a single-point moored submersible fish cage under currents. Aquac. Eng. 2010, 43, 38–45. [Google Scholar] [CrossRef]
- Fredriksson, D.W.; Swift, M.R.; Irish, J.D.; Tsukrov, I.; Celikkol, B. Fish cage and mooring system dynamics using physical and numerical models with field measurements. Aquac. Eng. 2003, 27, 117–146. [Google Scholar] [CrossRef]
- Fredriksson, D.W.; DeCew, J.C.; Tsukrov, I. Development of structural modeling techniques for evaluating HDPE plastic net pens used in marine aquaculture. Ocean Eng. 2007, 34, 2124–2137. [Google Scholar] [CrossRef]
- Fredriksson, D.W.; DeCew, J.; Swift, M.R.; Tsukrov, I.; Chambers, M.D.; Celikkol, B. The Design and Analysis Of A Four-Cage Grid Mooring For Open Ocean Aquaculture. Aquac. Eng. 2004, 32, 77–94. [Google Scholar] [CrossRef]
- DeCew, J.; Celikkol, B.; Baldwin, K.; Chambers, M.; Irish, J.; Swift, M.R.; Tsukrov, I. Assessment of a Mooring System for Offshore Aquaculture. World Aquac. 2012, 43, 32. [Google Scholar]
- Decew, J. Development of Engineering Tools to Analyze and Design Flexible Structures in Open Ocean Environments; University of New Hampshire: Durham, NH, USA, 2011. [Google Scholar]
- Vandenbroucke, K.; Metzlaff, M. Abiotic Stress Tolerant Crops: Genes, Pathways and Bottlenecks. Sustain. Food Prod. 2013, 1–17. [Google Scholar] [CrossRef]
- InnovaSea Systems, Inc. A 4700 Bridle System in Grid Mooring Cell. 2016. Available online: www.innovasea.com (accessed on 17 September 2017).
- InnovaSea Systems, Inc. Report on Structural Damage to A4800 AquaPod; InnovaSea Inc.: Morrill, ME, USA, 2015. [Google Scholar]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Ilyas, R.A. Woods and composites cantilever beam: A comprehensive review of experimental and numerical creep methodologies. J. Mater. Res. Technol. 2020, 9, 6759–6776. [Google Scholar] [CrossRef]
- Sepiani, H.; Polak, M.A.; Penlidis, A. Modeling short- and long-term time-dependent nonlinear behavior of polyethylene. Mech. Adv. Mater. Struct. 2018, 25, 600–610. [Google Scholar] [CrossRef]
- Tamrakar, S.; Lopez-Anido, R.A.; Kiziltas, A.; Douglas, J.G. Time and temperature dependent response of a wood–polypropylene composite. Compos. Part A Appl. Sci. Manuf. 2011, 42, 834–842. [Google Scholar] [CrossRef]
- Barbero, E.J. Finite Element Analysis of Composite Materials Using AbaqusTM; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- De Luca, V.; Della Chiesa, A. A creep non-linear FEM analysis of glulam timber. Mech. Adv. Mater. Struct. 2013, 20, 489–496. [Google Scholar] [CrossRef]
- Betten, J. Creep Mechanics; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- May, D.; Gordon, A.; Segletes, D. The application of the Norton-Bailey law for creep prediction through power law regression. In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition; American Society of Mechanical Engineers: San Antonio, TX, USA, 2013. [Google Scholar]
- Ouyang, F. Abaqus Implementation of Creep Failure in Polymer Matrix Composites with Transverse Isotropy. Master’s Thesis, Master of Science, University of Akron, Akron, OH, USA, 2005. [Google Scholar]
- Page, S.H. Aquapod Systems aquaculture Aquapod systems for Sustainable Ocean Aquaculture Aquaculture. Sustain. Food Prod. 2013, 223–235. [Google Scholar] [CrossRef]
- Alrubaie, M.A.A.; Gardner, D.J.; Lopez-Anido, R.A. Structural performance of HDPE and WPC lumber components used in aquacultural geodesic spherical cages. Polymers 2020, 12, 26. [Google Scholar] [CrossRef] [Green Version]
- Hou, H.M.; Xu, T.J.; Dong, G.H.; Zhao, Y.P.; Bi, C.W. Time-dependent reliability analysis of mooring lines for fish cage under corrosion effect. Aquac. Eng. 2017, 77, 42–52. [Google Scholar] [CrossRef]
- Drach, A.; Tsukrov, I.; DeCew, J.; Celikkol, B. Engineering procedures for design and analysis of submersible fish cages with copper netting for exposed marine environment. Aquac. Eng. 2016, 70, 1–14. [Google Scholar] [CrossRef]
- Gansel, L.C.; Oppedal, F.; Birkevold, J.; Tuene, S.A. Drag forces and deformation of aquaculture cages—Full-scale towing tests in the field. Aquac. Eng. 2018, 81, 46–56. [Google Scholar] [CrossRef]
- DeCew, J.; Fredriksson, D.W.; Lader, P.F.; Chambers, M.; Howell, W.H.; Osienki, M.; Høy, E. Field measurements of cage deformation using acoustic sensors. Aquac. Eng. 2013, 57, 114–125. [Google Scholar] [CrossRef]
- Lader, P.; Dempster, T.; Fredheim, A.; Jensen, Ø. Current induced net deformations in full-scale sea-cages for Atlantic salmon (Salmo salar). Aquac. Eng. 2008, 38, 52–65. [Google Scholar] [CrossRef]
- Huang, C.-C.; Tang, H.-J.; Liu, J.-Y. Modeling volume deformation in gravity-type cages with distributed bottom weights or a rigid tube-sinker. Aquac. Eng. 2007, 37, 144–157. [Google Scholar] [CrossRef]
- Zhao, Y.P.; Li, Y.C.; Dong, G.H.; Gui, F.K.; Teng, B. Numerical simulation of the effects of structure size ratio and mesh type on three-dimensional deformation of the fishing-net gravity cage in current. Aquac. Eng. 2007, 36, 285–301. [Google Scholar] [CrossRef]
- Hamel, S.E.; Hermanson, J.C.; Cramer, S.M. Predicting the flexure response of wood-plastic composites from uni-axial and shear data using a finite-element model. J. Mater. Civ. Eng. 2014, 26, 04014098. [Google Scholar] [CrossRef]
- ASTM International. ASTM International. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastic Lumber and Related Products, D6109-13; ASTM: West Conshohocken, PA, USA, 2013. [Google Scholar]
- ASTM International. Standard Specification for Evaluation of Duration of Load and Creep Effects of Wood and Wood-Based Products, D6815-09 (Reapproved 2015); ASTM: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Tumur-Ochir, E.; Jeon, C.H.; Yum, Y.J.; Kim, Y.S. Experimental and finite element creep analyses of plastics used in automotive instrument panel. In Proceedings of the 2011 6th International Forum on Strategic Technology, Harbin, China, 22–24 August 2011. [Google Scholar]
- Finck, D.; Seidel, C.; Hausmann, J.; Rief, T. Creep-Induced Screw Preload Loss of Carbon-Fiber Sheet Molding Compound at Elevated Temperature. Materials 2019, 12, 3598. [Google Scholar] [CrossRef] [Green Version]
- Mayookh Lal, H.; Xian, G.; Thomas, S.; Zhang, L.; Zhang, Z.; Wang, H. Experimental Study on the Flexural Creep Behaviors of Pultruded Unidirectional Carbon/Glass Fiber-Reinforced Hybrid Bars. Materials 2020, 13, 976. [Google Scholar] [CrossRef] [Green Version]
- Abaqus/CAE. Computer Software; SIMULIA Inc.: Providence, RI, USA, 2017. [Google Scholar]
- BAHEI-EL-DIN, Y.A. Finite Element Analysis of Viscoplastic Composite Materials and Structures. Mech. Compos. Mater. Struct. Int. J. 1996, 3, 1–28. [Google Scholar] [CrossRef]
- Dassault Systems. Abaqus User Manual/Viscoelasticity. 2002–2018 December 2018. Available online: https://www.3ds.com/products-services/simulia/products/abaqus/abaquscae/ (accessed on 23 June 2019).
- Mandalapu, H.; Karanamsetty, S. Parameter Analysis of Creep Models of PP/CaCo3 Nanocomposites. Master’s Thesis, Master of Mechanical Engineering, Blekinge Institute of Technology, Karlskrona, Sweden, 2007. [Google Scholar]
- Lucas, G.E.; Pelloux, R.M.N. Some Observations on Time-Hardening and Strain-Hardening Rules for Creep in Zircaloy-2. Nucl. Technol. 1981, 53, 46–57. [Google Scholar] [CrossRef]
- León, E.P.; Rodríguez-Castellanos, A.; Flores-Guzmán, N.; Olivera-Villaseñor, E. Combined plasticity and creep analysis in 2D by means of the boundary element method. Eng. Anal. Bound. Elem. 2013, 37, 1436–1444. [Google Scholar] [CrossRef]
(mm/mm) | 0.0015 |
(mm/mm) | 0.0013 |
(day) | 78.6 |
(day) | 14 |
(Mpa) | 5.09 |
(MPa) | 3 |
(mm/mm) | 0.0035 |
(day) | 187.5 |
(Mpa) | 11.8 |
A (MPa−nday−m) | 2.414 × 10−7 |
n | 2.2 |
m | −0.8 |
Time (Years) | Number of Elements of the Structure | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
t = 0.125 Day | t = 1 Day | |||||||||
2676 | 2676 | 5100 | 12,876 | 51,552 | ||||||
σ | ε | σ | ε | σ | ε | σ | ε | σ | ε | |
0 | 6.47 | 1.53 | 6.40 | 1.47 | 6.52 | 1.50 | 6.61 | 1.52 | 6.65 | 1.53 |
0.125 | 6.34 | 1.65 | 6.27 | 1.59 | 6.37 | 1.62 | 6.45 | 1.64 | 6.49 | 1.65 |
0.25 | 6.30 | 1.69 | 6.24 | 1.62 | 6.34 | 1.65 | 6.41 | 1.68 | 6.45 | 1.69 |
0.5 | 6.26 | 1.72 | 6.20 | 1.66 | 6.30 | 1.70 | 6.37 | 1.72 | 6.40 | 1.73 |
1 | 6.22 | 1.78 | 6.16 | 1.76 | 6.25 | 1.74 | 6.32 | 1.76 | 6.35 | 1.78 |
1.5 | 6.19 | 1.80 | 6.13 | 1.73 | 6.22 | 1.77 | 6.29 | 1.79 | 6.31 | 1.81 |
2 | 6.17 | 1.82 | 6.16 | 1.76 | 6.20 | 1.79 | 6.27 | 1.82 | 6.28 | 1.83 |
5 | 6.05 | 1.90 | 6.04 | 1.83 | 6.12 | 1.87 | 6.19 | 1.90 | 6.27 | 1.91 |
10 | 5.99 | 1.98 | 5.98 | 1.91 | 6.05 | 1.94 | 6.21 | 1.97 | 6.26 | 1.99 |
Strain Year Interval | Axial Strain Rate Value (mm/mm × 10−3) |
---|---|
ε1year–ε1day | 0.20 |
ε2year–ε1year | 0.10 |
ε5year–ε4year | 0.10 |
ε10year–ε9year | 0.10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrubaie, M.A.A.; Gardner, D.J.; Lopez-Anido, R.A. Modeling the Long-Term Deformation of a Geodesic Spherical Frame Structure Made from Wood Plastic Composite Lumber. Appl. Sci. 2020, 10, 5017. https://doi.org/10.3390/app10145017
Alrubaie MAA, Gardner DJ, Lopez-Anido RA. Modeling the Long-Term Deformation of a Geodesic Spherical Frame Structure Made from Wood Plastic Composite Lumber. Applied Sciences. 2020; 10(14):5017. https://doi.org/10.3390/app10145017
Chicago/Turabian StyleAlrubaie, Murtada Abass A., Douglas J. Gardner, and Roberto A. Lopez-Anido. 2020. "Modeling the Long-Term Deformation of a Geodesic Spherical Frame Structure Made from Wood Plastic Composite Lumber" Applied Sciences 10, no. 14: 5017. https://doi.org/10.3390/app10145017
APA StyleAlrubaie, M. A. A., Gardner, D. J., & Lopez-Anido, R. A. (2020). Modeling the Long-Term Deformation of a Geodesic Spherical Frame Structure Made from Wood Plastic Composite Lumber. Applied Sciences, 10(14), 5017. https://doi.org/10.3390/app10145017