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Abstract: To deal with the problem of reliability degradation of radar emitter identification (REID)
based on the traditional five parameters in a complex electromagnetic environment, a new feature
extraction method based on the autocorrelation function of coherent signals, which makes full use
of the coherent characteristic of modern radar emitters, is proposed in this paper. The main idea
of this paper is utilizing the instantaneous autocorrelation function to obtain the correlation results
of coherent and noncoherent signals. To this end, a new feature parameter, named the ratio of the
secondary peak value to the main peak value (SMR), is defined to describe the difference of correlation
results between coherent and noncoherent signals. Through simulation analysis, the feasibility of
using SMR as the coherent feature for REID is verified. In order to evaluate the effectiveness of the
coherent feature, an analytical hierarchy process (AHP) was introduced to compare the comprehensive
performance of the coherent feature and the existing parameters, and then convolution neural network
(CNN) and support vector machine (SVM) were selected as the classifier to check the recognition
capability of the proposed feature. Simulation results show that the proposed feature can not only be
used as a new feature for REID but can also be used as a supplement to existing feature parameters to
improve the accuracy of REID as it is more insensitive to the signal-to-noise ratio (SNR) and signal
modulation type changes.

Keywords: radar emitter identification; coherent feature; instantaneous autocorrelation function;
SMR; analytical hierarchy process (AHP)

1. Introduction

In the signal processing of a radar reconnaissance system, radar emitter identification (REID) is
one of the crucial aspects [1]. Recognition performance has become an important symbol to measure
the technology levels of radar countermeasure equipment [2,3]. With the wide application of modern
radar and the degree increase of electronic radar countermeasures (there are all kinds of jamming),
the electromagnetic environment is becoming more and more complex. The feature parameters, such as
radio frequency (RF), pulse repeat interval (PRI), pulse wide (PW), angle of arrival (AOA), and pulse
amplitude (PA) of radar emitter signals measured by reconnaissance equipment, are always illegible
and uncertain, which bring out two problems in REID. One is that recognition performance may be
decreased because of the uncertainty of the emitter signals. The other is the inability to update the
emitter databases because there are no credible feature parameters.

With the development of information technology, domestic and foreign scholars have done a lot
of indepth and systematic studies in REID. At present, the research results can be divided into two
categories. One is the intelligent classifier design, which can process the feature parameter uncertainties
of the measured emitter signals and classify them correctly. Many conventional recognition classifiers
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have been successfully applied, such as fuzzy [4], Bayesian [5], k-nearest neighbor [6], support vector
machine [7], neural network [8–10], and so on. They can solve the problem caused by measurement
uncertainty or error to a certain extent. However, when there are no credible feature parameters for
the classifier, these classification methods are also helpless. The other category is trying to extract
a new feature parameter to make up for the shortcomings of the existing five feature parameters in
emitter recognition. Presently, many studies are concerned with the existence of modulation on radar
pulses (MOPs), such as entropy [11], resemblance coefficient [12,13], wavelet gray matrix [14–16],
and so on. However, when the two radars are deployed in close proximity and their signal parameters
and modulation types are the same, these recognition methods based on the MOP feature are almost
invalid. In this paper, the primary focus is on extracting a new feature parameter.

In recent years, with the rapid development of modern radar technology, most radars in use are
of the coherent system [17,18]. The coherent system denotes that the initial phases of the transmitting
signals from a coherent radar are continuous and stable, while those from a noncoherent radar are
random. The correlation function [19–21] describes the correlation degree among the instantaneous
values of random sample functions at different times, and coherence represents the phase relationship
between the adjacent pulses, which is correlated and continuous. Therefore, the instantaneous
autocorrelation function is introduced to distinguish the coherent characteristics of these pulses.

In this paper, the feasibility of the coherent feature as a feature parameter for REID is demonstrated
firstly by theoretical analysis. Then, the instantaneous autocorrelation function is taken to obtain the
correlation differences between the coherent and noncoherent signals, and a new feature parameter
named the ratio of the secondary peak value to the main peak value (SMR) is defined as the coherent
feature to describe these differences. Through the simulation analysis, the simulation result shows that
the new feature parameter (SMR) is not sensitive to signal-to-noise ratio (SNR) and signal type changes.
To evaluate the recognition performance of the coherent feature, an analytical hierarchy process (AHP)
is introduced, which makes a comprehensive evaluation from the three aspects of reliability, accuracy,
and robustness of SMR and the existing parameters. Then, a sketch map of REID is constructed and
applied in simulation experiments, according to the comprehensively evaluated results. Furthermore,
support vector machine (SVM) and convolution neural network (CNN) are introduced as the classifiers
to check the recognition capability of the proposed feature compared with the typical five parameters.

The remainder of this paper is organized as follows. In Section 2, the model of received signals
from a coherent emitter is given, and the feasibility of the coherent feature as the REID feature is proved
by theoretical analysis. In Section 3, simulations by an instantaneous autocorrelation function on the
coherent and noncoherent signals are presented. Through simulation analysis, the discrimination model
and the discrimination threshold of coherent characteristics are introduced to distinguish correlation
results of the coherent and noncoherent signals. In Section 4, three experiments are performed to
demonstrate the identification capability of the proposed coherent feature. Conclusions are made in
Section 5.

2. Analysis of Signal Coherent Characteristics

As we all know, the premise of emitter identification is to classify the received pulses from the same
radar emitter into one class by some criteria. In view of the stable phase relationship between the signals
transmitted from the coherent radar, the purpose of analyzing the signal’s coherent characteristics is to
find out the relationship of the initial phase among the received pulse train, so as to use this feature to
distinguish the coherent and noncoherent signals for REID.

In this section, the received signal model is given. Then, the phase relationship between the
received pulse trains is analyzed to validate the feasibility of using the coherent feature as the
recognition feature. The relationship between the reconnaissance equipment and the target radar in a
radar reconnaissance system is shown in Figure 1; this figure is only a sketch map between the radar
emitter and the receiving equipment. The key point is to derive the relationship between the initial
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phases of the pulse train from the same radar emitter. Therefore, multipath and other jammings in the
actual environment are not listed in this sketch map.
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In Figure 1, r(t) denotes the relative distance between the receiving equipment and the target
radar. Supposing x(t) is the signal transmitted from the target radar and s(t) is the received signal,
the relationship between x(t) and s(t) can be shown, as below.{

s(t) = ux(t− ∆) + υ(t)
∆ ≈ r(t)/c

(1)

where u denotes the attenuation coefficient of signal amplitude, c is the signal transmission speed, v(t)
is the noise.

x(t) is defined as the transmitting signal from the radar emitter; it can be expressed as follows:

x(t) = A exp[j(2π fct + φ0)] (2)

where A, fc, and φ0 denote the amplitude, frequency, and initial phase of the transmitting signal.
Without considering signal attenuation, the received signal s(t) can be expressed as follows:

s(t) = A exp
{
j[2π fc(t− r(t)/c) + φ0]

}
+ υ(t) (3)

When t = t0, expanding r(t) according to Taylor’s formula,

r(t) = r(t0) + r′(t0)(t− t0) +
1
2!

r′′ (t0)(t− t0)
2 + · · ·+

1
n!

r(n)(t0)(t− t0)
n + · · · (4)

Substitute r(t) into s(t), then the received signal s(t) can also be expressed as below.

s(t) = A· exp
{
j
{
2π fc

{
t−

1
c

[
r(t0) + r′(t0)(t− t0) +

1
2

r′′ (t0)(t− t0)
2 + · · ·

]}
+ φ0

}}
+ υ(t) (5)

The phase function ϕ(t) of received signal s(t) is as follows:

ϕ(t) = 2π fct− 2π
[

r(t0)

λ
+

r′(t0)

λ
(t− t0) +

1
2

r′′ (t0)

λ
(t− t0)

2 + · · ·

]
+ φ0 (6)

Due to the relative motion between the target emitter and the receiving equipment, which is
reflected in the Doppler effect ( fd) [22], ϕ(t) can be expressed as below.

ϕ(t) = ϕ0 + 2π
[
( fc + fd)(t− t0) +

1
2

fd′(t0)(t− t0)
2 + · · ·+

1
n!

f (n)d (t0)(t− t0)
n
]

(7)

where ϕ0(ϕ0 = φ0 + 2π fc[t0 − r(t0)/c]) denotes the initial phase of the received signal at the time t0.
It is to be noted that if the radar emitter is stationary, there is no Doppler effect ( fd = 0).
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Then, using the second-order approximation to describe r(t), ϕ(t) can be further simplified
as below.

ϕ(t) ≈ ϕ0 + 2π( fc + fd)(t− t0) + π fd′(t0)(t− t0)
2 (8)

When t0 = 0, it is assumed that the Doppler change rate ( fd′(t0)) can be ignored in a very short
observation time, so the phase function ϕ(t) can be expressed as below.

ϕ(t) = ϕ0 + 2π( fc + fd)t (9)

According to Formula (9), the received pulse train can be expressed as follows.

s(t) =
N∑

p=1

Ap·rect
(

t− Tp

τ

)
exp

{
j
[
2π

(
fcp + fd

)
t + ϕ0

]}
+ υ(t) (10)

where Ap, Tp, fcp represent the PA, time of arrival (TOA), RF of the pth pulse in a pulse train, rect(·)
denotes the rectangular window function, N is the number of the received pulses. After passing
through the mixer, s (t) can be expressed as below.

s(t) =
N∑

p=1

Ap·rect
(

t− Tp

τ

)
exp

{
j
[
2π fpt + ϕ0

]}
+ υ(t) (11)

where fp denotes the center frequency (CF) of the pth pulse in a pulse train, fp = fcp + fd − fL, ( fd << fcp),
fL denotes the local frequency.

From the analysis above, it can be seen that there is a stable and continuous relationship among
the initial phases of the received pulse train transmitted from a coherent radar. Therefore, we can use
the coherent feature as the recognition feature for REID.

3. Coherent Feature Extraction and Evaluation

In a complex electromagnetic environment, if the coherent feature is extracted from the time
domain waveform of the radar signal directly, it is easily affected by noise [23]. The autocorrelation
function reflects the correlation degree between the two signals. Considering that the correlation
of noise is poor, while the correlation of signals is strong and the noise is not related to the signal,
instantaneous autocorrelation processing can strengthen the signal and weaken the noise; therefore,
the instantaneous autocorrelation function can be used to extract the coherent feature [24].

Supposing s(n) denotes the received signal, its instantaneous autocorrelation function can be
expressed as follows.

Y(n, m) = s(n) × s∗(n + m) m = 0,±1, · · · (12)

Y(n) =
+∞∑

m=−∞

Y(n, m) =
+∞∑

m=−∞

s(n) × s∗(n + m) (13)

Where s∗(·) is the conjugate function of s(·).
From Formula (13), it can be seen that the biggest advantage of instantaneous autocorrelation

is that there is no time integration. In other words, the instantaneous information of correlation
processing is well preserved.

3.1. Simulation Analysis

In order to analyze the difference of coherent characteristics between the coherent and noncoherent
pulse trains, three simulation experiments were performed based on time-frequency correlation.
We took two sets of pulse trains: the first one was a coherent pulse train and the second a noncoherent
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pulse train. The signal type and the parameters of both pulse trains were the same. It is noteworthy
that the number of pulses used for emitter identification must be greater than or equal to 4.

Simulation Experiment 1: Signal modulation type is continuous wave (CW), CF is 30 MHz,
sampling frequency (Fs) is 100 MHz, PRI is 60 µs, PW is 10 µs, pulse number is 10. Autocorrelation
results of the two groups, without noise, are shown in Figure 2.
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Figure 2. Autocorrelation result of coherent and noncoherent pulse trains; signal type is continuous
wave (CW).

Simulation Experiment 2: Signal modulation type is linear frequency modulation (LFM), CF is
30 MHz, bandwidth (BW) is 10 MHz, Fs is 100 MHz, PRI is 150 µs, PW is 15 µs, pulse number is 8.
Autocorrelation results of the two groups, without noise, are shown in Figure 3.
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Figure 3. Autocorrelation result of coherent and noncoherent pulse trains; signal type is linear frequency
modulation (LFM).

Simulation Experiment 3: Signal modulation type is nonlinear frequency modulation (NLFM),
CF is 100 MHz, BW is 20 MHz, Fs is 200 MHz, PRI is 50 µs, PW is 5 µs, pulse number is 15.
Autocorrelation results of the two groups, without noise, are shown in Figure 4.
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Figure 4. Autocorrelation result of coherent and noncoherent pulse trains; signal type is nonlinear
frequency modulation (NLFM).

As shown in Figures 2–4, it can be seen that the three experiments of different modulation types
have similar rules: the correlation degree between the coherent and noncoherent pulse trains is almost
the same near the zero point, while outside the zero point, the correlation of the coherent signals is
much better than that of the noncoherent signals. With increasing time delay, the correlation of the
coherent signals decreases periodically and steadily, while it changes irregularly in the noncoherent
signals. This is due to the strong correlation and continuity of the phase information of the coherent
pulse train, while that of the noncoherent pulse train is random. Therefore, we can use this difference
to distinguish the coherent and noncoherent signals. The next task is to define a feature parameter to
describe this difference.

3.2. The Model of Coherent Feature Extraction

According to the simulation analysis above, define the maximum peak at the zero point as the
main peak. Except for the maximum peak, the maximum of the remaining peaks is defined as the
secondary peak. The discrimination model of coherent characteristics can be named as the ratio of the
secondary peak value to the main peak value (SMR). The model parameter is given as below.

SMR =
max[F(n)]

F(1)
, n > 1 (14)

where F(1) is the main peak value at the zero point.
In terms of the conditions of Experiments 1–3 to calculate the SMR of different signal types, take

the average of 100 times of calculation results. SMRs are computed without noise in Table 1.

Table 1. Results of the secondary peak value to the main peak value (SMR) with different signal types.

Signal Type Coherent Pulse Train Noncoherent Pulse Train

CW LFM NLFM CW LFM NLFM

SMR 0.904 0.889 0.928 0.463 0.408 0.392

As shown in Table 1, it can be seen that the SMRs of the coherent pulse train are close to 1, while the
SMRs of the noncoherent pulse train are much smaller than 1.

In order to verify the rationality of the discrimination threshold of SMR in different SNRs,
according to the conditions of Experiments 1 to 3, SMRs of different signal types are computed based
on the Monte-Carlo for 100 times in different SNRs. The results are shown in Figure 5.
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Figure 5. SMRs (the ratios of the secondary peak value to the main peak value) of different signal types
in different signal-to-noise ratios (SNRs).

As can be seen in Figure 5, when SNR = −5 dB, SMRs of different signal types are overlapped as
SMR cannot distinguish the difference very well. When SNR ≥ 0 dB, the difference in SMRs between
the coherent and noncoherent pulse trains is obvious. This is due to the instantaneous autocorrelation
processing, which can weaken the noise and strengthen the signal. To a certain extent, SNR of the
signal has been improved. From the simulation analysis above, we can conclude that SMR can be used
as a feature parameter for REID, and it is insensitive to SNR and signal type changes.

Furthermore, we can see when SNR ≥ −5 dB, SMR of the coherent pulse train is always above 0.6,
while SMR of the noncoherent pulse train is always below 0.6. Additionally, each signal type has the
same rule. Therefore, we can set the discrimination threshold at 0.6. When SMR > 0.6, the pulse train
is coherent, otherwise the pulse train is noncoherent.

3.3. Coherent Feature Evaluation

To evaluate the comprehensive identification performance of SMR and the typical five feature
parameters, AHP [25] is introduced in this paper. AHP is a systematic method that takes a complex
multiobjective decision-making problem as a system and decomposes the objective into several levels,
namely, multiobjective, multicriteria, and multiattribute. Through quantitative and qualitative analyses,
the single ranking and total ranking of the levels are calculated as a systematic method of objective and
optimized decision-making.

Evaluation steps based on AHP are given as below.
Step 1: Establish a model of the evaluation system
To establish a suitable feature evaluation system as the basis of efficient evaluation, the feature

evaluation system needs to follow certain evaluation criteria, such as purposefulness, a scientific nature,
and systematization. In this paper, the feature evaluation system is designed as a three-layer structure,
namely, a target layer, an index layer, and a scheme layer. The target layer denotes the radar emitter
identification. In the index layer, three metrics—reliability, accuracy, and robustness—are adopted
to evaluate the performance of the parameters. The scheme layer is the parameters to be evaluated,
which are CF, PRI, PW, AOA, PA, and SMR. The model of the evaluation system is shown in Figure 6.
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Step 2: Construct the judgment matrix.
According to the Saaty relative importance hierarchy table [26], reliability, accuracy, and robustness

in the index layer are taken to make a comprehensive evaluation of the evaluated feature. The judgment
matrix is constructed in terms of these three indexes, which are compared with each other by the
expert’s scoring. Judgment matrix A is computed below.

A =
[
ai j

]
3×3

=

[
αi
α j

]
3×3

=


1 3 8

1/3 1 6
1/8 1/6 1

 (15)

where a13 = a1/a3 = 8 denotes that the influence of reliability on the evaluation system is much higher
than that of robustness for radar emitter identification. The definition of the other elements in matrix A
can be deduced in the same way.

In the same way, judgment matrices B1, B2, B3 can be obtained below.

B1 =



1 1/5 1/7 1/9 3 1/7
5 1 1/3 1/5 7 1/3
7 3 1 1/3 7 1
9 5 3 1 9 3

1/3 1/7 1/7 1/9 1 1/7
7 3 1 1/3 7 1


(16)

B2 =



1 3 4 4 5 7
1/3 1 3 3 4 6
1/4 1/3 1 1 3 5
1/4 1/3 1 1 3 5
1/5 1/4 1/3 1/3 1 3
1/7 1/6 1/5 1/5 1/3 1


(17)

B3 =



1 3 3 3 5 9
1/3 1 1 1 3 7
1/3 1 1 1 3 7
1/3 1 1 1 3 7
1/5 1/3 1/3 1/3 1 5
1/9 1/7 1/7 1/7 1/5 1


(18)

In judgment matrix B1, β1/β2 = 1/5 denotes the reliability of CF is weaker than that of PW,
β1/β5 = 3 denotes the reliability of CF is better than that of AOA. The definition of other elements in
matrices B1, B2, B3 can be deduced in this way.

Step 3: Calculate the weight vector of judgment matrices A, B1, B2, B3 and check their consistency.
In this step, we need to introduce three definitions [27]: compatibility index (CI), random

consistency index (RI), and compatibility ratio (CR). The mathematical expression of CI and CR are
given below.

CI =
(λmax − n)
(n− 1)

(19)

CR =
CI
RI

(20)

In the formulas mentioned above, n denotes the order of matrix A,λmax is the maximum eigenvalue
of the judgment matrix A. When n = 3, RI = 0.58; n = 4, RI = 0.96; n = 5, RI = 1.12; n = 6, RI = 1.24 [28].

The rules for consistency testing are as follows: when CR < 0.1, it is considered that the
inconsistency scale of judgment matrix A is in the allowable range and can be accepted. If CR ≥ 0.1,
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go back to Step 2 to adjust judgment matrix A again, then calculate and check the consistency until it
meets the consistency condition (CR < 0.1).

According to the Formulas (19) and (20) and judgment matrix A, the maximum eigenvalue and
the normalized eigenvector of judgment matrix A can be computed as below.

λmax = 3.0735, ωA = [a1, a2, a3] = [0.6527 0.2851 0.0623], CIA = 0.0367, CRA = 0.0633 (21)

where CRA < 0.1, it denotes that matrix A meets the requirement of consistency testing.
The maximum eigenvalues λB1 , λB2 , λB3 and the normalized eigenvectors

ωB1 = [b11, b12, b13, b14, b15, b16], ωB1 = [b21, b22, b23, b24, b25, b26], ωB3 = [b31, b32, b33, b34, b35, b36]

of matrices B1, B2, B3 can be computed in the same way. The computation results are shown in Table 2.

Table 2. Results of consistency testing of matrices B1, B2, B3.

k λk bk1 bk2 bk3 bk4 bk5 bk6 CIk RIk CRk

1 6.4084 0.0371 0.1068 0.2027 0.4261 0.0246 0.2027 0.0817 1.24 0.0659
2 6.3257 0.4194 0.2447 0.1218 0.1664 0.0604 0.0318 0.0651 1.24 0.0525
3 6.1714 0.4033 0.1664 0.1218 0.1664 0.0722 0.0252 0.0343 1.24 0.0277

As shown in Table 2, it can be seen that judgment matrices B1, B2, B3 all meet the consistency
testing requirement (CRk < 0.1).

Step 4: Calculate the total weight of each parameter in the scheme layer and check the consistency
of the evaluation system.

The calculation results of each parameter weight can be shown in Table 3.

Table 3. Weights of each parameter in the scheme layer.

Parameter Weight of Each Parameter

CF ω1 = a1b11 + a2b21 + a3b31= 0.1689
PW ω2 = a1b12 + a2b22 + a3b32= 0.1498
PRI ω3 = a1b13 + a2b23 + a3b33= 0.1746

SMR ω4 = a1b14 + a2b24 + a3b34= 0.3359
AOA ω5 = a1b15 + a2b25 + a3b35= 0.0378

PA ω6 = a1b16 + a2b26 + a3b36= 0.1429

The results of the consistency testing of hierarchical total sorting are as below.

CR =
a1CI1 + a2CI2 + a3CI3

a1RI1 + a2RI2 + a3RI3
= 0.0597 < 0.1 (22)

Where, when CR < 0.1, it denotes that the weights of each parameter in the scheme layer are
reasonable and effective. As shown in Table 3, it can be seen that the order of weight from large to
small is SMR > PRI > CF > PW > PA > AOA, and the SMR feature has the largest weight among these
six characteristic parameters.

According to the comprehensive evaluation results above, a sketch map of using SMR in REID is
shown in Figure 7.
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4. Simulation

In this section, three experiments are performed to demonstrate the identification capability of
the proposed coherent feature (SMR) based on the identification sketch map in Figure 7. The first
experiment scene is different radar emitters with the same working mode; the second experiment scene
is a certain radar emitter with complex working modes; the third experiment scene is different radar
emitters with different working modes.

4.1. Performance Evaluation of Experiment 1

In this experiment, three radar emitters with the same working mode and the same modulation
type are selected for validating the recognition capability of the SMR feature; the working mode is PRI
staggering, the modulation type is CW, and the three radar emitters are placed in three directions close
to each other. Signal parameters are shown in Table 4.

Table 4. Simulation parameters.

Emitter PA CF(MHz) AOA PW(µs) PRI(µs) Pulse Number

Emitter 1 1 30 49.8◦ 5 46, 50, 54 180
Emitter 2 1 30 50◦ 5 46, 50, 54 180
Emitter 3 1 30 50.2◦ 5 46, 50, 54 180

If the typical five parameters and the intrapulse feature are utilized for emitter identification, it is
easily misjudged that these pulses are from the same radar emitter. When SMR is combined with the
existing five parameters for recognition, the accuracy of REID using SMR in different SNRs is shown in
Figure 8.
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Figure 8. Accuracy of REID by using SMR in different SNRs.

From Figure 8, it can see that using SMR in REID can easily distinguish these three radar emitters
and that the recognition accuracy has been improved.

4.2. Performance Evaluation of Experiment 2

In this experiment, a frequency-agile radar emitter is utilized to verify the recognition capability
of the SMR feature. One hundred and eighty pulses were transmitted from the frequency-agile radar;
the frequency values were 27, 32, and 37 MHz, Fs was 100 MHz. The other parameters of the frequency
agile signal are shown in Table 5.

Table 5. Simulation parameters.

Pulse Train PA CF(MHz) PW (µs) PRI (µs) Pulse Number

Pulse train 1 1 27 10 90 60
Pulse train 2 1 32 10 90 60
Pulse train 3 1 37 10 90 60

If the traditional five parameters are used for emitter identification, it also easily misjudges that
the three pulse trains are from different radar emitters. The error probability of REID using SMR in
different SNRs when SMR is combined with the existing five parameters for recognition is shown in
Figure 9.
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4.3. Performance Evaluation of Experiment 3

In this experiment, we demonstrate the recognition capability of the SMR feature on three different
emitters with different working modes. The working mode of radar emitters 1–3 are, respectively,
PRI staggering, frequency agility, and PRI jittering, and the three radar emitters are placed in three
directions close to each other. All testing samples were from the emitter sample repositories. The other
parameters are shown in Table 6.
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Table 6. Simulation parameters.

Emitter PA CF(MHz) AOA PW (µs) PRI (µs) Pulse Number

Emitter 1 1 27 49.8◦ 5 46, 50, 54 200
Emitter 2 1 27, 33 50◦ 8 50 200
Emitter 3 1 33 50.2◦ 5 50 ± 5 200

Convolution neural network (CNN) and support vector machine (SVM) are taken for REID.
The parameter features selected for REID are CF, PRI, PW, and SMR, which were freely combined to
form one-dimensional, two-dimensional, three-dimensional, and four-dimensional feature vectors for
the classifier.

In this experiment, the structure diagram of CNN [29] is shown in Figure 10.
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Figure 10. Structure diagram of convolution neural network (CNN).

In the structure of CNN, we select the optimized network structure “5C-2S-7C-2S-5-3” in terms of
reference [30]. In this network structure, it denotes the convolution kernel size of the convolution layer
(C1) is 5, the downsampling multiple of the pooling layer (S2) is 2, the convolution kernel size of the
convolution layer (C3) is 7, the downsampling multiple of the pooling layer (S4) is 2, the number of
training iterations is 5, and the training data are divided into 3 segments. The training parameters
of CNN are the learning rate is 0.01, the weight decay is 0.0005, and the momentum constant is 0.8.
All experiment data are composed of 600 samples containing three radar emitters from the simulation
samples. Three hundred and sixty samples were utilized for training, and the other samples were used
for testing. The recognition results based on CNN by different dimensional feature vectors in different
SNRs are shown in Figure 11.
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In another SVM classifier [31], radial basis function (RBF) was selected as the kernel function, the
parameter of the kernel function was γ = 0.1, the penalty coefficient was C = 2. The recognition results
based on SVM by different dimensional feature vectors in different SNRs are shown in Figure 12.
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Figure 12. Recognition results of REID based on SVM in different SNRs.

As can be seen from Figures 11 and 12, when using the CNN and SVM classifiers, the recognition
results are similar. In different SNRs, when a one-dimensional feature vector is utilized for recognition,
the recognition accuracy based on the SMR feature is higher than other feature parameters. When the
multidimensional feature vectors are used for recognition, if the feature vector contains the SMR
feature, the recognition accuracy is also higher. It is further verified that the SMR feature has a better
recognition ability. Furthermore, because of the self-training process of CNN, when we have a emitter
sample database, we should choose the CNN classifier first. However, when there is no sample
database, the SVM classifier is preferred.

5. Conclusions

Aiming at the problem of reliability degradation of REID based on the typical five parameters
in a complex electromagnetic environment, a new feature parameter based on the instantaneous
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autocorrelation function has been extracted, which makes full use of the coherent characteristics
in today’s coherent radar. Through simulation analysis, it has been validated that the proposed
feature is insensitive to SNR and obtains strong adaptability in signal modulation change. Simulation
results show that the coherent feature can not only achieve satisfactory identification results when
combined with the typical five parameters, but it can be used as a new feature parameter to make
up the shortcomings in today’s radar emitter identification. Further work will focus on applying
the proposed feature to REID in actual electromagnetic environments, and further validating the
recognition capability of the proposed feature through practically measured data.

Author Contributions: Conceptualization, J.X. and L.J.; methodology, J.X. and X.Z.; software, J.X.; validation, J.X.,
L.T. and X.Z.; formal analysis, X.Z.; investigation, J.X.; resources, J.X.; data curation, L.T.; writing—original draft
preparation, J.X.; writing—review and editing, X.Z.; visualization, L.T.; supervision, L.J.; project administration,
X.Z.; funding acquisition, X.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the National Nature Science Foundation of China (grant
number 61976113).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Satija, U.; Trivedi, N.; Biswal, G.; Ramkumar, B.; Ramkumar, B. Specific Emitter Identification Based on
Variational Mode Decomposition and Spectral Features in Single Hop and Relaying Scenarios. IEEE Trans.
Inf. Forensics Secur. 2018, 14, 581–591. [CrossRef]

2. Ding, L.; Wang, S.; Wang, F.; Zhang, W. Specific Emitter Identification via Convolutional Neural Networks.
IEEE Commun. Lett. 2018, 22, 2591–2594. [CrossRef]

3. Yuan, Y.; Cui, G.L.; Ge, M.M.; Yu, X.X. Active repeat jamming suppression via multi-static radar
elliptic-hyperbolic location. In Proceedings of the 2017 IEEE Radar Conference, Seattle, WA, USA,
8–12 May 2017; Institute of Electrical and Electronics Engineers Inc.: Seattle, WA, USA, 2017; pp. 0692–0697.

4. Wu, X.; Hou, X.; Huang, Q.L.; Bu, Q. Radar Emitter Identification Algorithm Based on Fuzzy Set Theory.
Command. Inf. Syst. Technol. 2018, 9, 55–59.

5. Huo, Q.; Lee, C.-H. A Bayesian predictive classification approach to robust speech recognition. IEEE Trans.
Speech Audio Process. 2000, 8, 200–204. [CrossRef]

6. Zhang, B.; Srihari, S.N. Fast k-neatest neighbor classification using cluster-based trees. IEEE Trans. Pattern
Anal. Mach. Intell. 2014, 26, 525–528. [CrossRef] [PubMed]

7. Yang, C.Z.; Wu, H.C.; Li, P.; Wang, M.L. Approach Based on Cloud Model and SVM for Emitter Identification.
Modern Radar. 2013, 10, 41–45.

8. Xu, X. Radar Radiating-source Recognizing Based on Neural Networks. Comput. Digit. Eng. 2017, 45,
2126–2130.

9. Huang, Y.K.; Jin, W.D.; Yu, Z.B.; Wu, Y.P. Radar emitter signal recognition based on deep learning and
ensemble learning. Syst. Eng. Electron. 2018, 40, 2420–2425.

10. Hong, S.; Kwak, S.; Han, B. Weakly Supervised Learning with Deep Convolutional Neural Networks for
Semantic Segmentation: Understanding Semantic Layout of Images with Minimum Human Supervision.
IEEE Signal Process. Mag. 2017, 34, 39–49. [CrossRef]

11. Li, Y.J.; Zhao, Y.J.; Zhao, C. Recognition of Intra-Pulse Feature of Radar Signals Based on Canonical Correlation
Analysis. J. Inf. Eng. Univ. 2018, 19, 47–51.

12. Wang, H.; Fan, X.; Chen, Y.; Yang, Y. Wigner-Hough transform based on slice’s entropy and its application to
multi-LFM signal detection. J. Syst. Eng. Electron. 2017, 28, 634–642.

13. Kishore, T.R.; Rao, K.D. Automatic Intra Pulse Modulation Classification of Advanced LPI Radar Waveforms.
IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 901–914. [CrossRef]

14. Guan, X.; Zhu, H.P.; Zhang, Y.H. Analysis and Extraction of Radar Emitter Signal Feature based on Fractional
Fourier Transform. J. Detect. Control 2018, 40, 71–76.

15. Yu, Z.B.; Jin, W.D.; Chen, C.X. Radar Emitter Signal Recognition Based on WRFCCF. J. Southwest Jiao Tong Univ.
2010, 45, 290–295.

http://dx.doi.org/10.1109/TIFS.2018.2855665
http://dx.doi.org/10.1109/LCOMM.2018.2871465
http://dx.doi.org/10.1109/89.824706
http://dx.doi.org/10.1109/TPAMI.2004.1265868
http://www.ncbi.nlm.nih.gov/pubmed/15382657
http://dx.doi.org/10.1109/MSP.2017.2742558
http://dx.doi.org/10.1109/TAES.2017.2667142


Appl. Sci. 2020, 10, 5256 15 of 15

16. Yuan, Y.; Huang, Z.; Wu, H.; Wang, X. Special emitter identification based on Hilbert-Huang transform based
time-frequency-energy distribution features. IET Commun. 2014, 8, 2404–2412. [CrossRef]

17. Guo, L.R.; He, M.H.; Yu, C.L.; Wang, B.Q. Describe of Frequency Agility Radar Signal Coherent Characteristic.
Fire Control Command Control 2015, 40, 24–27.

18. Guo, L.R.; He, M.H.; Yu, C.L.; Wang, B.Q. New Time Domain Coherent Method of Radar Emitter Recognition.
Mod. Def. Technol. 2015, 43, 108–113.

19. Han, L.H.; Huang, G.M.; Wang, P. Research into Signals Intra-pulse Analysis of Linear Frequency Modulation
Radar Based on Instantaneous Auto-correlation Algorithm. Shipboard Electron. Countermeas. 2011, 34, 1–5.

20. Chen, L.J.; Shen, Y.L.; Chen, B.X.; Liu, P.; Chen, P. Frequency Estimation Algorithm Based on Multi-segment
Auto Correlation Signal and MC Method. Instrum. Tech. Sens. 2016, 5, 92–94.

21. Chen, P.; Tu, Y.Q.; Li, M.; Liu, P. Frequency estimation method of data extension based on autocorrelation.
Transducer Microsyst. Technol. 2019, 38, 26–29.

22. Ren, D.F.; Zhang, T.; Han, J. Specific emitter identification based on ITD and texture analysis. J. Commun.
2017, 38, 160–168.

23. Zhang, Y.; Hong, R.-J.; Pan, P.-P.; Deng, Z.-M.; Liu, Q.-F. Frequency-Domain Range Sidelobe Correction
in Stretch Processing for Wideband LFM Radars. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 111–121.
[CrossRef]

24. Lu, W.; Xie, J.; Wang, H.; Sheng, C. Parameterized time-frequency analysis to separate multi-radar signals.
J. Syst. Eng. Electron. 2017, 28, 493–502.

25. Xu, J.; He, M.H.; Han, J. Effectiveness assessment of radar emitter signal recognition based on
AHP-interval-TOPSIS. J. Air Force Early Warn. Acad. 2014, 28, 243–246.

26. Fan, X.; Fang, Y.; Cheng, Z.; Zhu, B.; Shi, Z. Performance Evaluation for Tracking Algorithm Based on AHP.
J. Proj. Rockets Missiles Guid. 2013, 33, 101–105.

27. Zhu, B.; Jin, W.D.; Yu, Z.B. Feature evaluation for advanced radar emitter signals based on SPA-FAHP.
J. Comput. Appl. 2014, 34, 1834–1838.

28. Long, F.; Liu, J.; Yu, H.; Zhu, H.; Zhang, S. The Evaluation System and Application of the Homestay
Agglomeration Location Selection. J. Resour. Ecol. 2019, 10, 324–334.

29. Jin, Q.; Wang, H.Y.; Yan, M. Radar Emitter Signal Recognition Based on Deep Convolutional Network.
Modern Deference Technol. 2019, 47, 154–160.

30. Leng, P.F.; Xu, C.Y. Specific Emitter Identification Based on Deep Reinforcement Learning. Acta Armamentarii
2018, 39, 2420–2426.

31. Vanhoy, G.; Schucker, T.; Bose, T. Classification of LPI radar signals using spectral correlation and support
vector machines. Analog. Integr. Circuits Signal Process. 2017, 91, 305–313. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1049/iet-com.2013.0865
http://dx.doi.org/10.1109/TAES.2017.2649278
http://dx.doi.org/10.1007/s10470-017-0944-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Analysis of Signal Coherent Characteristics 
	Coherent Feature Extraction and Evaluation 
	Simulation Analysis 
	The Model of Coherent Feature Extraction 
	Coherent Feature Evaluation 

	Simulation 
	Performance Evaluation of Experiment 1 
	Performance Evaluation of Experiment 2 
	Performance Evaluation of Experiment 3 

	Conclusions 
	References

