A Novel Method of Radar Emitter Identification Based on the Coherent Feature
Abstract
:1. Introduction
2. Analysis of Signal Coherent Characteristics
3. Coherent Feature Extraction and Evaluation
3.1. Simulation Analysis
3.2. The Model of Coherent Feature Extraction
3.3. Coherent Feature Evaluation
4. Simulation
4.1. Performance Evaluation of Experiment 1
4.2. Performance Evaluation of Experiment 2
4.3. Performance Evaluation of Experiment 3
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Satija, U.; Trivedi, N.; Biswal, G.; Ramkumar, B.; Ramkumar, B. Specific Emitter Identification Based on Variational Mode Decomposition and Spectral Features in Single Hop and Relaying Scenarios. IEEE Trans. Inf. Forensics Secur. 2018, 14, 581–591. [Google Scholar] [CrossRef]
- Ding, L.; Wang, S.; Wang, F.; Zhang, W. Specific Emitter Identification via Convolutional Neural Networks. IEEE Commun. Lett. 2018, 22, 2591–2594. [Google Scholar] [CrossRef]
- Yuan, Y.; Cui, G.L.; Ge, M.M.; Yu, X.X. Active repeat jamming suppression via multi-static radar elliptic-hyperbolic location. In Proceedings of the 2017 IEEE Radar Conference, Seattle, WA, USA, 8–12 May 2017; Institute of Electrical and Electronics Engineers Inc.: Seattle, WA, USA, 2017; pp. 0692–0697. [Google Scholar]
- Wu, X.; Hou, X.; Huang, Q.L.; Bu, Q. Radar Emitter Identification Algorithm Based on Fuzzy Set Theory. Command. Inf. Syst. Technol. 2018, 9, 55–59. [Google Scholar]
- Huo, Q.; Lee, C.-H. A Bayesian predictive classification approach to robust speech recognition. IEEE Trans. Speech Audio Process. 2000, 8, 200–204. [Google Scholar] [CrossRef]
- Zhang, B.; Srihari, S.N. Fast k-neatest neighbor classification using cluster-based trees. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 26, 525–528. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.Z.; Wu, H.C.; Li, P.; Wang, M.L. Approach Based on Cloud Model and SVM for Emitter Identification. Modern Radar. 2013, 10, 41–45. [Google Scholar]
- Xu, X. Radar Radiating-source Recognizing Based on Neural Networks. Comput. Digit. Eng. 2017, 45, 2126–2130. [Google Scholar]
- Huang, Y.K.; Jin, W.D.; Yu, Z.B.; Wu, Y.P. Radar emitter signal recognition based on deep learning and ensemble learning. Syst. Eng. Electron. 2018, 40, 2420–2425. [Google Scholar]
- Hong, S.; Kwak, S.; Han, B. Weakly Supervised Learning with Deep Convolutional Neural Networks for Semantic Segmentation: Understanding Semantic Layout of Images with Minimum Human Supervision. IEEE Signal Process. Mag. 2017, 34, 39–49. [Google Scholar] [CrossRef]
- Li, Y.J.; Zhao, Y.J.; Zhao, C. Recognition of Intra-Pulse Feature of Radar Signals Based on Canonical Correlation Analysis. J. Inf. Eng. Univ. 2018, 19, 47–51. [Google Scholar]
- Wang, H.; Fan, X.; Chen, Y.; Yang, Y. Wigner-Hough transform based on slice’s entropy and its application to multi-LFM signal detection. J. Syst. Eng. Electron. 2017, 28, 634–642. [Google Scholar]
- Kishore, T.R.; Rao, K.D. Automatic Intra Pulse Modulation Classification of Advanced LPI Radar Waveforms. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 901–914. [Google Scholar] [CrossRef]
- Guan, X.; Zhu, H.P.; Zhang, Y.H. Analysis and Extraction of Radar Emitter Signal Feature based on Fractional Fourier Transform. J. Detect. Control 2018, 40, 71–76. [Google Scholar]
- Yu, Z.B.; Jin, W.D.; Chen, C.X. Radar Emitter Signal Recognition Based on WRFCCF. J. Southwest Jiao Tong Univ. 2010, 45, 290–295. [Google Scholar]
- Yuan, Y.; Huang, Z.; Wu, H.; Wang, X. Special emitter identification based on Hilbert-Huang transform based time-frequency-energy distribution features. IET Commun. 2014, 8, 2404–2412. [Google Scholar] [CrossRef]
- Guo, L.R.; He, M.H.; Yu, C.L.; Wang, B.Q. Describe of Frequency Agility Radar Signal Coherent Characteristic. Fire Control Command Control 2015, 40, 24–27. [Google Scholar]
- Guo, L.R.; He, M.H.; Yu, C.L.; Wang, B.Q. New Time Domain Coherent Method of Radar Emitter Recognition. Mod. Def. Technol. 2015, 43, 108–113. [Google Scholar]
- Han, L.H.; Huang, G.M.; Wang, P. Research into Signals Intra-pulse Analysis of Linear Frequency Modulation Radar Based on Instantaneous Auto-correlation Algorithm. Shipboard Electron. Countermeas. 2011, 34, 1–5. [Google Scholar]
- Chen, L.J.; Shen, Y.L.; Chen, B.X.; Liu, P.; Chen, P. Frequency Estimation Algorithm Based on Multi-segment Auto Correlation Signal and MC Method. Instrum. Tech. Sens. 2016, 5, 92–94. [Google Scholar]
- Chen, P.; Tu, Y.Q.; Li, M.; Liu, P. Frequency estimation method of data extension based on autocorrelation. Transducer Microsyst. Technol. 2019, 38, 26–29. [Google Scholar]
- Ren, D.F.; Zhang, T.; Han, J. Specific emitter identification based on ITD and texture analysis. J. Commun. 2017, 38, 160–168. [Google Scholar]
- Zhang, Y.; Hong, R.-J.; Pan, P.-P.; Deng, Z.-M.; Liu, Q.-F. Frequency-Domain Range Sidelobe Correction in Stretch Processing for Wideband LFM Radars. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 111–121. [Google Scholar] [CrossRef]
- Lu, W.; Xie, J.; Wang, H.; Sheng, C. Parameterized time-frequency analysis to separate multi-radar signals. J. Syst. Eng. Electron. 2017, 28, 493–502. [Google Scholar]
- Xu, J.; He, M.H.; Han, J. Effectiveness assessment of radar emitter signal recognition based on AHP-interval-TOPSIS. J. Air Force Early Warn. Acad. 2014, 28, 243–246. [Google Scholar]
- Fan, X.; Fang, Y.; Cheng, Z.; Zhu, B.; Shi, Z. Performance Evaluation for Tracking Algorithm Based on AHP. J. Proj. Rockets Missiles Guid. 2013, 33, 101–105. [Google Scholar]
- Zhu, B.; Jin, W.D.; Yu, Z.B. Feature evaluation for advanced radar emitter signals based on SPA-FAHP. J. Comput. Appl. 2014, 34, 1834–1838. [Google Scholar]
- Long, F.; Liu, J.; Yu, H.; Zhu, H.; Zhang, S. The Evaluation System and Application of the Homestay Agglomeration Location Selection. J. Resour. Ecol. 2019, 10, 324–334. [Google Scholar]
- Jin, Q.; Wang, H.Y.; Yan, M. Radar Emitter Signal Recognition Based on Deep Convolutional Network. Modern Deference Technol. 2019, 47, 154–160. [Google Scholar]
- Leng, P.F.; Xu, C.Y. Specific Emitter Identification Based on Deep Reinforcement Learning. Acta Armamentarii 2018, 39, 2420–2426. [Google Scholar]
- Vanhoy, G.; Schucker, T.; Bose, T. Classification of LPI radar signals using spectral correlation and support vector machines. Analog. Integr. Circuits Signal Process. 2017, 91, 305–313. [Google Scholar] [CrossRef]
Signal Type | Coherent Pulse Train | Noncoherent Pulse Train | ||||
---|---|---|---|---|---|---|
CW | LFM | NLFM | CW | LFM | NLFM | |
SMR | 0.904 | 0.889 | 0.928 | 0.463 | 0.408 | 0.392 |
1 | 6.4084 | 0.0371 | 0.1068 | 0.2027 | 0.4261 | 0.0246 | 0.2027 | 0.0817 | 1.24 | 0.0659 |
2 | 6.3257 | 0.4194 | 0.2447 | 0.1218 | 0.1664 | 0.0604 | 0.0318 | 0.0651 | 1.24 | 0.0525 |
3 | 6.1714 | 0.4033 | 0.1664 | 0.1218 | 0.1664 | 0.0722 | 0.0252 | 0.0343 | 1.24 | 0.0277 |
Parameter | Weight of Each Parameter |
---|---|
CF | |
PW | |
PRI | |
SMR | |
AOA | |
PA |
Emitter | PA | CF(MHz) | AOA | PW(μs) | PRI(μs) | Pulse Number |
---|---|---|---|---|---|---|
Emitter 1 | 1 | 30 | 49.8° | 5 | 46, 50, 54 | 180 |
Emitter 2 | 1 | 30 | 50° | 5 | 46, 50, 54 | 180 |
Emitter 3 | 1 | 30 | 50.2° | 5 | 46, 50, 54 | 180 |
Pulse Train | PA | CF(MHz) | PW (μs) | PRI (μs) | Pulse Number |
---|---|---|---|---|---|
Pulse train 1 | 1 | 27 | 10 | 90 | 60 |
Pulse train 2 | 1 | 32 | 10 | 90 | 60 |
Pulse train 3 | 1 | 37 | 10 | 90 | 60 |
Emitter | PA | CF(MHz) | AOA | PW (μs) | PRI (μs) | Pulse Number |
---|---|---|---|---|---|---|
Emitter 1 | 1 | 27 | 49.8° | 5 | 46, 50, 54 | 200 |
Emitter 2 | 1 | 27, 33 | 50° | 8 | 50 | 200 |
Emitter 3 | 1 | 33 | 50.2° | 5 | 50 ± 5 | 200 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, J.; Tang, L.; Zhang, X.; Jin, L. A Novel Method of Radar Emitter Identification Based on the Coherent Feature. Appl. Sci. 2020, 10, 5256. https://doi.org/10.3390/app10155256
Xue J, Tang L, Zhang X, Jin L. A Novel Method of Radar Emitter Identification Based on the Coherent Feature. Applied Sciences. 2020; 10(15):5256. https://doi.org/10.3390/app10155256
Chicago/Turabian StyleXue, Jian, Lan Tang, Xinggan Zhang, and Lin Jin. 2020. "A Novel Method of Radar Emitter Identification Based on the Coherent Feature" Applied Sciences 10, no. 15: 5256. https://doi.org/10.3390/app10155256
APA StyleXue, J., Tang, L., Zhang, X., & Jin, L. (2020). A Novel Method of Radar Emitter Identification Based on the Coherent Feature. Applied Sciences, 10(15), 5256. https://doi.org/10.3390/app10155256