Application of Sterilization Process for Inactivation of Bacillus Stearothermophilus in Biomedical Waste and Associated Greenhouse Gas Emissions
Abstract
:1. Introduction
Greenhouse Gas Emissions
2. Materials and Methods
2.1. Description of the Study Area
2.2. Collection and Transportation of Biomedical Waste
2.3. Sterilization of Biomedical Waste
2.4. Biological and Chemical Testing
2.5. Greenhouse Gas Emissions
3. Results
3.1. Quantification of Biomedical Waste
3.2. Inactivation of Bacillus Stearothermophilus
3.3. Greenhouse Gas Emissions
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Mohee, R. Medical Wastes Characterization in Healthcare Institutions in Mauritius. Waste Manag. (New York, NY) 2005, 25, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Mbongwe, B.; Mmereki, B.T.; Magashula, A. Healthcare waste management: Current practices in selected healthcare facilities, Botswana. Waste Manag. 2008, 28, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Rutala, W.A.; Mayhall, C.G. Medical Waste. Infect. Control Hosp. Epidemiol. 1992, 13, 38–48. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Medical Waste. Available online: http://www.epa.gov/osw/nonhaz/industrial/medical/ (accessed on 2 February 2020).
- TUIK. Turkish Statistical Institute. Available online: www.tuik.gov.tr/ (accessed on 3 February 2020).
- Toktobaev, N.; Emmanuel, J.; Djumalieva, G.; Kravtsov, A.; Schuth, T. An innovative national health care waste management system in Kyrgyzstan. Waste Manag. Res. J. Int. Solid Wastes Public Clean. Assoc. ISWA 2015, 33, 130–138. [Google Scholar] [CrossRef]
- Voudrias, E.; Graikos, A. Infectious Medical Waste Management System at the Regional Level. J. Hazard. Toxic Radioact. Waste 2014, 18, 04014020. [Google Scholar] [CrossRef]
- Karagiannidis, A.; Papageorgiou, A.; Perkoulidis, G.; Sanida, G.; Samaras, P. A multi-criteria assessment of scenarios on thermal processing of infectious hospital wastes: A case study for Central Macedonia. Waste Manag. 2010, 30, 251–262. [Google Scholar] [CrossRef]
- HCWH. Non-Incineration Medical Waste Treatment Technologies in Europe; Health Care without Harm Europe: Prague, Czech Republic, 2004. [Google Scholar]
- WHO. Safe Management of Waste from Health-Care Activities; World Health Organization: Geneva, Switzerland, 1999. [Google Scholar]
- Ananta, E.; Heinz, V.; Schlüter, O.; Knorr, D. Kinetic studies on high-pressure inactivation of Bacillus stearothermophilus spores suspended in food matrices. Innov. Food Sci. Emerg. Technol. 2001, 2, 261–272. [Google Scholar] [CrossRef]
- Rajan, S.; Pandrangi, S.; Balasubramaniam, V.M.; Yousef, A.E. Inactivation of Bacillus stearothermophilus spores in egg patties by pressure-assisted thermal processing. LWT—Food Sci. Technol. 2006, 39, 844–851. [Google Scholar] [CrossRef]
- Iciek, J.; Papiewska, A.; Molska, M. Inactivation of Bacillus stearothermophilus spores during thermal processing. J. Food Eng. 2006, 77, 406–410. [Google Scholar] [CrossRef]
- IPCC. AR4 Climate Change 2007: Mitigation of Climate Change. Available online: https://www.ipcc.ch/report/ar4/wg3/ (accessed on 4 February 2020).
- Yang, D.; Xu, L.; Gao, X.; Guo, Q.; Huang, N. Inventories and reduction scenarios of urban waste-related greenhouse gas emissions for management potential. Sci. Total Environ. 2018, 626, 727–736. [Google Scholar] [CrossRef]
- UNFCC. National Greenhouse Gas Factors 2016. Available online: https://unfccc.int/process/transparency-and-reporting/reporting-and-review-under-the-convention/greenhouse-gas-inventoriesannex-i-parties/national-inventory-submissions-2018 (accessed on 15 March 2020).
- REC. Kocaeli Greenhouse Gas Inventory and Climate Change Action Plan; REC: Kocaeli, Turkey, 2018. [Google Scholar]
- IPCC. IPCC 6th Assessment Report. Available online: https://www.ipcc.ch/assessment-report/ar6/ (accessed on 5 February 2020).
- Yaman, C. Investigation of greenhouse gas emissions and energy recovery potential from municipal solid waste management practices. Environ. Dev. 2020, 33, 100484. [Google Scholar] [CrossRef]
- Korkut, E.N. Estimations and analysis of medical waste amounts in the city of Istanbul and proposing a new approach for the estimation of future medical waste amounts. Waste Manag. 2018, 81, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Fruergaard, T.; Astrup, T.; Ekvall, T. Energy use and recovery in waste management and implications for accounting of greenhouse gases and global warming contributions. Waste Manag. Res. J. Int. Solid Wastes Public Clean. Assoc. ISWA 2009, 27, 724–737. [Google Scholar] [CrossRef] [PubMed]
- IEA. Energy Policies of International Energy Agency Countries 2016 Review Turkey; IEA: Paris, France, 2016. [Google Scholar]
- DOE. Energy Consumption of Die Casting Operations; US Department of Energy: Washington, DC, USA, 2003.
- Mato, R.R.A.M.; Kassenga, G.R. A study on problems of management of medical solid wastes in Dar es Salaam and their remedial measures. Resour. Conserv. Recycl. 1997, 21, 1–16. [Google Scholar] [CrossRef]
- Abu-Qudais, H. Techno-economic assessment of municipal solid waste management in Jordan. Waste Manag. 2007, 27, 1666–1672. [Google Scholar] [CrossRef] [PubMed]
- Liberti, L. Optimization of Infectious Hospital Waste Management in Italy: Part II. Waste Characterization by Origin. Waste Manag. Res. J. Int. Solid Wastes Public Clean. Assoc. ISWA 1996, 14, 417–431. [Google Scholar] [CrossRef]
- Maamari, O.; Mouaffak, L.; Kamel, R.; Brandam, C.; Lteif, R.; Salameh, D. Comparison of steam sterilization conditions efficiency in the treatment of Infectious Health Care Waste. Waste Manag. 2016, 49, 462–468. [Google Scholar] [CrossRef] [Green Version]
- Lemieux, P.; Sieber, R.; Osborne, A.; Woodard, A. Destruction of spores on building decontamination residue in a commercial autoclave. Appl. Environ. Microbiol. 2006, 72, 7687–7693. [Google Scholar] [CrossRef] [Green Version]
- Tiller, T.; Linscott, A. Evaluation of a Steam Autoclave for Sterilizing Medical Waste at a University Health Center. Am. J. Infect. Control 2004, 32, E9. [Google Scholar] [CrossRef]
- Tsakona, M.; Anagnostopoulou, E.; Gidarakos, E. Hospital waste management and toxicity evaluation: A case study. Waste Manag. 2007, 27, 912–920. [Google Scholar] [CrossRef]
- Ferreira, V.; Teixeira, M.R. Healthcare waste management practices and risk perceptions: Findings from hospitals in the Algarve region, Portugal. Waste Manag. 2010, 30, 2657–2663. [Google Scholar] [CrossRef] [PubMed]
- Graikos, A.; Voudrias, E.; Papazachariou, A.; Iosifidis, N.; Kalpakidou, M. Composition and production rate of medical waste from a small producer in Greece. Waste Manag. 2010, 30, 1683–1689. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Santhanam, A.; Nik Norulaini, N.A.; Omar, A.K. Clinical solid waste management practices and its impact on human health and environment—A review. Waste Manag. 2011, 31, 754–766. [Google Scholar] [CrossRef] [PubMed]
- Khadem Ghasemi, M.; Mohd Yusuff, R. Advantages and Disadvantages of Healthcare Waste Treatment and Disposal Alternatives: Malaysian Scenario. Pol. J. Environ. Stud. 2016, 25, 17–25. [Google Scholar] [CrossRef]
- Malakahmad, A.; Abualqumboz, M.S.; Kutty, S.R.M.; Abunama, T.J. Assessment of carbon footprint emissions and environmental concerns of solid waste treatment and disposal techniques; case study of Malaysia. Waste Manag. 2017, 70, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Brown, K.; Ogilvie, S.; Rushton, K.; Bates, J. Waste Management Options and Climate Change. Final Report to the European Commission DG Environment; European Commission: Luxembourg, Luxembourg 2001. [Google Scholar]
- USEPA. A Life-Cycle Assessment of Emission and Sinks. In Solid Waste Management and Greenhouse Gas; USEPA: Washington DC, USA, 2010. [Google Scholar]
- Chen, T.-C.; Lin, C.-F. Greenhouse gases emissions from waste management practices using Life Cycle Inventory model. J. Hazard. Mater. 2008, 155, 23–31. [Google Scholar] [CrossRef]
- Christensen, T.H.; Gentil, E.; Boldrin, A.; Larsen, A.W.; Weidema, B.P.; Hauschild, M. C balance, carbon dioxide emissions and global warming potentials in LCA-modelling of waste management systems. Waste Manag. Res. 2009, 27, 707–715. [Google Scholar] [CrossRef]
- Khan, B.A.; Khan, A.A.; Ali, M.; Cheng, L. Greenhouse gas emission from small clinics solid waste management scenarios in an urban area of an underdeveloping country: A life cycle perspective. J. Air Waste Manag. Assoc. 2019, 69, 823–833. [Google Scholar] [CrossRef]
- Ali, M.; Wang, W.; Chaudhry, N. Application of life cycle assessment for hospital solid waste management: A case study. J. Air Waste Manag. Assoc. 2016, 66, 1012–1018. [Google Scholar] [CrossRef] [Green Version]
- Thorneloe, S.; Weitz, K.; Jambeck, J. Moving from Solid Waste Disposal to Materials Management in the United States. In Proceedings of the Tenth International Waste Management and Landfill Symposium, Cagliari, Italy, 3–7 October 2005. [Google Scholar]
- Weitz, K.; Thorneloe, S.; Nishtala, S.; Yarkosky, S.; Zannes, M. The Impact of Municipal Solid Waste Management on Greenhouse Gas Emissions in the United States. J. Air Waste Manag. Assoc. (1995) 2002, 52, 1000–1011. [Google Scholar] [CrossRef]
- WRAP. Environmental Benefits of Recycling, an International Review of Life Cycle Comparisons for Key Materials in the UK Recycling Sector; WRAP: Banbury, UK, 2006. [Google Scholar]
Health Centers | Number of Beds | Biomedical Waste Amount (kg) | Biomedical Waste Per Bed (kg/bed.year) |
---|---|---|---|
Gebze Fatih | 326 | 112,777 | 1.033 |
Danca Farabi | 350 | 130,433 | 1.039 |
Kocaeli Public | 335 | 137,765 | 1.119 |
Izmit Seka | 305 | 99,950 | 1.235 |
Golcuk Necati Celik | 175 | 60,835 | 0.984 |
Kandira M. Kazim Dinc | 52 | 19,131 | 1.044 |
Korfez | 52 | 17,973 | 1.105 |
Karamursel | 45 | 20,942 | 1.038 |
Dilovasi | 25 | 12,586 | 1.398 |
Anadolu Sağlık Merkezi | 201 | 134,297 | 1.994 |
VM Biomedicalpark | 121 | 75,681 | 2.006 |
Cihan | 120 | 41,534 | 1.878 |
Gebze Biomedicalpark | 118 | 69,980 | 1.039 |
Yuzyıl | 112 | 57,551 | 1.781 |
Akademi | 110 | 34,321 | 1.543 |
Konak | 107 | 30,329 | 0.937 |
Medar Golcuk | 101 | 15,870 | 0.851 |
Korfez Marmara | 79 | 30,264 | 0.472 |
Kocaeli Private | 75 | 27,906 | 1.150 |
Acibadem | 61 | 32,700 | 1.117 |
Gebze Merkez | 56 | 34,487 | 1.610 |
Gebze Medar | 75 | 39,507 | 1.849 |
Romatem Physical Therapy and Rehabilitation (FTR) Hospital | 27 | 1937 | 1.582 |
Hospital Park Darica | 20 | 8898 | 0.215 |
Cagin Goz | 25 | 1972 | 1.336 |
Dunya Goz | 11 | 2062 | 0.237 |
Kocaeli University | 727 | 358,451 | 1.481 |
Total | 3811 | 1,610,139 | Average = 1.19 |
Year | Biomedical Waste Generated (kg.year−1) | Trip Number to Sterilization Plant | Consumed Diesel (L.year−1) | Electric Consumed at the Sterilization Plant (kW.year−1) | Natural Gas Consumed at the Sterilization Plant (m3.year−1) |
---|---|---|---|---|---|
2009 | 1,361,545 | 1362 | 56,731 | 12,855 | 37,205 |
2010 | 1,350,605 | 1351 | 56,275 | 12,751 | 36,904 |
2011 | 1,572,606 | 1573 | 65,525 | 14,846 | 42,968 |
2012 | 1,755,567 | 1756 | 73,149 | 16,572 | 44,789 |
2013 | 1,758,089 | 1758 | 73,254 | 16,596 | 47,670 |
2014 | 1,850,428 | 1850 | 77,101 | 17,467 | 50,552 |
2015 | 1,946,386 | 1946 | 81,099 | 18,373 | 53,433 |
2016 | 2,164,089 | 2164 | 90,170 | 20,427 | 56,315 |
2017 | 2,231,941 | 2232 | 92,998 | 21,067 | 59,196 |
2018 | 2,356,404 | 2356 | 98,184 | 22,241 | 62,078 |
2019 | 2,375,297 | 2375 | 98,971 | 22,420 | 64,959 |
Total | 20,722,957 | 20,723 | 863,457 | 195,616 | 556,068 |
Fuel | Unit GHG Equivalency | Consumed between 2009 and 2019 | Total GHG Generated in the Study |
---|---|---|---|
Diesel | 3.2 kg CO2-e L−1 | 863,457 L | 2763 tCO2-e |
Electricity | 0.480 kg CO2-e kWh−1 | 195,616 kWh | 93.9 tCO2-e |
Natural gas | 4.96 kg CO2-e m−3 | 556,068 m3 | 2758 tCO2-e |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaman, C. Application of Sterilization Process for Inactivation of Bacillus Stearothermophilus in Biomedical Waste and Associated Greenhouse Gas Emissions. Appl. Sci. 2020, 10, 5056. https://doi.org/10.3390/app10155056
Yaman C. Application of Sterilization Process for Inactivation of Bacillus Stearothermophilus in Biomedical Waste and Associated Greenhouse Gas Emissions. Applied Sciences. 2020; 10(15):5056. https://doi.org/10.3390/app10155056
Chicago/Turabian StyleYaman, Cevat. 2020. "Application of Sterilization Process for Inactivation of Bacillus Stearothermophilus in Biomedical Waste and Associated Greenhouse Gas Emissions" Applied Sciences 10, no. 15: 5056. https://doi.org/10.3390/app10155056
APA StyleYaman, C. (2020). Application of Sterilization Process for Inactivation of Bacillus Stearothermophilus in Biomedical Waste and Associated Greenhouse Gas Emissions. Applied Sciences, 10(15), 5056. https://doi.org/10.3390/app10155056