Amaranth Meal and Environmental Carnobacterium maltaromaticum Probiotic Bacteria as Novel Stabilizers of the Microbiological Quality of Compound Fish Feeds for Aquaculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Identification of C. Maltaromaticum Probiotic Bacteria
2.2. Determination of the Metabolic Activity of Probiotic Bacteria Based on the Utilization of Different Carbon Sources
2.3. Compound Feed
2.4. Experimental Design
2.5. Microbiological Analyses
2.6. Statistical Analysis
3. Results
3.1. Probiotic Properties of Carnobacterium Maltaromaticum
3.2. Metabolic Activity of C. maltaromaticum Probiotic Bacteria
3.3. The Quantitative and Qualitative Composition of Bacterial Microbiota in Compound Fish Feeds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gołaś, I.; Szmyt, M.; Potorski, J.; Łopata, M.; Gotkowska-Płachta, A.; Glińska-Lewczuk, K. Distribution of Pseudomonas fluorescens and Aeromonas hydrophila bacteria in a recirculating aquaculture system during farming of uropean grayling (Thymallus thymallus L.) broodstock. Water 2019, 11, 376. [Google Scholar] [CrossRef] [Green Version]
- Banu, M.R.; Akter, S.; Islam, M.R.; Mondol, M.N.; Hossain, M.A. Probiotic yeast enhanced growth performance and disease resistance in freshwater catfish gulsa tengra, Mystus cavasius. Aquac. Res. 2020, 16. [Google Scholar] [CrossRef]
- Lauzon, H.L.; Dimitroglou, A.; Merrifield, D.L.; Ringo, E.; Davies, S.J. Probiotics and Prebiotics: Concepts, Definitions and History. In Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics; Merrifield, D.L., Ringo, E., Eds.; Wiley Blackwell: Chichester, UK, 2014; pp. 169–184. [Google Scholar]
- Petreska, M.; Ziberoski, J.; Zekiri, M. Fish feed microbiological status. JHED 2013, 4, 16–19. [Google Scholar]
- Ramesh, S.; Chelladurai, G.; Haniffa, M.A. Isolation of enzyme producing bacteria from gut of Channa striatus fed on different herbs and probiotics diet. Int. J. Pharm. Pharm. Sci. 2013, 5, 195–198. [Google Scholar]
- Robertson, P.A.W.; O’Dowd, C.; Burrells, C.; Williams, P.; Austin, B. Use of Carnobacterium sp. as a probiotic for Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss, Walbaum). Aquaculture 2000, 185, 235–243. [Google Scholar] [CrossRef]
- Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef]
- Andersson, H.; Asp, N.-G.; Bruce, Å.; Roos, S.; Wadström, T.; Wold, A.E. Health effects of probiotics and prebiotics. A literature review on human studies. Scand. J. Food Nutr. 2001, 45, 58–75. [Google Scholar] [CrossRef]
- Celi, P.; Verlhac, V.; Pérez, C.E.; Schmeisser, J.; Kluenter, A.-M. Biomarkers of gastrointestinal functionality in animal nutrition and health. Anim. Feed Sci. Technol. 2019, 250, 9–31. [Google Scholar] [CrossRef]
- Alvarez-Olmos, M.I.; Oberhelman, R.A. Probiotic agents and infectious diseases: A modern perspective on a traditional therapy. Clin. Infect. Dis. 2001, 32, 1567–1576. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Austin, B. Cytokine expression in leucocytes and gut cells of rainbow trout, Oncorhynchus mykiss Walbaum, induced by probiotics. Vet. Immunol. Immunopathol. 2006, 114, 297–304. [Google Scholar] [CrossRef]
- Merrifield, D.L.; Burnard, D.; Bradley, G.; Davies, S.J.; Baker, R.T.M. Microbial community diversity associated with the intestinal mucosa of farmed rainbow trout (Onchorhynchus mykiss). Aquac. Res. 2009, 40, 1064–1072. [Google Scholar] [CrossRef]
- Wache, Y.; Auffray, F.; Gatesoupe, F.J.; Zambonino, J.; Gayet, V.; Labbe, L.; Quentelc, C. Cross effects of the strain of dietary Saccharomyces cerevisiae and rearing conditions on the onset of intestinal microbiota and digestive enzymes in rainbow trout, Onchorhynchus mykiss, fry. Aquaculture 2006, 258, 470–478. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Austin, B. Characterization of probiotic carnobacteria isolated from rainbow trout (Oncorhynchus mykiss) intestine. Lett. Appl. Microbiol. 2008, 47, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Servin, A.L.; Coconnier, M.H. Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract. Res. Clin. Gastroenterol. 2003, 17, 741–754. [Google Scholar] [CrossRef]
- Timmerman, H.M.; Koning, C.J.M.; Mulder, L.; Rombouts, F.M.; Beynen, A.C. Monostrain, multistrain and multispecies probiotics. A comparison of functionality and efficacy. Int. J. Food Microbiol. 2004, 96, 219–233. [Google Scholar] [CrossRef]
- Verschuere, L.; Rombaut, G.; Sorgeloos, P.; Verstraete, W. Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev. 2000, 64, 655–671. [Google Scholar] [CrossRef] [Green Version]
- Alfaro, B.; Hernández, I.; Le Marc, Y.; Pin, C. Modelling the effect of the temperature and carbon dioxide on the growth of spoilage bacteria in packed fish products. Food Control 2013, 29, 429–437. [Google Scholar] [CrossRef]
- Kim, D.; Kang, K.; Hae Kyung, C.; Jisoon, I.; Kwisung, P. Carnobacterium isolated from caviar of sturgeon (Acipenser ruthenus) farmed in Korea. J. Bacteriol. Virol. 2015, 45, 151–154. [Google Scholar] [CrossRef] [Green Version]
- Leroi, F. Occurrence and role of lactic acid bacteria in seafood products. Food Microbiol. 2010, 27, 698–709. [Google Scholar] [CrossRef] [Green Version]
- Haniffa, M.A.; Ramakrishnan, C.M.; Sheela, P.J. Effect of probiotics on survival and growth of Heteropneustes fossilis. Int. J. Pharma Res. Health Sci. 2015, 3, 784–793. [Google Scholar]
- Ringø, E. The ability of carnobacteria isolated from fish intestine to inhibit growth of fish pathogenic bacteria: A screening study. Aquac. Res. 2008, 39, 171–180. [Google Scholar] [CrossRef]
- Ringø, E.; Schillinger, U.; Holzapfel, W. Antibacterial abilities of lactic acid bacteria isolated from aquatic animals and the use of lactic acid bacteria in aquaculture. In Microbial Ecology in Growing Animals; Holzapfel, W., Naughton, P., Eds.; Elsevier: Edinburgh, UK; London, UK; New York, NY, USA; Oxford, UK; Philadelphia, PA, USA; St Louis, MO, USA; Sydney, Australia; Toronto, ON, Canada, 2005; pp. 418–453. [Google Scholar]
- Gatesoupe, F.J. Probiotics and prebiotics for fish culture, at the parting of the ways. Aqua Feeds Formul. Beyond 2005, 2, 3–5. [Google Scholar]
- Tripathi, M.K.; Giri, S.K. Probiotic functional foods: Survival of probiotics during processing and storage. Food Funct. 2014, 9, 225–241. [Google Scholar] [CrossRef]
- Damusaru, J.H.; Moniruzzaman, M.; Parka, Y.; Seong, M.; Jung, J.-Y.; Kim, D.-J.; Bai, S.C. Evaluation of fish meal analogue as partial fish meal replacement in the diet of growing Japanese eel Anguilla japonica. Anim. Feed Sci. Technol. 2019, 247, 41–52. [Google Scholar] [CrossRef]
- Krogdahl, Å.; Penn, M.; Thorsen, J.; Refstie, S.; Bakke, A.M. Important antinutrients in plant feedstuffs for aquaculture: An update on recent findings regarding responses in salmonids. Aquac. Res. 2010, 41, 333–344. [Google Scholar] [CrossRef]
- Escudero, N.L.; de Arellano, M.L.; Luco, J.M.; Giménez, M.S.; Mucciarelli, S.I. Comparison of the chemical composition and nutritional value of Amaranthus cruentus flour and its protein concentrate. Plant Food Hum. Nutr. 2004, 59, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Januszewska-Jóźwiak, K.; Synowiecki, J. Characteristics and suitability of amaranth components in food biotechnology. Biotechnologia 2008, 3, 89–102. (In Polish) [Google Scholar]
- Ratusz, K.; Wirkowska, M. Characterization of seeds and lipids of amaranthus. Oilseed Crops 2006, 26, 243–250. (In Polish) [Google Scholar]
- Smeds, A.I.; Eklund, P.C.; Sjoholm, R.E.; Willfor, S.M.; Nishibe, S.; Deyama, T.; Holmbom, B.R. Quantification of a broad spectrum of lignans in cereals, oilseeds, and nuts. J. Agric. Food Chem. 2007, 55, 1337–1346. [Google Scholar] [CrossRef]
- Gamel, T.H.; Linssen, J.P.; Mesallam, A.S.; Damir, A.A.; Shekib, L.A. Seed treatments affect functional and antinutritional properties of amaranth flours. J. Sci. Food Agric. 2006, 86, 1095–1102. [Google Scholar] [CrossRef]
- Venskutonis, P.R.; Kraujalis, P. Nutritional components of amaranth seed and vegetables: A Review on composition, properties, and uses. Compr. Rev. Food Sci. Food Saf. 2013, 12, 381–412. [Google Scholar] [CrossRef]
- Niewiadomski, P.; Gomułka, P.; Poczyczyński, P.; Woźniak, M.; Szmyt, M. Dietary effect of supplementation with amaranth meal on growth performance and apparent digestibility of rainbow trout Oncorhynchus myskiss. Pol. J. Nat. Sci. 2016, 31, 459–469. [Google Scholar]
- Potorski, J.; Niewiadomski, P. The effect of amaranth meal on the quantitative and qualitative composition of microbiota in compound feeds stored at different temperatures. In Proceedings of the Poster Session Presentation at the 9th Polish Hydromicrobiological Conference—Hydromicro 2017, Microorganisms—Achievements and Challenges, Conference Proceedings, Olsztyn, Poland, 17–19 September 2017; p. 52. [Google Scholar]
- Vieira, A.D.S.; Bedani, R.; Albuquerque, M.A.C.; Biscola, V.; Saad, S.M.I. The impact of fruit and soybean by-products and amaranth on the growth of probiotic and starter microorganisms. Food Res. Int. 2017, 97, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Ubiebi, C.O. Isolation and identification of bacterial isolates from poultry and fish feeds sold in Abraka, Delta State, Nigeria. J. Ind. Technol. 2017, 2, 14–20. [Google Scholar]
- Zmysłowska, I.; Lewandowska, D. The effect of storage temperature on microbiological quality of fish feeds. Pol. J. Environ. Stud. 2000, 9, 223–226. [Google Scholar]
- Potorski, J.A.; Gołaś, I. The effect of Carnbacterium maltaromaticum probiotic bacteria on commercial fish feed heterothropic microbiota. Fisheries Communiques 2018, 4, 1–5. (In Polish) [Google Scholar]
- Kocková, M.; Valík, L. Suitability of cereal porridges as substrate for probiotic strain Lactobacillus rhamnosus GG. Potravin. Slovak J. Food Sci. 2013, 7, 22–27. [Google Scholar] [CrossRef]
- Liptáková, D.; Matejčeková, Z.; Valík, L. Lactic acid bacteria and fermentation of cereals and pseudocereals. In Fermentation Processes; Jozala, A.F., Ed.; Intech Publisher: London, UK; Rijeka, Croatia, 2017; pp. 223–254. [Google Scholar] [CrossRef] [Green Version]
- Matejčeková, Z.; Liptáková, D.; Valík, L. Fermentation of milk- and water-based amaranth mashes. Acta Chim. Slov. 2015, 8, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Gillan, D.C.; Speksnijder, A.; Zwart, G.; De Ridder, C. Genetic diversity of the biofilm covering Montacuta ferruginosa (Mollusca, Bivalvia) as evaluated by denaturing gradient gel electrophoresis analysis and cloning of PCR-amplified gene fragments coding for 16S rRN. Appl. Environ. Microbiol. 1998, 64, 3464–3472. [Google Scholar] [CrossRef] [Green Version]
- NCBI. National Center for Biotechnology Information, U.S. National Library of Medicine. Available online: http://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 10 April 2017).
- Guidelines for the Evaluation of Probiotics in Food. Food and Agriculture Organization of the United Nations, World Health Organization. In Proceedings of the Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food, London, ON, Canada, 30 April–1 May 2002. [Google Scholar]
- Chang, C.I.; Liu, W.Y.; Shyu, C.Z. Use of prawn blood agar hemolysis to screen for bacteria pathogenic to cultured tiger prawns Penaeus monodon. Dis. Aquat. Organ. 2000, 43, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Succi, M.; Tremonte, P.; Reale, A.; Sorrentino, E.; Grazia, L.; Pacifico, S.; Coppola, R. Bile salt and acid tolerance of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. FEMS Microbiol. Lett. 2005, 244, 129–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayaram, S.; Robinson, J.P.; Kannan, S. Synthesis of antibacterial and anticancer substances by Bacillus sp. PRV3 and Bacillus sp. PRV23, an intestinal probiotics of Indian fresh water fish. Int. J. Pharm. Sci. Rev. Res. 2017, 43, 208–219. [Google Scholar]
- Hart, S.D.; Brown, B.J.; Gould, M.L.; Robar, M.L.; Witt, E.M.; Brown, P.B. Predicting the optimal dietary amino acid profile for growth of juvenile yellow perch with whole body amino acid concentrations. Aquac. Nutr. 2010, 16, 248–253. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Fish and Shrimp. National Research Council (US). In Committee on the Nutrient Requirements of Fish and Shrimp; The National Academy Press: Washington, DC, USA, 2011. [Google Scholar]
- Polish Standard PN-R-64791:1994. Animal Feeds. Microbiological Requirements and Analyses. Available online: http://www.statsoft.com/Products/STATISTICA/Product-Index (accessed on 6 January 2019).
- Crump, J.A.; Griffin, P.M.; Angulo, F.J. Bacterial contamination of animal feed and its relationship to human foodborne illness. Clin. Infect. Dis. 2002, 35, 859–865. [Google Scholar] [CrossRef] [Green Version]
- Zmysłowska, I.; Kolman, R.; Krause, J. Bacteriological evaluation of water, feed and sturgeon (Acipenser baeri Brandt) fry quality during intensive rearing in cooling water. Arch. Pol. Fish. 2003, 1, 91–98. [Google Scholar]
- Gołaś, I.; Zmysłowska, I.; Harnisz, M.; Teodorowicz, M. The microbiological state of fish feed, water and Silurus glanis L. skin of fry during intensive rearing. Bull. Sea Fish. Inst. 2004, 1, 3–14. [Google Scholar]
- Alegbejo, J.O. Nutritional value and utilization of amaranthus (Amaranthus sp.)—A review. BAJOPAS 2013, 6, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Amare, G.A.; Unakal, C.G. Effect of aqueous and ethanol extracts of Ocimum lamiifolium and Amaranthus dubius against bacteria isolated from clinical specimen. IJPIR 2013, 3, 10–14. [Google Scholar]
- Peter, K.; Gandhi, P. Rediscovering the therapeutic potential of Amaranthus species: A review. EJBAS 2017, 4, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Smeds, A.I.; Willfor, S.M.; Pietarinen, S.P.; Peltonen-Sainio, P.; Reunanen, M.H.T. Occurrence of “mammalian” lignans in plant and water sources. Planta 2007, 226, 632–646. [Google Scholar] [CrossRef]
- Kamela, S.L.A.; Mouokeu, R.S.; Rawson, A.; Maffo Tazoho, G.; Moh, L.G.; Etienne, P.T.; Jules-Roger, K. Influence of processing methods on proximate composition and dieting of two Amaranthus species from West Cameroon. J. Food Sci. 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Olufemi, B.E.; Assiak, I.E.; Ayoade, G.O.; Onigemo, M.A. Studies on the effect of Amaranthus spinosus leaf extract on the hematology of growing pigs. Afr. J. Biomed. Res. 2003, 6, 149–150. [Google Scholar] [CrossRef]
- Zraly, Z.; Pisarikova, B.; Hudcova, H.; Trckova, M.; Herzig, I. Effect of feeding amaranth on growth efficiency and health of market pigs. Acta Vet. Brno 2004, 73, 437–444. [Google Scholar] [CrossRef]
- Ravindran, V.; Hood, R.L.; Gill, R.J.; Kneale, C.R.; Bryden, W.L. Nutritional evaluation of grain amaranth (Amaranthus hypochondriacus) in broiler diets. Anim. Feed Sci. Technol. 1996, 63, 323–331. [Google Scholar] [CrossRef]
- Vaseeharan, B.; Thaya, R. Medicinal plant derivatives as immunostimulants: An alternative to chemotherapeutics and antibiotics in aquaculture. Aquac. Int. 2014, 22, 1079–1091. [Google Scholar] [CrossRef]
- Virk, P.; Saxena, P.K. Potential of Amaranthus seeds in supplementary feed and its impact on growth in some carps. Bioresour. Technol. 2003, 86, 25–27. [Google Scholar] [CrossRef]
- Maiyo, Z.C.; Ngure, R.M.; Matasyoh, J.C.; Chepkorir, R. Phytochemical constituents and antimicrobial activity of leaf extracts of three Amaranthus plant species. Afr. J. Biotechnol. 2010, 9, 3178–3182. [Google Scholar]
- Carrizo, S.L.; Montes de Oca, C.E.; Hébert, M.E.; Saavedra, L.; Vignolo, G.; LeBlanc, J.G.; Rollán, G.C. Lactic acid bacteria from urope grain amaranth: A Source of vitamins and functional value enzymes. J. Mol. Microbiol. Biotechnol. 2017, 27, 289–298. [Google Scholar] [CrossRef]
- Jekle, M.; Houben, A.; Mitzscherling, M.; Becker, T. Effects of selected lactic acid bacteria on the characteristics of amaranth sourdough. J. Sci. Food Agric. 2010, 90, 2326–2332. [Google Scholar] [CrossRef]
- Sterr, Y.; Weiss, A.; Schmidt, H. Evaluation of lactic acid bacteria for sourdough fermentation of amaranth. Int. J. Food Microbiol. 2009, 136, 75–82. [Google Scholar] [CrossRef]
- Gullón, B.; Gullón, P.; Tavaria, F.K.; Yáñez, R. Assessment of the prebiotic effect of quinoa and amaranth in the human intestinal ecosystem. Food Funct. 2016, 14, 3782–3788. [Google Scholar] [CrossRef] [PubMed]
- Allameh, S.K.; Noaman, V.; Nahavandi, R. Effects of probiotic bacteria on fish performance. Adv. Tech. Clin. Microbiol. 2017, 1, 11. [Google Scholar]
- Lara-Flores, M.; Olvera-Novoa, M.A.; Guzmán-Méndez, B.E.; López- Madrid, W. Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus). Aquaculture 2003, 216, 193–201. [Google Scholar] [CrossRef]
- Mohapatra, S.; Chakraborty, T.; Prusty, A.K.; Das, P.; Paniprasad, K.; Mohanta, K.N. Use of different microbial probiotics in the diet of rohu, Labeo rohita fingerling: Effects on growth, nutrient digestibility and retention, digestive enzyme activities and intestinal microflora. Aquac. Nutr. 2012, 18, 1–11. [Google Scholar] [CrossRef]
- Ringø, E.; Løvmo, L.; Kristiansen, M.; Bakken, Y.; Salinas, I.R.; Myklebust, R.; Olsen, R.E.; Mayhew, T.M. Lactic acid bacteria vs. pathogens in the gastrointestinal tract of fish. Aquac. Res. 2010, 41, 451–467. [Google Scholar] [CrossRef]
Ingredients | Feed Type | ||
---|---|---|---|
CF 1 | AF 2 | ACF 3 | |
Soybean meal | 32.00 | 27.00 | 27.00 |
Wheat flour | 25.00 | 10.00 | 10.00 |
Amaranth meal | 0.00 | 20.00 | 20.00 |
Fishmeal | 15.00 | 15.00 | 15.00 |
Hydrolyzed feather meal | 15.00 | 15.00 | 15.00 |
Codliver oil | 5.00 | 5.00 | 5.00 |
Soybean oil | 5.00 | 5.00 | 5.00 |
Vitamin premix 4 | 1.00 | 1.00 | 1.00 |
Mineral premix 5 | 2.00 | 1.00 | 1.00 |
C. maltaromaticum (CFU⋅g−1) | 0.00 | 0.00 | 1.5 × 109 |
Microorganisms | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
C. maltaromaticum | TVC 28°C 1 | Hem 37 °C 2 | Staphylococcus sp. | Yeasts | ||||||
4 °C | 20 °C | 4 °C | 20 °C | 4 °C | 20 °C | 4 °C | 20 °C | 4 °C | 20 °C | |
TVC 28 °C 1 | −0.904 * | −0.535 * | ||||||||
Hem 37 °C 2 | −0.763 * | −0.713 * | 0.723 * | 0.763 * | ||||||
Staphylococcus sp. | −0.677 * | −0.580 * | 0.511 | 0.577 | 0.715 * | 0.755 * | ||||
Yeasts | −0.763 * | −0.578 * | 0.763 * | 0.975 * | 0.997 | 0.782 * | 0.755 * | 0.591 | ||
ASFB 3 | −0.894 * | −0.535 * | 0.957 | 0.999 | 0.723 * | 0.763 * | 0.577 | 0.577 | 0.763 * | 0.975 * |
Microorganisms | Differences (p) between | ||
---|---|---|---|
Feed Type | Storage Temperature | Storage Time | |
TVC 28 °C 1 | 0.0000 * | 0.2194 | 0.0242 * |
Hem 37 °C 2 | 0.0000 * | 0.3058 | 0.0476 * |
Staphylococcus sp. | 0.0000 * | 0.0456 * | 0.0493 * |
Yeasts | 0.0050 * | 0.0550 | 0.0011 * |
ASFB 3 | 0.0005 * | 0.2785 | 0.0005 * |
Clostridium sp. | 0.0001 * | 0.0238 * | 0.0483 * |
Molds | 0.0003 * | 0.0048 * | 0.9979 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gołaś, I.; Potorski, J.; Woźniak, M.; Niewiadomski, P.; Aguilera-Arreola, M.G.; Contreras-Rodríguez, A.; Gotkowska-Płachta, A. Amaranth Meal and Environmental Carnobacterium maltaromaticum Probiotic Bacteria as Novel Stabilizers of the Microbiological Quality of Compound Fish Feeds for Aquaculture. Appl. Sci. 2020, 10, 5114. https://doi.org/10.3390/app10155114
Gołaś I, Potorski J, Woźniak M, Niewiadomski P, Aguilera-Arreola MG, Contreras-Rodríguez A, Gotkowska-Płachta A. Amaranth Meal and Environmental Carnobacterium maltaromaticum Probiotic Bacteria as Novel Stabilizers of the Microbiological Quality of Compound Fish Feeds for Aquaculture. Applied Sciences. 2020; 10(15):5114. https://doi.org/10.3390/app10155114
Chicago/Turabian StyleGołaś, Iwona, Jacek Potorski, Małgorzata Woźniak, Piotr Niewiadomski, Ma Guadelupe Aguilera-Arreola, Araceli Contreras-Rodríguez, and Anna Gotkowska-Płachta. 2020. "Amaranth Meal and Environmental Carnobacterium maltaromaticum Probiotic Bacteria as Novel Stabilizers of the Microbiological Quality of Compound Fish Feeds for Aquaculture" Applied Sciences 10, no. 15: 5114. https://doi.org/10.3390/app10155114
APA StyleGołaś, I., Potorski, J., Woźniak, M., Niewiadomski, P., Aguilera-Arreola, M. G., Contreras-Rodríguez, A., & Gotkowska-Płachta, A. (2020). Amaranth Meal and Environmental Carnobacterium maltaromaticum Probiotic Bacteria as Novel Stabilizers of the Microbiological Quality of Compound Fish Feeds for Aquaculture. Applied Sciences, 10(15), 5114. https://doi.org/10.3390/app10155114