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Abstract: Human activity recognition has become essential to a wide range of applications, such as
smart home monitoring, health-care, surveillance. However, it is challenging to deliver a sufficiently
robust human activity recognition system from raw sensor data with noise in a smart environment
setting. Moreover, imbalanced human activity datasets with less frequent activities create extra
challenges for accurate activity recognition. Deep learning algorithms have achieved promising
results on balanced datasets, but their performance on imbalanced datasets without explicit algorithm
design cannot be promised. Therefore, we aim to realise an activity recognition system using
multi-modal sensors to address the issue of class imbalance in deep learning and improve recognition
accuracy. This paper proposes a joint diverse temporal learning framework using Long Short Term
Memory and one-dimensional Convolutional Neural Network models to improve human activity
recognition, especially for less represented activities. We extensively evaluate the proposed method
for Activities of Daily Living recognition using binary sensors dataset. A comparative study on five
smart home datasets demonstrate that our proposed approach outperforms the existing individual
temporal models and their hybridization. Furthermore, this is particularly the case for minority
classes in addition to reasonable improvement on the majority classes of human activities.

Keywords: Activity recognition; Smart home; Imbalanced class; Joint learning; Temporal models

1. Introduction

Human activity recognition (HAR) is the active research field for monitoring human behaviours,
which stimulates various applications in fields healthcare monitoring [1], security monitoring [2],
and resident situation assessment [3] and behaviour pattern recognition in pro-active home care [4].
In the home care scenario, HAR is a key component of smart home technology that makes independent
living as a viable solution for elderly people, and thus enhances and maintains the quality of life and
care [5,6]. Smart home settings are often referred to as Ambient Assisted Living (AAL), and their
main purpose is to remotely monitor and assess the wellness of older adults and people with
dementia or other relevant disabilities. Overall, smart homes with human activities monitoring
have been used for transparent surrounding context representation, which have enabled various health
technology applications, such as disease progress and recovery tracking, or anomaly detection with
a typical example of fall detection. Additionally, the recent advancement of machine learning has
significantly progressed HAR systems and achieved performance improvements in many aspects of
their applications, such as elderly-care alert systems and assistance in emergencies [7]. Long-term
human activity monitoring yields feasibility to determine and assess the wellness. Specifically,
activities, such as sleeping, eating, and showering in smart homes, are key events to enable the
tracking and assess of the functional health status of elderly people [8]. Furthermore, data collected
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from multimodal sensors in a smart home can provide sufficient information for the recognition
of Activities of Daily Living (ADL), behaviour pattern to achieve detection, and the postural and
ambulatory activity recognition [9,10].

Although deep learning techniques have been applied for ADL recognition, it is still challenging
and remains an open research issue to build an accurate HAR system due to the high diversity of
human activities. Besides, the frequency variance of human activities is usually imbalanced leading to
additional challenges. When building a machine learning model with an imbalanced dataset, it tends
to partially or completely ignore the minority classes in order to achieve satisfied overall accuracy.
For example, in HAR datasets, cooking, watching TV in the living room, and sleeping usually occur in
a higher frequency than showering and snack eating. Different from the existing methods, this paper
aims to improve HAR from imbalanced smart home datasets, especially for less represented classes.

Although several past and recent studies have been conducted on the imbalanced class
problem [11,12], there is a lack of relevant empirical work for HAR. Classical machine learning
methods in the form of individual learning or ensemble learning, such as support vector machine,
decision tree, random forest, naive Bayes, hidden Markov models, and their ensembles, have been used
to balance between maximising the accuracy of classification on minority classes and minimising the
total recognition error [13,14]. These classical methods have shown a certain level of recognition results,
but these methods mainly rely on hand-crafted and classical heuristic feature extraction, which could
be limited by the availability of knowledge domain experts [15]. A natural variation within each
human physical activity is repeatedly presented in recorded datasets of a smart home environment
and is often seen to fluctuate even more amongst inhabitants. Human activities are temporally and
spatially different, and the deployed sensors in smart homes vary, so building accurate HAR systems
can be challenging based on traditional machine learning where features are typically hand-crafted.
Hence, discovering more systematic approaches to extract features from raw smart home datasets has
drawn increasing research interests [16]. Deep learning is a promising technique for many applications,
such as natural language processing, speech recognition, and image classification, which significantly
outperforms shallow learning [15].

Consequently, due to the rapid increase of the number of smart home care services to monitor
elderly people, deep learning for HAR systems have been more commonly employed [17,18].
Most of these systems have achieved state-of-the-art performance on various datasets of ADL [19,20].
Particularly, promising results for HAR have been achieved by two temporal deep learning models
i.e., long short-term memory (LSTM), and one dimensional convolutional neural networks (1D CNN)
when multiple and incremental fuzzy temporal windows are employed in order to generate input
datasets to represent temporal components of human daily activities in the sensor data[17,18].

To further improve the performance, we propose a joint learning method of two different temporal
models, i.e., LSTM and 1D CNN, for HAR. LSTM and 2D CNN are used in parallel for improving
classification performance of acoustic scenes to process different form of input features [21]. Acoustic
sequential features are processed by LSTM Layers, while spectrogram images are processed by 2D
CNN. We propose a joint learning of temporal LSTM and 1D CNN models in order to learn from
the same form of input features for HAR. Different from ensemble learning that often combines the
outputs of many learners while using a specific aggregation function to handle imbalanced data [22],
the proposed method combines the learning processes of two temporal models in a single joint training
mechanism to improve the accuracy on minority classes in addition to maintain the accuracy on
majority classes. Therefore, joining the learning processes of two different temporal models in the
proposed method is expected to obtain a better combined model compared to simply aggregating
the outputs of multiple learners. It is also expected to obtain more accurate and reliable estimates
or decisions than single models. The two temporal learners of the jointly proposed methods can
exploit different features from the input data to rendering a strong mutual complementary model.
Complementarity in joint learning based on different models can greatly boost the performance as
compared to simply combining the same learners (e.g., LSTM with LSTM in this work) in a joint
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learning model [23]. This is because each base learner brings different features into the joint learner
to enrich the joint learning process and each learner improves the earlier layers of the other learner,
but in the same time the weaknesses of each individual learners are avoided. The proposed method
jointly trains the two base learner i.e., LSTM and 1D CNN, and combines the based learners by a fully
connected layer, which is followed by the output layer. The joint optimization that leads to increasing
the functionality of the proposed joint temporal model to gain more insight into the input data and
features reduces the recognition error rate. Thereby, the proposed model increases the performance of
activity recognition particularly for minority classes. We also adopt the incremental multiple fuzzy
temporal windows approach in order to compute informative features to enhance recognition accuracy,
particularly for minority classes as well.

To summarise, the main contributions of this paper are:

i. proposing a joint temporal model to conduct a parallel combination of LSTM and 1D CNN to
improve the accuracy of activity recognition;

ii. employing multiple fuzzy windows are used to compute features and improve the performance
of human activity recognition;

iii. taking the features of HAR datasets; and,
iv. conducting extensive experiments using five benchmark datasets to validate the proposed

approach, which shows our proposed method can improve the accuracy by more than 4% as
compared with those of the existing research works

The rest of this paper is organised, as follows. Section 2, reviews the related work. Methods,
individual deep learning temporal models, and the proposed joint temporal model are described in
Section 3. Experimental setup and evaluations are reported and discussed in Section 4. Finally, Section 5
concludes the paper.

2. Related Work

Class imbalance problem is broadly researched, particularly using a traditional machine learning
perspective. Japkowicz et al. [24] conducted an extensive systematic study and described three
crucial factors of the problem: the training set size, complexity of concept, and degree of imbalance.
This paper showed that problems to imbalanced classes with a minor concept complexity were
insensitive, but the models with an increased concept complexity to class imbalances carried out poorly.
Furthermore, it was concluded that a sufficiently large amount of training data could handle a sever
complex problem, which gave satisfying accuracy. Finally, the study suggested cost-modifying and
oversampling techniques for enhancing performance over the undersampling mechanism. However,
the study mainly worked on data processing, while in our paper, we propose a deep learning algorithm
in order to handle the imbalanced problem.

The intrinsic property of physical human activities makes classes representing imbalanced,
which leads to the importance of the topic of HAR learning algorithms for imbalanced class handling,
especially with a large dataset for deep learning study. Dealing with class imbalanced problems
based on different strategies for deep learning methods was recently reviewed by [25]. It is revealed
that there has not been enough studies with empirical work conducted on targeting the imbalanced
class problem for deep learning. However, the same review indicated that traditional approaches
to handling class imbalance problems used in deep learning situations show encouraging results.
The traditional approaches include cost-sensitive target function and random oversampling in order to
handle the imbalanced class problem and to avoid skewed learning toward majority classes.

Handling class imbalance for deep learning models mainly focuses on computer vision
applications and, therefore, cannot be directly applicable to a HAR setting [25,26]. Khan et al. [27]
proposed a modified cost-sensitive learning scheme with satisfying results. The cost-sensitive approach
is weighting the classes differently based on the size or importance of classes while sampling is
under-sampling majority classes or over-sampling minority classes. However, image classification
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tasks are used for the evaluation. proposed a method that combines a modified hinge loss and a
sampling approach to provide tighter constraints between classes to handle class imbalance problems in
computer vision tasks for a better discriminative deep representation [28]. However, two-dimensional
(2-D) image classification cannot be directly translatable to a HAR setting [25,26] that usually has 1-D
temporal data.

Several deep learning methods have been proposed for human activity recognition based on
temporal data, which focuses on data processing. Nguyen et al. proposed a random oversampling
method BLL-SMOTE on the data from mobile phone sensors which improved the human activity
classification results [29]. Besides, to properly handle imbalanced activity classes, HAR systems often
require selecting the temporal window size explicitly, which needs exhaustive analysis. Many shallow
learning methods, including Decision Tree, Support Vector Machines (SVM), Hidden Markov Model is
based on sliding, or dynamic window approaches have previously been studied [30–33]. The aim of
these studies is to choose the proper window size in order to improve the classification performance.
Recently, it has been found that the fuzzy temporal windows are capable of extracting good features
for activity recognition from smart home sensor data [17,18]. Different from previous works, fuzzy
temporal windows are used to generate the input datasets for temporal models in order to improve the
performance of the minority classes in addition to the majority classes from human activity recognition.

Therefore, the proposed method has the capability to reduce the complexity of the selection of the
window size and to properly and easily recognise imbalanced physical human daily activities.

3. Methods

In this paper, a joint learning deep learning method is proposed for human activity recognition,
which particularly addresses the class imbalance problem. In Section, we first describe the
temporal models in the Section 3.1, i.e., LSTM and 1D CNN, and the hybrid 1D CNN and LSTM
model. Subsequently, the proposed method is introduced in detail. Particularly, we discuss class
imbalance strategies.

3.1. Model Selection and Architecture

In this section, we will introduce the popular temporal models based on deep learning techniques,
i.e., LSTM, 1D CNN, and the hybrid model to compare with the proposed method.

3.1.1. LSTM

LSTM extends the memory of the Recurrent Neural Network (RNN) to learn patterns from
temporal sequential data [34]. It has been used to process the sensor data collected in a smart home for
human activity recognition [17,18]. Different from RNN, LSTM solves the vanishing gradient problem,
which learns long-term sequences and the effect of initial dependencies in the sequence. LSTM has
been widely used for the applications with temporal dependence between observations [35], such as
natural language processing [36], stock market prediction [37], and speech recognition [38]. Each LSTM
has three gates, which are forget, input, and output gates, which remove or add information to the cell
state. The cell state is the key component to LSTMs which store and pass information between LSTMs.
Figure 1 shows how the three gates are connected to the cell state and to each other. Each LSTM
cell operates as a memory to erase, read, and write information based on the outcomes rendered by
forget, output, and input gates, respectively. Forget gate receives both a new time step Xt and the
previous output ht−1 as input and renders the output using sigmoid activation function to decides
what information will be kept or deleted. The information will be kept if the output of the sigmoid
function is 1, while the information will be completely removed if the output of the sigmoid function is
0. Equation (1) shows how the forget gates is computed. The next step comprises two parts to specifies
what new information should be stored in the cell state. Input gate is the first part and specify what
new information from the current input (Xt, ht−1) is added to the cell state. The second part is the
tanh activation function that generates C̃t a vector of new candidate values and could be appended to
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the cell state. The multiplication of these two parts will be added to the multiplication of forget gate
with previous cell state to create a new cell state Ct. When forget gate multiplied by the previous cell
state, part of the information which was specified to be deleted earlier will be forgotten. Then the new
candidate values is scaled by how much the cell state is updated using it × C̃t . Equations (2)–(4) show
how the input gate, new candidate values, and cell state are computed, respectively. Finally, the output
gate is computed based on filtered information using two different activation function and also specify
the next hidden state. First, previous hidden state ht−1 and the current input time step xt are passed
into the sigmoid activation function. Next, the new updated cell state is fed to the tanh activation
function. The output of sigmoid function mulitplies by the output of tanh functions to generate the
next hidden state. The updated cell state and the new generated hidden state pass information to the
next time step. Equations (5) and (6) show the calculation of output gate and hidden state.

ft = σ(W f .[ht−1, xt] + b f ) ft represents forget gate (1)

it = σ(Wi.[ht−1, xt] + bi) it represents input gate (2)

C̃t = tanh(WC.[ht−1, xt] + bc) C̃t represents candidate values (3)

Ct = ft × Ct−1 + it × C̃t Ct represents Cell state (4)

ot = σ(Wo.[ht−1, xt] + bo) ot represents output gate (5)

ht = ot × tanh Ct ht represents hidden state (6)

where x is the input data, σ is the sigmoid activation function, tanh is the hyperbolic tangent activation
function, W is the weight matrix.

LSTM has been adopted in activity recognition applications and obtained promising results [18,20,39–41].
Therefore, LSTM as a temporal model is used in this study. The employed LSTM model is designed
using two LSTM layers and the output of the LSTM layers is flattened and fed into a fully connected
layer with ReLU activation function and followed by a softmax layer. Figure 2 shows the architecture
of the LSTM model.

?  ?  ?  tanh

tanh

Xt

Cell state 

ht-1

ct-1

ht

ht

ct

Figure 1. Single long short-term memory (LSTM) cell.

3.1.2. 1D CNN

In the human activity recognition study, CNN is used to extract features from raw sensors data.
CNN has successfully achieved satisfying results in computer vision i.e., image recognition [42],
and natural language processing i.e., speech recognition and text analysis [20]. When applied for
human activity recognition, CNN has the advantages of local dependency and scale invariance [15].
Specifically, CNN only considers local observations without any dependency with distant ones, and the
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scale is invariant for different frequencies or paces. CNN layers are applied to learn representations
of human physical activity to obtain satisfying results [20]. A one dimensional (1D) CNN model
that extracts local 1D sub-sequences from temporal sequential data is used in the experiments of this
paper. 1D CNN has achieved competitive results as compared to LSTM in some applications of natural
language processing, including machine translation and audio generation, with a cheaper computation
cost [43].

LSTM

X0

X1

X2

Xn

LSTM

LSTM

LSTM

F
lattened

LSTM

LSTM

LSTM

LSTM

Input temporal  data 

Figure 2. Architecture of the LSTM model for human activity recognition.

The 1D CNN model is built by employing two convolutional layers each with 64 filters, and the
kernel size is equal to 3, which specifies the length of the 1D convolution window with the length
of stride as 1. The feature maps of convolution layers are down-sampled by the max-pooling layer,
and the size of the max pooling window is equal to 2. The outputs of the max-pooling layer are
flattened and then fed into a fully-connected, i.e., a dense layer with ReLU activation function followed
by a soft-max layer. Figure 3 shows the architecture of 1D CNN.

  

Input data

Two layers of 1D CNN with 64 filters Max pooling Flattened

Figure 3. Architecture of the one dimensional convolutional neural networks (1D CNN) model for
human activity recognition.

3.1.3. Hybrid Model: 1D CNN + LSTM

1D CNN and LSTM have been used sequentially to build a hybrid model for human recognition [18].
Figure 4 shows the structure of the hybrid model. 1D CNN is used for feature extraction from input
data before the LSTM layers to support sequence prediction. 1D CNN layers process the input
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sub-sequences of human activities independently. The sub-sequences of human activities in 1D CNN
are not sensitive to the time step order, which is opposite to LSTM. Moreover, 1D CNN layers are
often used when an RNN model cannot realistically process and recognise long temporal sequential
data. In such cases, the hybrid model could be used as a solution where 1D CNN can be applied as a
pre-processing step to make the long temporal sequential data shorter through down-sampling by
extracting higher level features. Subsequently, the 1D extracted features as input are fed to the RNN
layers [44]. 1D CNN layers as a pre-processing step of RNN layers is particularly important to make
the long sequences smaller when order sensitivity is not needed. However, order sensitivity is the key
in activity recognition systems, hence the hybrid of 1D CNN and LSTM is not an optimal solution to
induce order sensitivity. In this paper, the hybrid model is built by combining 1D CNN and LSTM
where a 1D CNN layer is used as a pre-processing step to an LSTM layer. Specifically, the 1D CNN
layer followed by a max-pooling layer with the size of the window is equal to 2. Afterwards, the LSTM
layer and flattened layer are stacked, followed by fully-connected layers, i.e., a dense layer with ReLU
activation function and a soft-max layer.

  

 

X1

X2

X3

X4

.

.

.

Xn
1D CNN with ReLU   

64 filters 

   

LSTM

LSTM

.

.

.

LSTM

LSTMPooling Flattened  

Input data 

Figure 4. Architecture of the Hybrid 1D CNN + LSTM model for human activity recognition.

3.2. Proposed Joint Temporal Model

In this section, we propose joint learning of temporal model for human activity recognition.
Temporal models are jointly employed in order to learn and recognise human daily living activities
from smart homes aiming at increased diversity between base learners which is crucial for joint
learners. The aim of joining different learner models is to produce a mutual complementary network by
contributing each network with different learning approaches to build strong joint learners with good
performance. Therefore, robust learners LSTM and 1D CNN for temporal data are used, which have
high variance and low bias due to their almost universal function approximation ability [45] for
delivering the joint learning recognition. Furthermore, the different base learners in the proposed
model can expose features of different aspects of the input data which can boost the recognition
performance. Joint different temporal models in addition to using leave-one-out cross-validation are
used to reduce high variance. Figure 5 shows the architecture of the proposed joint learning of temporal
models. Different from the Hybrid 1D CNN + LSTM model, our proposed joint learning of the temporal
model includes the two parallel sequences that include LSTM and 1D CNN. The proposed method is
composed of the following layers: LSTM, 1D CNN, and fully connected layers. Here, we show the
details of these layers:

• The raw temporal human activity data are used as the input of the model.
• We use fuzzy temporal windows (More details about the fuzzy temporal windows will be

introduced in Section 3.3.) for feature extraction before passing to the deep learning model.
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• The proposed deep learning model has two parallel temporal models, i.e., LSTM and 1D CNN.
• The first part of the model is consists of two LSTM layers.
• The second part of the model is consists of two 1D CNN layers each with 64 filters. The kernel size

is equal to 3 that specifies the length of the 1D convolution window, and the stride is equal to 1.
• Each LSTM and 1D CNN layer is followed by a dense layer to make the output-shape of LSTM

and CNN layers compatible for the next shared fully-connected layer since the output-shapes of
LSTM and 1D CNN layers are different.

• Features from two separate dense layers are combined (fused) and fed to the next shared layer.
• One shared fully connected layer with ReLU activation function is followed.
• The final layer is the output layer with soft max activation layers.

Two layers in each of the LSTM and 1D CNN followed by a dense layer are used in order to
build the model. The two multi-layer temporal models are jointly trained with 0.001 learning rate.
A new shared fully-connected layer is added and connected to the dense layers of both individual
temporal models. The shared fully-connected layer aggregates different exposed features of the two
different models to boost the recognition performance of the minority classes in addition to the majority
classes. Moreover, aggregating different exposed features in the proposed learning method helps the
classifier in detecting rare activities and avoids having models biased toward one class or the other
when compared to an individual learner. During updating parameters i.e., model weights, both LSTM
and 1D CNN models contribute to adjust the weights through the shared layer to correctly map the
input data to the output class activities. Hence, the new shared layer is used to further learn and
share learned information across both joint models of the system to allow each temporal model to
improve the earlier layer of the other temporal model. Thereby, the joint optimisation will maximise
their capacity to enhance the recognition performance of all the classes, including the minority classes.
Designing the parallel and joint learning of temporal models by combining the order-sensitivity
of LSTM with the speed and lightness of 1D CNN renders an efficient model for human activity
recognition. The shared fully connected layer is followed by an output layer to properly recognise
human activities. When designing the deep learning structure, we consider joint robust learners with
diversity, which can help to boost the recognition performance of minority classes.

Human Activities Fuzzy temporal windows 

Data Preprocessing LSTM LSTM

1D CNN 1D CNN

Data 

Temporal Models 

Fusion 

Shared Layer 

Output layer 

Dense layer on LSTM layers

Dense layer on 1D CNN layers

Figure 5. Architecture of the proposed joint learning of temporal model for human activity recognition.

3.3. Fuzzy Temporal Windows for Data Pre-Processing

As shown in Figure 5, fuzzy temporal windows (FTWs) are used to generate the input datasets
from the raw sensor data for training temporal models. A fuzzy set that introduces each FTW Tk is
specified by a membership function. The shape of the fuzzy set corresponds to a trapezoidal function
Tk[l1, l2, l3, l4] is shown in Equation (7). Four values that define the trapezoidal membership functions
are a lower limit l1, an upper limit l4, a lower support limit l2, and an upper support limit l3. The four
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values of these l1, l2, l3, l4 are provided by the Fibonacci sequence, which has recently been successfully
used for introducing FTWs. The Fibonacci sequence can easily be used for FTWs to build training
datasets without involving a knowledge expert definition [17,18,46]. Figure 6 shows 12 multiple and
incremental FTWs are designed based on the Fibonacci sequence. To generate a training input dataset,
the FTWs are slided over raw sensors data x in every minute according to Equation (7): For example,
in Ordonez smart homes A, the training input dataset generated by applying 15 FTWs on the raw
sensor activations from all 12 binary sensors with the window size of 1 min. The datasets of Ordonez
smart home A and B have 20,358 and 30,469 examples, respectively, where each example represents
one minute of data with 12× 15 = 180 features. Algorithm 1 shows the procedure of using FTWs in
order to generate input training datasets.

Algorithm 1: Fuzzy temporal windows to generate input Datasets
1: Input: Sensor_data Sensor data from smart homes

2: FTWs← FibonacciSequence Fibonacci Sequence to define values of FTWs

3: Intervals_sensor ← Sensor_data Raw sensor data

4: for f tw← FTWs do

5: for interval_sensor ← Intervals_sensor do

6: apply f tw on interval_sensor

7: end for
8: extracted_ f eatures← maximum( f tw)

9: end for
10: datasets← extracted_ f eatures
11: Output: datasets

Tk(x)[l1, l2, l3, l4] =



0 x ≤ l1
(x− l1)/(l2 − l1) l1 < x < l2
1 l2 ≤ x ≤ l3
(l4 − x)/(l4 − l3) l3 < x < l4
0 l4 ≤ x

(7)

60 50 40 30 20 10 0
Minutes

0.0

0.2

0.4

0.6

0.8

1.0

D
eg

re
e

Figure 6. Example of multiple incremental fuzzy temporal windows to segment raw sensors data.

4. Experimental Setup and Evaluation

In the section, we will show details of the experimental setup and evaluation with the details of
five used datasets, evaluation methods and results.
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4.1. Dataset of Smart Home Data

Five human Activities of Daily Living (ADLs) recorded using binary sensors in real smart homes
from public datasets are used for the evaluation. Among them, two datasets contain the sensor data
from residents’ daily routine, referred as to Ordonez Home A and B [47]. These two smart homes are
typically equipped with different binary sensors that can capture the daily physical activities of the
residents. The binary sensors in these datasets are passive infrared (PIR) motion detectors to detect
physical activities and interactions in a limited area, pressure sensors on beds and couches in order
to detect the user’s presence, reed switches on cupboards and doors to measure open or close status,
and float sensors in the bathroom to measure toilet being flushed or not. Table 1 provides details of the
two Ordonez smart homes A and B with information of the inhabitants, and the number of activities
and sensors. In Ordonez Home A, nine physical activities were carried out in fourteen days over a
period of 20358 min, where data were recorded by twelve sensors in the home. In Ordonez Home
B, ten physical activities were carried out in twenty-two days over a period of 30,469 min, where
data were recorded by twelve binary sensors. The timeline of the physical human activities for all the
smart homes data is segmented in time slots using the window size ∆t = 1 mi. The activities of the
common activities from Ordonez Homes A and B are Breakfast, Lunch, Sleeping, Grooming, Leaving, Idle,
Snack, Showering, Spare Time/TV, and Toileting, respectively. In addition to these activities, Ordonez
Home B has the activity Dinner. Table 2 shows the number of observations for each activity in the
Ordonez datasets.

Table 1. Details of the datasets.

Ordonez-Home A Ordonez-Home B Kastern-Home A Kastern-Home B Kastern-Home C

Setting Home Home Apartment Apartment House

Rooms 4 5 3 2 6

Duration 14 days 21 days 25 days 14 days 19 days

Sensors 12 12 14 23 21

Activities 10 11 10 13 16

Age - - 26 28 57

Gender - - Male Male Male

Table 2. Frequency of activities in the Ordonez datasets.

Activity Home A Home B

Dinner - 120
Snack 6 408
Showering 96 75
Grooming 98 427
Breakfast 120 309
Toileting 138 167
Lunch 315 395
Idle 1598 3553
Leaving 1664 5268
Sleeping 7866 10763
Spare Time/ TV 8555 8984
Total 20,358 30,469

Three datasets from [48,49] were collected from three other environments equipped with binary
sensors as well, refer to as Kasteren home A, B, and C. The details of these datasets are shown in
Table 1. In Kasteren home A, ten daily human activities were carried out in twenty-five days over a
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period of 40,005 min, which were recorded from fourteen sensors in the smart home A. In Kasteren
home B, thirteen daily physical human activities were carried out in fourteen days over a period of
38,900 min, which were recorded from twenty-three binary sensors. In Kasteren home C, sixteen daily
human activities that were carried out in nineteen days over a period of 25,486 min, which were carried
out from 21 binary sensors. The timeline of the daily human activities for all Kasteren smart homes
is segmented in time slots using the window size ∆t = 1 min as well. Table 3 shows the number of
observations for each activity in the Kasteren datasets.

Table 3. Frequency of activities in the Kasteren datasets.

Activity Home C Activity Home B Activity Home A

Eating 345 Brush_teeth 25 Idle 7888
Idle 5883 Eat_brunch 132 Brush_teeth 21
Brush_teeth 75 Eat_dinner 46 Get_drink 21
Get_dressed 70 Get_a_drink 6 Get_snack 24
Get_drink 20 Get_dressed 27 Go_to_bed 11,599
Get_snack 8 Go_to_bed 6050 Leave_house 19,693
Go_to_bed 7395 Idle 20,049 Prepare_Breakfast 59
Leave_house 11,915 Leaving_the_house 12,223 Prepare_Dinner 325
Prepare_Breakfast 78 Prepare_brunch 82 Take_shower 221
prepare_Dinner 300 Prepare_dinner 87 Use_toilet 154
Prepare_Lunch 58 Take_shower 109 - -
Shave 57 Use_toilet 39
Take_medication 6 Wash_dishes 25 - -
Take_shower 184 - -
Use_toilet_downstairs 57 - - - -
Use_toilet_upstairs 35 - - - -
Total 26,486 Total 38,900 Total 40,005

The raw sensor data from smart home provide the start time and end time of the sensor activations
as well as the type ( such as pressure sensor), location (such as bed), and place (such as bedroom) of the
sensors. To pre-process the raw sensor data and generate the input datasets of the models, multiple and
incremental fuzzy temporal windows are used. Fuzzy temporal windows have been successfully used
to capture signal sensors of a long and short duration of human activities, such as sleep or snack from
raw sensor data, which help to increase the performance of the temporal models [17,18,46]. Besides,
temporal models i.e., LSTM and 1D CNN achieve better performance for activity recognition when the
input datasets are generated by fuzzy temporal windows when compared to other methods such as
Equally Sized Temporal Windows (ESTWs), Raw and Last Activation (RLA), and Raw and Last Next
Activation (RLNA) [17,18,46].

4.2. Models Parameter

For all of the models in this study, we use a range of learning rates from 0.0001 to 0.01, a range of
batch sizes from 8 to 64, a range of dropout rate from 15% to 50%, and a range of the number of epochs
from 5 to 50. We have conducted a series of trial and error experiments over these ranges. We have
noticed that 10 epochs at a learning rate of 0.001 and the batch size of 10 with 40% dropout rate are
optimal for the models to converge. While a large batch size often can render rapid training, it needs
more memory space and it delays the convergence of deep learning models [18]. On the contrary,
smaller batch sizes that need less memory space could make the training process slower but could
make the convergence of deep learning models faster; therefore, it is mostly a trade-off problem [18,50].
To prevent the models from overfitting, the 40% dropout rate as a regularization technique is used [51].
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The dropout technique ignores neurons that are randomly selected during the training process. THe
dropout technique temporally disconnects the ignored neurons on the forward pass; hence, in the
backward pass their weights will not be updated.

4.3. Goals, Metrics and Methodology

The goal of the experiments is to show the performance of the proposed joint learner and conduct a
thorough comparison to show the advantage of the proposed model, which enhances the performance
of activity recognition and particularly the activities with less frequency. To perform the experiments
efficiently, free online Google Colab is used in order to train the networks in this study that continuously
provides a single 12 GB NVIDIA Tesla K80 GPU for 12 h.

The leave-one-day-out cross-validation is used in the evaluation for all of the models, specifically
the human activities on an individual day are used for testing of the models and the models are
trained on the human activities of the rest of the days. This procedure is circulated until the human
activities data from all the recorded days are involved in the testing set [52]. The average F-score
is calculated from the results of the cross-validation for all the models that has successfully been
performed in [18,44,53]. Because the classes of the human activity datasets collected from smart homes
are imbalanced, the proposed joint learning of temporal models handles the imbalanced human activity
classes and avoids having classifiers biased toward the majority classes.

The evaluation plays an important role in this study. Accuracy is often employed to measure
the performance of classifiers. However, accuracy in the presence of imbalanced classes cannot be
appropriate measured for classification because less presented classes have a very little impact on
accuracy as compared to the prevalent classes [54]. Hence, the F1-score is employed to measure
and evaluate all of the temporal models since the F1-score is the weighted average of recall and
precision that can provide more insight into the functionality of the temporal models than the accuracy
metric [55]. The F1-score is calculated in Equations (8)–(10), respectively.

F1 =
2 · precision · recall
precision + recall

(8)

recall =
TP

TP + FN
(9)

precision =
TP

TP + FP
(10)

where TP, FP, and FN are the number of true positives, false positives, and false negatives, respectively.
Moreover, the F1-score is widely used in activity recognition [18,45,56].

4.4. Results

In this section, the experimental results of the experiments of the proposed joint learning of
temporal models are presented and discussed. The joint temporal model is compared with LSTM,
1D CNN, and hybrid 1D CNN+LSTM. Table 4 shows the F-scores of the proposed joint learning
of temporal models when compared with the individual and hybrid learners from Ordonez Home
A and B datasets. Regarding the Kasteren datasets A, B, and C, the F-scores of the proposed joint
learning of temporal models compared with the LSTM, 1D CNN, and hybrid model are shown in
Tables 5 and 6. The results show that the joint learning of temporal models outperforms the individual
temporal and hybrid learners by more than 4% in total from all the datasets. Figures 7 and 8 show the
improvement of F1-score results of minority classes from all the five datasets by the proposed method
when compared with the individual learners and the hybrid learner.
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Table 4. F1-score results of Ordonez Smart home datasets.

Activities
Home A Home B

LSTM 1D CNN
1D CNN+
LSTM

Joint
Learning

LSTM 1D CNN
1D CNN+
LSTM

Joint
Learning

Breakfast 82.27 78.43 86.79 87.05 78.65 77.10 73.91 82.74

Grooming 62.06 46.66 57.14 70.96 62.99 59.67 53.63 64.08

Leaving 89.90 88.60 88.39 91.73 96.43 97.31 96.48 98.19

Lunch 95.50 95.45 94.57 98.31 86.45 84.47 79.76 88.13

Showering 75.86 80.00 64.00 82.35 75.00 80.00 51.81 82.71

Sleeping 97.23 97.23 97.13 99.66 99.47 99.49 99.26 99.62

Snack 66.66 66.66 66.66 73.32 70.37 68.96 62.11 73.19

Spare_Time/TV 97.79 95.93 97.28 98.97 95.81 94.51 95.51 96.60

Toileting 72.21 69.23 69.84 75.23 18.51 0.07 18.46 31.18

Dinner - - - - 40.00 34.28 29.41 50.27

Total 82.16 79.79 80.20 86.39 72.36 69.59 66.03 76.51

Brush_teeth Get_dressed Get_snack Prepare_Breakfast Get_drink Go_to_bed Prepare_DinnerPrepare_Lunch Shave Take_medication

0.0

0.2

0.4

0.6

0.8

F1
-s

co
re

 Kasteren Home C

1D CNN
LSTM
Hybrid model
joint learning

Figure 7. F1-score results of only minority classes for Kasteren Home C.
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Figure 8. F1-score results of only minority classes.
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Table 5. F1-score results of Kasteren Smart home datasets.

(a) Home A

Activities LSTM 1D CNN
1D CNN+

LSTM
Joint

Learning

Brush_teeth 51.09 22.03 50.00 56.32

Get_drink 40.00 22.20 40.01 47.11

Get_Snack 30.14 22.22 28.57 43.36

Go_to_bed 88.20 88.18 87.96 89.96

Leave_house 99.53 99.75 99.45 99.88

Prepare_breakfast 78.00 72.00 75.00 79.19

Prepare_Dinner 88.88 94.01 96.55 96.73

Take_shower 85.24 79.45 80.00 86.31

Use_toilet 60.86 56.60 57.69 63.33

Total 69.10 61.82 68.07 73.54

(b) Home B

Activities LSTM 1D CNN
1D CNN+

LSTM
Joint

learning

Brush_teeth 0.00 0.00 16.66 28.57

Eat_brunch 91.42 89.28 91.22 92.12

Eat_dinner 88.00 88.88 83.33 88.91

Get_a_drink 0.00 0.00 00.00 40.00

Go_to_bed 99.08 99.20 99.28 99.66

Leaving_the_house 95.7 90.89 88.09 98.72

Prepare_brunch 84.65 78.57 82.75 87.80

Get_dressed 26.66 0.00 15.38 49.63

Prepare_dinner 96.36 96.96 90.90 97.11

Take_shower 83.63 74.50 80.00 84.93

Use_toilet 40.00 25.00 16.66 51.33

Wash_dishes 74.33 72.72 66.66 77.72

Total 65.40 59.66 61.74 74.70
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Table 6. F1-score results of Kasteren home C datasets.

Activities LSTM 1D CNN 1D CNN+LSTM Joint Learning

Eating 74.28 80.00 80.00 82.70

Brush_teeth 47.61 58.33 50.00 62.50

Get_dressed 48.48 53.33 32.87 54.67

Get_drink 00.00 0.00 0.00 32.85

Get_snack 66.66 30.00 66.66 68.00

Go_to_bed 93.65 94.68 91.48 94.86

Leave_house 92.86 91.81 91.64 98.96

Prepare_Breakfast 75.00 72.22 36.36 76.75

Prepare_Dinner 75.55 80.70 54.44 83.69

prepare_Lunch 70.00 72.72 72.72 74.35

Use_Toilet_Downstairs 15.38 0.00 05.26 22.22

Use_toilet_upstairs 13.33 0.00 16.66 18.38

Shave 66.66 70.00 44.44 78.88

Take_medication 0.00 0.00 0.00 28.42

Take_shower 70.00 72.13 70.96 74.65

Total 53.96 51.68 47.56 64.46

When compared with LSTM, 1D CNN, and the hybrid model, the use of our proposed model
increases the F-scores by 4%, 6%, and 6% in Ordonez home A, and by 4%, 6%, and 10% in Ordonez
home B respectively. Regarding to the infrequent activities Breakfast, Grooming, Lunch, showering,
toileting, snack, Dinner, the proposed method improves F-scores by 4%, 8%, 3%, 7%, and 3% from
Ordonez home A and by 4%, 1%, 2%, 2%, 11%, and 10% in Ordonez home B, respectively. This confirms
the proposed model is capable of achieving better performance for the recognition of minority classes.
When compared with LSTM, the proposed method improves F-scores by 4% from Ordonez home A, B,
and Kasteren home A, as well as by 9% and 11% from Kasteren home B and C, respectively. When
compared with 1D CNN, the proposed method improves F-scores by 5% from Ordonez home A, B,
and by 11%, 15%, and 14% from Kasteren home A, B, and C, respectively. When compared with the
hybrid model, the proposed method improves F-score by 6%, 10%, 5%, 12%, and 16% from Ordonez
home A, B, and Kasteren home A, B, and C respectively.

Regarding the F-score results from Kasteren datasets A, the results of the minority classes
in addition to majority classes are increased using the proposed model when compared with the
individual models and the hybrid model. The minority classes from home A are Brush_teeth,
Get_drink, Get_Snack, Prepare_Breakfast, Take_shower, Use_toilet, those from home B are Get_a_drink,
Get_dressed, Use_toilet, Brush_teeth, Eat_dinner, Wash_dishes, and those from home C are Brush_teeth,
Get_dressed, Get_snack, Get_drink, Go_to_bed, Prepare_Breakfast, Prepare_Dinner, Prepare_Lunch, Shave,
Take_medication, and Use_toilet. The experimental results show that the proposed joint learning of
temporal models can improve the performance of minority classes besides the majority classes for
human activity recognition.

All of the models perform poorly for some minority activities, such as Get_drink with only
20 samples, and take medication with only six samples from Kasteren Home C. Firstly, a small number of
samples are given high dimensional data with 315 features (21 sensors * 15 fuzzy temporal windows)
from Kasteren Home C dataset, and one likely problem is the curse of dimensionality of the smart
home datasets, since high dimension creates difficulties for the classifier to search. Secondly, the results
indicate that there is not enough variation in the smart home data with respect to these two activities
and the input features are non-informative and useless in the separation of these activities from the
rest. To further improve these minority classes, imbalanced data could be handled from data level,
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i.e., oversampling minority class using SMOTE [57] in addition to handling imbalanced data from
algorithm level as we have performed by proposing joint learning, which could be considered in the
future work of this study.

To further evaluate, the proposed method is compared with joint learning based on two LSTM
models and joint learning based on two 1D CNN models with the same configuration of the proposed
method. The results show that the proposed method achieves higher F1-score as shown in Figure 9.
This indicates that the diversity and complementarity of the proposed method are more important
than training combined the same learners i.e LSTM with LSTM or 1D CNN with 1D CNN.

Ordonez home A Ordonez home B Kasteren home A Kasteren home B Kasteren home C
0.5

0.6

0.7

0.8

0.9

1.0

F1
-s

co
re

Joint two 1D CNN
Joint two LSTM
Proposed method

Figure 9. Joint learning compared with joint LSTM+LSTM and Joint 1D CNN+1D CNN.

4.5. Model Interpretability

In this section, permutation feature importance (PFI) as a useful mechanism of model
interpretability [58–60] is conducted to show more insight of each LSTM and 1D CNN independently.
PFI is used to compute and rank input feature importance from Ordonez smart home A and B datasets
based on how useful feature are at HAR for LSTM and 1D CNN. PFI reflects how each predictor
variable is important from HAR for each LSTM and 1D CNN. Experiments that are based on PFI show
that the most and least important features from both datasets are different in HAR for LSTM and 1D
CNN. This indicates the most important features in recognition process varies between LSTM and 1D
CNN, which has been considered to take advantage of most important features in both models in the
proposed joint learning. Hence, the proposed joint temporal model exposes different features from
input data into the joint learning to improve the performance of HAR particularly minority classes
given the different rank of the important features from both models. The rank of features in LSTM
and 1D CNN based on the PFI is different, which is indicative of how much each LSTM and 1D CNN
models relies on the features. This illustrates that the joint proposed model takes feature importance
in both models into account in the joint learning. Therefore, the joint learning can use a set of the
most important features from one model and a different set from the other model to contribute in the
recognition to generally improve the performance of HAR particularly minority classes. Algorithm 2
designed based on [60,61] shows the process of PFI in detail. Firstly, the result scores, i.e., F1-score of
each LSTM and 1D CNN, are computed. Next, a single feature from the dataset is randomly shuffled
to generated a permuted version of the dataset. This mechanism removes the relationship between the
features and the true labels. Subsequently, the LSTM and 1D CNN models are independently applied
on the permuted version of the dataset to compute the result score. Finally, we subtract the result score
based on permuted data from the result score of the original data. This mechanism measures features’
importance by computing the error of the LSTM and 1D CNN after permuting the feature. Moreover,
after applying permutation on a feature, the decrease of the f1-score indicates the model depedency on
the permuted feature. This mechanism is applied on all of the features to compute feature importance.
Tables 7 and 8 show PFI on the Ordonez smart homes A and B datasets and the rank of the importance
of each feature. Further, the value of mean and standard deviation of the F1-score for N runs after
permuting the feature are presented. Figures 10 and 11 show the mean results of f1-score with N = 12
run for 12 sensors after permuting the sensor features.



Appl. Sci. 2020, 10, 5293 17 of 22

Algorithm 2: Compute Permutation Feature Importance (PFI)

1: Input: Train model M on original dataset D, label vector Y, error measure L(Y,Ŷ)

(original datasets is the dataset without permutation ,Ŷ is the predicted label)
2: Compute result score RSoriginal(M̂) = L(Y, M̂(D)) (e.g., F1-score )
3: for for each feature j from D do

4: for for each repetition n = 1 to N do

5: feature permutation on D to generate D̂n,j (This removes the relationship between

Dj and Y)
6: Compute result score RSpermuted,nj(M̂) = L(Y, M̂(Dn,j)) (e.g., F1-score on the

permuted data)
7: end for
8: Compute feature importance ij for feature j, ij = RSoriginal(M̂)− 1

n

N
∑

n=1
RSpermuted,nj(M̂)

9: end for
10: Output: feature importance i for all the features

Table 7. Permutation feature importance of Ordonez Home A.

Sensors_Feature Feature Importance F1-Score of N Runs

Type_Location_Place of Sensors LSTM Rank 1D CNN Rank Mean ± SD of LSTM Mean ± SD of CNN

PIR_Shower_Bathroom 13.13 7 12.43 8 69.02 ± 2.63 67.46 ± 1.30

PIR_Basin_Bathroom 13.36 5 11.26 10 68.79 ± 2.18 68.63 ±3.35

PIR_Cooktop_Kitchen 13.79 1 10.63 12 68.36 ± 2.71 69.26 ± 4.58

Magnetic_Main door_Entrance 12.57 10 13.50 2 69.58 ± 3.17 66.40 ± 2.93

Magnetic_Fridge_Kitchen 13.72 2 12.67 6 68.44 ± 2.96 67.22 ± 1.53

Magnetic_Cabinet_Bathroom 13.17 6 13.55 1 68.98 ± 5.04 66.34 ± 2.82

Magnetic_Cupboard_Kitchen 12.55 11 11.99 9 69.60 ± 2.14 67.90 ± 2.25

Electric_Microwave_Kitchen 12.25 12 12.98 3 69.90 ± 2.60 66.91 ± 1.94

Electric_Toaster_Kitchen 12.81 8 12.83 5 69.34 ± 2.43 67.06 ± 3.35

Pressure_Bed_Bedroom 13.48 4 10.96 11 68.67 ± 3.21 68.94 ± 4.04

Pressure_Seat_Living 13.62 3 12.55 7 68.53 ± 3.77 67.34 ± 4.10

Flush_Toilet_Bathroom 12.74 9 12.86 4 69.41 ± 2.10 67.03 ± 1.55
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Figure 10. Results of mean F1-score for feature permutation of 12 sensors with N = 12 runs from
Ordonez Home A.
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Table 8. Permutation feature importance of Ordonez Home B.

Sensors_Feature Feature Importance F1-Score of N Runs

Type_Location_Place of Sensors LSTM Rank 1D CNN Rank Mean ± SD of LSTM Mean ± SD of CNN

PIR_Shower_ Bathroom 9.56 2 7.62 9 62.79 ± 1.95 61.96 ± 1.25

PIR_Basin_Bathroom 11.62 1 5.66 11 60.73 ± 1.80 63.92 ± 1.61

PIR_Door_Kitchen 8.53 9 10.28 3 63.82 ± 1.70 59.30 ± 1.26

PIR_Door_Bedroom 8.10 11 6.81 10 64.25 ± 1.48 62.77± 1.35

PIR_Door_Living 8.65 7 9.39 7 63.70 ± 1.48 60.19 ± 1.63

Magnetic_ Maindoor_Entrance 8.12 10 9.60 6 64.23 ± 1.90 59.98 ± 1.41

Magnetic_Fridge_Kitchen 6.65 12 11.43 2 65.70 ± 1.68 58.15 ± 1.26

Magnetic_Cupboard_Kitchen 9.06 5 5.03 12 63.29 ± 1.78 64.55 ± 1.05

Electric_Microwave_Kitchen 8.71 6 12.41 1 63.64 ± 1.34 57.17 ± 1.90

Pressure_Bed_Bedroom 8.63 8 9.68 5 63.72 ± 1.24 59.90 ± 2.13

Pressure_Seat_Living 9.40 3 10.20 4 62.95 ± 2.18 59.38 ± 1.15

Flush_Toilet_Bathroom 9.33 4 9.35 8 63.02 ± 2.70 60.24 ± 2.38
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Figure 11. Results of mean F1-score for feature permutation of 12 sensors with N = 12 runs from
Ordonez Home B.

We further analyse the effect of the proposed method for the performance improvement to the
minority classes : Breakfast, Grooming, Lunch, showering, toileting, snack, Dinner. For example, the feature
PIR_Cooktop_Kitchen is the most important feature for LSTM but the least important feature for 1D
CNN from smart home A, as shown in Table 7. In contrast, the feature Electric_Microwave_Kitchen
is one of the most important features for 1D CNN, but the last ranked and least important feature
for LSTM. In addition to the two aforementioned features, the features Magnetic_Fridge_Kitchen,
Magnetic_Cupboard_Kitchen, and Electric_Toaster_Kitchen have the different rankings from LSTM
and 1D CNN, where they contribute to the recognition of minority classes of the kitchen area,
such Breakfast, Lunch and snack. Moreover, the PIR_Basin_Bathroom, Flush_Toilet_Bathroom,
and PIR_Shower_Bathroom features have different rankings where they contribute to the recognition of
minority activities of bathroom area, such as Grooming, showering, and toileting. Features from smart
home B also have different rankings where they contribute to the recognition of minority activities from
both kitchen and bathroom areas. For example, PIR_Shower_ Bathroom is one of the most important
features for LSTM, but the least important features for 1D CNN, as shown in Table 8. Moreover,
the Magnetic_Fridge_Kitchen and Electric_Microwave_Kitchen are the most important features for 1D
CNN where they can contribute to the recognition of the minority classes such as Breakfast, Lunch,
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Dinner, and snack. Hence, the proposed joint learning takes advantage of the complementary features
to improve the performance of the minority classes.

5. Conclusions

This paper proposes joint learning of the temporal model in an effort to improve the classification
results for minority classes, as well as for the majority classes of human activity recognition tasks in
smart homes. The data are preprocessed using FTWs to extract informative features. The proposed
model is built upon LSTM and 1D CNN in parallel as one joint model. Extensive evaluations have been
conducted in order to compare the proposed joint model with individual temporal models, i.e., LSTM,
1D CNN, and their hybridisations to show the superiority of the proposed model. The experimental
results also confirm that our model has better performance for imbalanced data. The F-score results of
the joint temporal model outperform 1D CNN, LSTM, and the hybrid learner by up to 4%.

The proposed joint learning outperforms the state-of-the-arts by 4% to 10%, which can be
considered a substantial margin, since building accurate HAR systems is challenging due to the large
diversity of activities since different sensors record human movements and inherently imbalanced
the frequency of activities. Besides that the proposed method is evaluated against state-of-the-art
based on five standard benchmark datasets of activity recognition. An accepted threshold for a
model to be considered to be successful is mainly based on the application scenario. Because activity
recognition could be used to security perspective or elderly monitoring, the minimal 4% improvement
is a substantial margin.

Future work will investigate a newly proposed method in human activity recognition to handle
imbalanced human activity problems by integrating a data level and an algorithm level. Handling
imbalanced class problems from data level in addition to applying the proposed joint learning will
further improve the recognition rate, particularly for extremely rare activities. One approach could
be oversampling using SMOTE technique to only generate new samples from infrequent activities.
Besides, weak supervision will be used to properly and correctly label the newly generated samples,
since SMOTE is not sufficiently accurate in labeling new samples.
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