Tentative Investigations on Reducing the Edge Effects in Pre-Polishing the Optics
Abstract
:1. Introduction
2. Theoretical Analysis of the Edge Effect
2.1. Generation of the Edge Effect
2.2. Finite Element Analysis of the Contact Pressure
2.3. Discussion on the Edge Error Profile
3. Experiments
4. Verification and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, D.; Guo, H. A trajectory planning method for polishing optical elements based on a non-uniform rational B-spline curve. Appl. Sci. 2018, 8, 1355. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Zhang, L.; Fan, C.; Zhu, W.; Beaucamp, A. Theoretical study of path adaptability based on surface form error distribution in fluid jet polishing. Appl. Sci. 2018, 16, 1814. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.A. Optimization of computer controlled polishing. Appl. Opt. 1977, 16, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Kordonski, W.; Gorodkin, S. Material removal in magnetorheological finishing of optics. Appl. Opt. 2011, 50, 1984–1994. [Google Scholar] [CrossRef] [PubMed]
- Walker, D.D.; Brooks, D.; King, A.; Freeman, R.; Morton, R.; McCavana, G.; Kim, S.-W. The ‘Precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces. Opt. Express 2003, 11, 958–964. [Google Scholar] [CrossRef]
- Jones, R.A. Segmented mirror polishing experiment. Appl. Opt. 1982, 21, 561–564. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, J.; Sun, X. Theoretical method for edge figuring in computer-controlled polishing of optical surface. Proc. SPIE 1994, IV, 239–246. [Google Scholar] [CrossRef]
- Xuejun, Z.; Jingchi, Y.; Xiafei, S. Edge control in computer controlled optical polishing. Proc. SPIE 1995, 12536, 239–242. [Google Scholar] [CrossRef]
- Cordero-Davila, A.; Gonzalez-Garcia, J.; Pedrayes-Lopez, M.; Aguilar-Chiu, L.A.; Cuautle-Cortes, J.; Robledo-Sanchez, C. Edge effects with the Preston equation for a circular tool and workpiece. Appl. Opt. 2004, 43, 1250–1254. [Google Scholar] [CrossRef]
- Guo, P.; Fang, H.; Yu, J. Edge effect in fluid jet polishing. Appl. Opt. 2006, 45, 6729–6735. [Google Scholar] [CrossRef]
- Kim, D.W.; Park, W.H.; Kim, S.-W.; Burge, J.H. Parametric modeling of edge effects for polishing tool influence functions. Opt. Express 2009, 17, 5656–5665. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wu, F.; Zeng, Z.; Fan, B.; Wan, Y. Edge effect modeling and experiments on active lap processing. Opt. Express 2014, 22, 10761–10774. [Google Scholar] [CrossRef]
- Wan, S.; Zhang, X.; Wang, W.; Xu, M.; Jiang, X. Edge control in precision robotic polishing based on space-variant deconvolution. Precis. Eng. 2019, 55, 110–118. [Google Scholar] [CrossRef]
- Zhong, X.; Fan, B.; Wu, F. Reducing edge error based on further analyzing the stability of edge TIF and correcting the post-edge algorithm in MRF process. Opt. Rev. 2020, 27, 14–22. [Google Scholar] [CrossRef]
- Walker, D.; Beaucamp, A.; Dunn, C.; Evans, R.; Freeman, R.; Morton, R.; Wei, S.; Yu, G. Active control of edges and global microstructure on segmented mirrors. Proc. SPIE 2008, 7018, 701812. [Google Scholar] [CrossRef]
- Walker, D.; Yu, G.; Li, H.; Messelink, W.; Evans, R.; Beaucamp, A. Edges in CNC polishing: From mirror-segments towards semiconductors, paper 1: Edges on processing the global surface. Opt. Express 2012, 20, 19787–19798. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yu, G.; Walker, D.; Evans, R. Modelling and measurement of polishing tool influence functions for edge control. J. Eur. Opt. Soc. Rap. Pub 2011, 6, 1104801–1104806. [Google Scholar] [CrossRef]
- Walker, D.; Beaucamp, A.; Evans, R.; Fox-Leonard, T.; Fairhurst, N.; Gray, C.; Hamidi, S.; Li, H.; Messelink, W.; Mitchell, J. Edge-control and surface-smoothness in sub-aperture polishing of mirror segments. Proc. SPIE 2012, 8450, 84502A. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Walker, D.; Yu, G.; Sayle, A.; Messelink, W.; Evans, R.; Beaucamp, A. Edge control in CNC polishing, paper 2: Simulation and validation of tool influence functions on edges. Opt. Express 2013, 21, 370–381. [Google Scholar] [CrossRef]
- Yu, G.; Walker, D.; Li, H.; Zheng, X.; Beaucamp, A. Research on edge-control methods in CNC polishing. J. Eur. Opt. Soc. Rap. Pub. 2017, 13, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Beaucamp, A.; Namba, Y.; Charlton, P. Corrective finishing of extreme ultraviolet photomask blanks by precessed bonnet polisher. Appl. Opt. 2014, 53, 3075–3080. [Google Scholar] [CrossRef] [PubMed]
- Paul, R.; Yoder, J. Mounting Optics in Optical Instruments; SPIE Press: Bellingham, WA, USA, 2008. [Google Scholar]
- Wang, C.; Yang, W.; Wang, Z.; Yang, X.; Sun, Z.; Zhong, B.; Pan, R.; Yang, P.; Guo, Y.; Xu, Q. Highly efficient deterministic polishing using a semirigid bonnet. Opt. Eng. 2014, 53, 095102. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.; Wang, Q.; Ke, X.; Zhong, B.; Guo, Y.; Xu, Q. Improved semirigid bonnet tool for high-efficiency polishing on large aspheric optics. Int. J. Adv. Manuf. Technol. 2017, 88, 1607–1617. [Google Scholar] [CrossRef]
- Wang, C.; Yang, W.; Wang, Z.; Yang, X.; Hu, C.; Zhong, B.; Guo, Y.; Xu, Q. Dwell-time algorithm for polishing large optics. Appl. Opt. 2014, 53, 4752–4760. [Google Scholar] [CrossRef]
- Ke, X.; Wang, C.; Guo, Y.; Xu, Q. Modeling of tool influence function for high-efficiency polishing. Int. J. Adv. Manuf. Technol. 2016, 84, 2479–2489. [Google Scholar] [CrossRef]
Conditions | Value |
---|---|
Precession angle(deg) | 23 |
Inner pressure(MPa) | 0.25 |
H-axis speed (rpm) | 1500 |
Feeding speed (mm/min) | 100 |
Radius of bonnet (mm) | 80 |
Polishing slurry | ~2 wt.% CeO |
Overhang ratio | 0–0.5, with the increment of 0.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, X.; Qiu, L.; Wang, C.; Wang, Z. Tentative Investigations on Reducing the Edge Effects in Pre-Polishing the Optics. Appl. Sci. 2020, 10, 5286. https://doi.org/10.3390/app10155286
Ke X, Qiu L, Wang C, Wang Z. Tentative Investigations on Reducing the Edge Effects in Pre-Polishing the Optics. Applied Sciences. 2020; 10(15):5286. https://doi.org/10.3390/app10155286
Chicago/Turabian StyleKe, Xiaolong, Lei Qiu, Chunjin Wang, and Zhenzhong Wang. 2020. "Tentative Investigations on Reducing the Edge Effects in Pre-Polishing the Optics" Applied Sciences 10, no. 15: 5286. https://doi.org/10.3390/app10155286
APA StyleKe, X., Qiu, L., Wang, C., & Wang, Z. (2020). Tentative Investigations on Reducing the Edge Effects in Pre-Polishing the Optics. Applied Sciences, 10(15), 5286. https://doi.org/10.3390/app10155286