How to Obtain an Orthodontic Virtual Patient through Superimposition of Three-Dimensional Data: A Systematic Review
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
- Observational studies (case reports, case series, cohort studies) on humans aimed at creating a 3D virtual dental patient
- Information about the 3D imaging devices used, and the superimposition software employed
- Detailed description of the superimposition method applied
- English language
3. Results
- Facial skeleton (FS): acquired by CBCT or conventional CT scans
- Facial soft tissues (ST): acquired by stereophotogrammetry, laser scanner or 3D photography with a smartphone app.
- Dentition (DENT): acquired by intraoral scanners (IOS) or digitization of plaster casts or dental impression through dental laboratory scanners (DLS).
- 13 papers merged skeleton with dentition (FS + DENT = 13)
- 5 papers merged skeleton with facial soft tissues (FS + ST = 5)
- 2 paper merged facial soft tissues with dentition (ST + DENT = 2)
- 1 paper integrated all the 3D datasets (FS + ST + DENT = 1)
- 11 studies used the surface-based method
- 6 studies used the point-based method
- 2 studies compared the surface-based method and point-based method
- 1 article used the voxel-based method
- 1 article compared the voxel-based and surface-based method
3.1. Descriptive Analysis
3.1.1. Facial Skeleton + Soft Tissue + Dentition
3.1.2. Facial Skeleton + Soft Tissue
3.1.3. Soft Tissues + Dentition
3.1.4. Facial skeleton + Dentition
4. Discussion
Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mangano, F.; Shibli, J.A.; Fortin, T. Digital Dentistry: New Materials and Techniques. Int. J. Dent. 2016, 2016, 5261247. [Google Scholar] [CrossRef] [PubMed]
- Van Noort, R. The future of dental devices is digital. Dent. Mater. 2012, 28, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Botticelli, S.; Verna, C.; Cattaneo, P.M.; Heidmann, J.; Melsen, B. Two- versus three-dimensional imaging in subjects with unerupted maxillary canines. Eur. J. Orthodont. 2011, 33, 344–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staderini, E.; Guglielmi, F.; Cornelis, M.A.; Cattaneo, P.M. Three-dimensional prediction of roots position through cone-beam computed tomography scans-digital model superimposition: A novel method. Orthodo. Craniofac. Res. 2019, 22, 16–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tepedino, M.; Franchi, L.; Fabbro, O.; Chimenti, C. Post-orthodontic lower incisor inclination and gingival recession-a systematic review. Prog. Orthod. 2018, 19, 17. [Google Scholar] [CrossRef] [Green Version]
- Tepedino, M.; Chimenti, C.; Masedu, F.; Iancu Potrubacz, M. Predictable method to deliver physiologic force for extrusion of palatally impacted maxillary canines. Am. J. Orthod. Dentofac. Orthop. 2018, 153, 195–203. [Google Scholar] [CrossRef]
- Laurenziello, M.; Montaruli, G.; Gallo, C.; Tepedino, M.; Guida, L.; Perillo, L.; Troiano, G.; Lo Muzio, L.; Ciavarella, D. Determinants of maxillary canine impaction: Retrospective clinical and radiographic study. J. Clin. Exp. Dent. 2017, 9, e1304–e1309. [Google Scholar] [CrossRef]
- Lai, C.S.; Bornstein, M.M.; Mock, L.; Heuberger, B.M.; Dietrich, T.; Katsaros, C. Impacted maxillary canines and root resorptions of neighbouring teeth: A radiographic analysis using cone-beam computed tomography. Eur. J. Orthodont. 2013, 35, 529–538. [Google Scholar] [CrossRef] [Green Version]
- Bouwens, D.G.; Cevidanes, L.; Ludlow, J.B.; Phillips, C. Comparison of mesiodistal root angulation with posttreatment panoramic radiographs and cone-beam computed tomography. Am. J. Orthod. Dentofac. Orthop. 2011, 139, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, M.I.; Zadeh, R.; Bucci, D.; Palmieri, A.; Monarca, C.; Staderini, E.; Oliva, G.; Candida, E.; Gallenzi, P.; Cordaro, M.; et al. Volumetric analysis of cleft lip deformity using 3D stereophotogrammetry. Annali Italiani Di Chirurgia 2019, 90, 281–286. [Google Scholar]
- Staderini, E.; De Luca, M.; Candida, E.; Rizzo, M.I.; Rajabtork Zadeh, O.; Bucci, D.; Zama, M.; Lajolo, C.; Cordaro, M.; Gallenzi, P. Lay People Esthetic Evaluation of Primary Surgical Repair on Three-Dimensional Images of Cleft Lip and Palate Patients. Medicina (Kaunas, Lithuania) 2019, 55, 576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staderini, E.; Patini, R.; Camodeca, A.; Guglielmi, F.; Gallenzi, P. Three-Dimensional Assessment of Morphological Changes Following Nasoalveolar Molding Therapy in Cleft Lip and Palate Patients: A Case Report. Dent. J. 2019, 7, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornelis, M.A.; Tepedino, M.; Cattaneo, P.M.; Nyssen-Behets, C. Root repair after damage due to screw insertion for orthodontic miniplate placement. J. Clin. Exp. Dent. 2019, 11, e1133–e1138. [Google Scholar] [CrossRef] [PubMed]
- Staderini, E.; Patini, R.; De Luca, M.; Gallenzi, P. Three-dimensional stereophotogrammetric analysis of nasolabial soft tissue effects of rapid maxillary expansion: A systematic review of clinical trials. Acta Otorhinolaryngol. Ital. Organo Uff. Della Soc. Ital. di Otorinolaringol. e Chirurgia Cervico-Facciale 2018, 38, 399–408. [Google Scholar] [CrossRef]
- Feng, X.; Li, G.; Qu, Z.Y.; Liu, L.; Nasstrom, K.; Shi, X.Q. Comparative analysis of upper airway volume with lateral cephalograms and cone-beam computed tomography. Am. J. Orthod. Dentofac. Orthop. 2015, 147, 197–204. [Google Scholar] [CrossRef]
- Huang, X.; Cen, X.; Liu, J. Effect of protraction facemask on the temporomandibular joint: A systematic review. BMC Oral Health 2018, 18, 38. [Google Scholar] [CrossRef] [Green Version]
- Saponaro, G.; Doneddu, P.; Gasparini, G.; Staderini, E.; Boniello, R.; Todaro, M.; D’Amato, G.; Pelo, S.; Moro, A. Custom made onlay implants in peek in maxillofacial surgery: A volumetric study. Childs Nerv. Syst. 2020, 36, 385–391. [Google Scholar] [CrossRef]
- Winkler, J.; Gkantidis, N. Trueness and precision of intraoral scanners in the maxillary dental arch: An in vivo analysis. Sci. Rep. 2020, 10, 1172. [Google Scholar] [CrossRef] [Green Version]
- Joda, T.; Gallucci, G.O. The virtual patient in dental medicine. Clin. Oral Implants Res. 2015, 26, 725–726. [Google Scholar] [CrossRef]
- Mangano, C.; Luongo, F.; Migliario, M.; Mortellaro, C.; Mangano, F.G. Combining Intraoral Scans, Cone Beam Computed Tomography and Face Scans: The Virtual Patient. J. Craniofac. Surg. 2018, 29, 2241–2246. [Google Scholar] [CrossRef]
- Joda, T.; Bragger, U.; Gallucci, G. Systematic Literature Review of Digital Three-Dimensional Superimposition Techniques to Create Virtual Dental Patients. Int. J. Oral Maxillofac. Implants 2015, 30, 330–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Efstratiadis, S.; Baumrind, S.; Shofer, F.; Jacobsson-Hunt, U.; Laster, L.; Ghafari, J. Evaluation of Class II treatment by cephalometric regional superpositions versus conventional measurements. Am. J. Orthod. Dentofac. Orthop. 2005, 128, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, A.; Arcuri, L.; Moy, P.K. The smiling scan technique: Facially driven guided surgery and prosthetics. J. Prosthodont. Res. 2018, 62, 514–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayoub, A.F.; Xiao, Y.; Khambay, B.; Siebert, J.P.; Hadley, D. Towards building a photo-realistic virtual human face for craniomaxillofacial diagnosis and treatment planning. Int. J. Oral Maxillofac. Surg. 2007, 36, 423–428. [Google Scholar] [CrossRef]
- Swennen, G.R.J.; Mollemans, W.; De Clercq, C.; Abeloos, J.; Lamoral, P.; Lippens, F.; Neyl, N.; Casselman, J.; Schutyser, F. A Cone-Beam Computed Tomography Triple Scan Procedure to Obtain a Three-Dimensional Augmented Virtual Skull Model Appropriate for Orthognathic Surgery Planning. J. Craniofac. Surg. 2009, 20, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Jayaratne, Y.S.N.; McGrath, C.P.J.; Zwahlen, R.A. How Accurate Are the Fusion of Cone-Beam CT and 3-D Stereophotographic Images? PLoS ONE 2012, 7, e49585. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.Y.; Hsung, T.C.; Khambay, B. Reducing cone beam CT scan height as a method of radiation reduction for photorealistic three-dimensional orthognathic planning. J. Cranio-Maxillofac.Surg. 2015, 43, 907–912. [Google Scholar] [CrossRef]
- Nahm, K.Y.; Kim, Y.; Choi, Y.S.; Lee, J.; Kim, S.H.; Nelson, G. Accurate registration of cone-beam computed tomography scans to 3-dimensional facial photographs. Am. J. Orthod. Dentofac. Orthop. 2014, 145, 256–264. [Google Scholar] [CrossRef]
- Rangel, F.A.; Maal, T.J.J.; Berge, S.J.; van Vlijmen, O.J.C.; Plooij, J.M.; Schutyser, F.; Kuijpers-Jagtman, A.M. Integration of digital dental casts in 3-dimensional facial photographs. Am. J. Orthod. Dentofac. Orthop. 2008, 134, 820–826. [Google Scholar] [CrossRef]
- Daher, R.; Ardu, S.; Vjero, O.; Krejci, I. 3D Digital Smile Design With a Mobile Phone and Intraoral Optical Scanner. Compend. Contin. Educ. Dent. 2018, 39, e5–e8. [Google Scholar]
- Noh, H.; Nabha, W.; Cho, J.H.; Hwang, H.S. Registration accuracy in the integration of laser-scanned dental images into maxillofacial cone-beam computed tomography images. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Park, T.J.; Lee, S.H.; Lee, K.S. A method for mandibular dental arch superimposition using 3D cone beam CT and orthodontic 3D digital model. Korean J. Orthod. 2012, 42, 169–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.H.; Chiang, W.C.; Lo, L.J.; Hsu, S.S.P.; Wang, C.H.; Wan, S.Y. Artifact-Resistant Superimposition of Digital Dental Models and Cone-Beam Computed Tomography Images. J. Oral Maxillofac. Surg. 2013, 71, 1933–1947. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.M.; Ho, C.T.; Lo, L.J. Automatic Superimposition of Palatal Fiducial Markers for Accurate Integration of Digital Dental Model and Cone Beam Computed Tomography. J. Oral Maxillofac. Surg. 2015, 73. [Google Scholar] [CrossRef]
- Hernandez-Alfaro, F.; Guijarro-Martinez, R. New protocol for three-dimensional surgical planning and CAD/CAM splint generation in orthognathic surgery: An in vitro and in vivo study. Int. J. Oral Maxillofac. Surg. 2013, 42, 1547–1556. [Google Scholar] [CrossRef]
- Lin, X.; Chen, T.; Liu, J.; Jiang, T.; Yu, D.; Shen, S.G. Point-based superimposition of a digital dental model on to a three-dimensional computed tomographic skull: An accuracy study in vitro. Br. J. Oral Maxillofac. Surg. 2015, 53, 28–33. [Google Scholar] [CrossRef]
- Kang, S.H.; Lee, J.W.; Lim, S.H.; Kim, Y.H.; Kim, M.K. Dental image replacement on cone beam computed tomography with three-dimensional optical scanning of a dental cast, occlusal bite, or bite tray impression. Int. J. Oral Maxillofac. Surg. 2014, 43, 1293–1301. [Google Scholar] [CrossRef]
- Choi, Y.S.; Kim, M.K.; Lee, J.W.; Kang, S.H. Impact of the number of registration points for replacement of three-dimensional computed tomography images in dental areas using three-dimensional light-scanned images of dental models. Oral Radiol. 2014, 30, 32–37. [Google Scholar] [CrossRef]
- Uechi, J.; Tsuji, Y.; Konno, M.; Hayashi, K.; Shibata, T.; Nakayama, E.; Mizoguchi, I. Generation of virtual models for planning orthognathic surgery using a modified multimodal image fusion technique. Int. J. Oral Maxillofac. Surg. 2015, 44, 462–469. [Google Scholar] [CrossRef]
- Almutairi, T.; Naudi, K.; Nairn, N.; Ju, X.Y.; Whitters, J.; Ayoub, A. Replacement of the Distorted Dentition of the Cone-Beam Computed Tomography Scans for Orthognathic Surgery Planning. Int. J. Oral Maxillofac. Surg. 2018, 76, 1561.e1–1561.e8. [Google Scholar] [CrossRef] [Green Version]
- Rangel, F.A.; Maal, T.J.J.; de Koning, M.J.J.; Bronkhorst, E.M.; Berge, S.J.; Kuijpers-Jagtman, A.M. Integration of digital dental casts in cone beam computed tomography scans-a clinical validation study. Clin. Oral Invest. 2018, 22, 1215–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staderini, E.; Patini, R.; Guglielmi, F.; Camodeca, A.; Gallenzi, P. How to Manage Impacted Third Molars: Germectomy or Delayed Removal? A Systematic Literature Review. Medicina (Kaunas) 2019, 55, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patini, R.; Staderini, E.; Camodeca, A.; Guglielmi, F.; Gallenzi, P. Case Reports in Pediatric Dentistry Journals: A Systematic Review about Their Effect on Impact Factor and Future Investigations. Dent. J. 2019, 7, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farronato, M.; Maspero, C.; Abate, A.; Grippaudo, C.; Connelly, S.T.; Tartaglia, G.M. 3D cephalometry on reduced FOV CBCT: Skeletal class assessment through AF-BF on Frankfurt plane-validity and reliability through comparison with 2D measurements. Eur. Radiol. 2020. [Google Scholar] [CrossRef]
- Lo Giudice, A.; Ronsivalle, V.; Grippaudo, C.; Lucchese, A.; Muraglie, S.; Lagravere, M.O.; Isola, G. One Step before 3D Printing-Evaluation of Imaging Software Accuracy for 3-Dimensional Analysis of the Mandible: A Comparative Study Using a Surface-to-Surface Matching Technique. Materials (Basel) 2020, 13, 2798. [Google Scholar] [CrossRef]
- Muraglie, S.; Leonardi, R.; Aboulazm, K.; Stumpo, C.; Loreto, C.; Grippaudo, C. Evaluation of structural skeletal asymmetry of the glenoid fossa in adult patients with unilateral posterior crossbite using surface-to-surface matching on CBCT images. Angle Orthod 2020, 90, 376–382. [Google Scholar] [CrossRef] [Green Version]
Study | No. of Patients | Facial Skeleton | Extraoral Soft Tissue | Dentition | Superimposition Method | Superimposition Software | Outcome |
---|---|---|---|---|---|---|---|
Lin HH et al. (2013) | 14 | CBCT i-CAT CBCT scanner (Imaging Sciences International, Hatfield, PA, USA) | - | DLS Digitization of plaster cast 3Shape Orthodontics System (Copenhagen, Denmark) | Surface-based (manual pre-registration + manual selection of three areas without artifacts) | 3dMD Vultus software (3dMD, Atlanta, GA, USA) | Accuracy, Intra-/inter-operator reliability |
Lin X et al. (2014) | 1 | CBCT | - | DLS Digitization of plaster cast (Smartoptics Activity 880, Smart Optics Sensortechnik Gmbh, Bochum, Germany) | Point-based (manual selection of five points) | ProPlan CMF 1.3 (Materialise, Lueven, Belgium) | Accuracy, Intra-/inter-operator reliability |
Almutairi et al. (2018) | 6 | CBCT i-CAT scanner (Imaging Sciences International, London, UK) | - | IOS TRIOS (3Shape A/S, Copenhagen, Denmark) | Fiducial markers Point-based (manual pre-registration + manual selection of six points) | VRMesh software (VirtualGrid, Seattle, WA, USA) | Accuracy |
Ayoub et al. (2007) | 6 | CT spiral CT scanner, Marconi MX8000, Kv 120, MaS 200, with bone filter. | Stereophotogrammetry (Di3D, Dimensional Imaging, Hillington Park, Glasgow, UK) | - | Point-based (Procrustes registration + manual selection of ten points) | Amira (Thermo Fisher Scientific, Berlin, Germany) | Accuracy |
Daher et al. (2018) | 1 | - | 3d photography with mobile phone with a feature-tracking app (3D Creator, Sony Corporation, sonymobile.com) | IOS (Condor, Condor Systems, condorscan.com) | Point-based (manual selection of four intraoral landmarks) | Blender, blender.org | Feasibility |
Hernandez-Alfaro * (2013) | 6 | CBCT i-CAT device, version 17–19 (Imaging Sciences International, Hatfield, PA, USA) | - | IOS Lava Scan ST scanner (3M ESPE, Ann Arbor, MI, USA) | Surface-based (selection of the mandible, including teeth) | SimPlant Pro OMS software (Materialise Dental) | Feasibility |
Jayaratne et al. (2012) | 29 | CBCT i-CAT System, Imaging Sciences International, Hatfield, PA, USA) | Stereophotogrammetry 3dMDface (3dMD, Atlanta, GA, USA) | - | Surface-based (manual pre-registration + manual selection of frontal, and zygomatic areas, cheeks, and nasal dorsum) | 3dMDpatient software (3dMD LLC, Atlanta, GA, USA) | Feasibility, Accuracy |
Joda et al. (2014) | 1 | CBCT (i-CAT, Hatfield, PA, USA) | Stereophotogrammetry (3dMD, Atlanta, GA, USA) | IOS (iTero Align Technology, San Jose, CA, USA) | Surface-based (selected areas are not specified) | - | Proof-of-principle |
Kang et al. (2014) | 1 | CBCT VATECH Co., Ltd., Hwaseong, Gyeonggi-do, Korea | - | DLS Digitization of plaster cast (Rexcan DS2; Solutionix, Seoul, Republic of Korea) | Surface-based (selected areas are not specified) | Rapidform XOV2 software (Inus Technology Inc., Seoul, Korea) | Accuracy |
Lin CY et al. (2015) | 30 | CBCT (i-CAT Imaging System, Imaging Sciences International Inc, Hatfield, PA, USA) | Stereophotogrammetry (3dMD, Atlanta, GA, USA) | - | Surface-based (manual pre-registration + removal of extraneous data (superior to the hairline, inferior to the lower border of the mandible, lateral to the preauricular areas, eyes, eyebrows, and lips)) | VRMesh software (Virtual- Grid, Bellevue, WA, USA) | Accuracy (RMS distance) |
Nahm et al. (2014) | 4 | CBCT (Alphad Vega; Asahi Roentgen, Kyoto, Japan) | structured light scan (3D Neo; Morpheus, Gyoung-gi, Korea) | - | Surface-based, automatic registration on the skin surface + manual alignment of facial axis) | Morpheus, (Gyoung-gi Korea) | Accuracy |
Noh et al. (2011) | 30 | CBCT (Alphard Vega; Asahi Roentgen, Kyoto, Japan) | - | DLS Digitization of plaster cast (Orapix, Seoul, Korea) | Surface-based (manual pre-registration, three registration area tested: buccal surfaces, only the lingual surfaces, and both the buccal and lingual surfaces | Rapidform 2006 (Inus Technology Inc., Seoul, Korea) | Accuracy, reliability |
Park et al. (2012) | 1 | CBCT (i-CAT imaging device, Imaging Sciences International, Hatfield, PA, USA) | - | DLS Digitization of plaster cast (KOD- 300, Orapix Co. Ltd., Seoul, Korea) | Surface-based (selection of the basal bone structure of the mandible) Vs. Plane-based (based on anatomical structures: mental and lingual foramen) | Rapidform 2006 (INUS Technology Inc., Seoul, Korea) | Feasibility, accuracy |
Pozzi et al. (2018) | 1 | CBCT (Scanora 3Dx, Kavo Dental GmbH, Biberach, Germany) | - | IOS (Carestream 3600 Intraoral Scanner, Carestream Dental LLC, Atlanta, GA, USA) or DLS Digitization of dental cast | Point-based (not specified) | SmartFusion (Nobel Biocare AG, Kloten, Switzerland) | Feasibility |
Rangel et al. (2008) | 1 | - | Stereophotogrammetry (3dMDface System) | DLS Digitization of impressions (Hytec, Los Alamos, NM, USA) | Surface-based (Manual pre-registration of four landmarks + manual pre-registration of corresponding areas on maxillary and mandibular incisors) | Maxilim software program (version 2.0.3, Medicim NV, Mechelen, Belgium | Feasibility |
Rangel et al. (2012) | 1 | CBCT (i-CAT, Imaging Sciences International, Inc., Hatfield, PA, USA) | - | DLS Digitization of impressions (FCT-1600, Hytec Inc., Los Alamos, NM, USA) | Fiducial markers, point-based (Procrustes registration) | Maxilim software program (version 2.0.3, Medicim NV, Mechelen, Belgium) | Feasibility |
Rangel et al. (2018) | 20 | CBCT (i-CATT, Imaging Sciences International, Inc., Hatfield, PA, USA | - | DLS Digitization of impressions (i-CATT, Imaging Sciences International, Inc., Hatfield, PA, USA) | voxel-based vs. fiducial-markers-point based (ten markers placed on the gingiva) | Maxilim software program (version 2.0.3, Medicim NV, Mechelen, Belgium) | Comparison/Accuracy |
Uechi et al. (2015) | 30 | CT (ProS- peed FII; GE Medical Systems, Milwaukee, WI, USA). | - | DLS Digitization of plaster cast (VIVID910; Konika-Minolta, Tokyo, Japan) | Surface-based, Fiducial markers (Three ceramic balls 9/32-in. in diameter, Amatsuji Co. Ltd., Osaka, Japan, on the buccal surface of the reference splint; automatic registration) | Imageware 10.6, UGS PLM Solutions, Plano, TX, USA) | Feasibility, Accuracy |
Yang et al. (2013) | 5 | CBCT (i-CATTM Dental CT, Imaging Sciences International, Inc., Hatfield, PA, USA) | - | CBCT (i-CATTM Dental CT, Imaging Sciences International, Inc., Hatfield, PA, USA) | Surface-based, Fiducial markers (four spherical markers places in the premolar and molar region; automatic registration) | 3dMDvultus software (3dMD, Atlanta, GA, USA) | Accuracy |
Choi et al. (2014) | 10 | CT (Siemens Sensation 64 CT scanner, Siemens AG, Erlange, Germany) | - | DLS Digitization of plaster cast (smartSCAN 3D, Breuckmann, Meersburg, Germany) | Point based (dental cusps, three, five, seven, nine, fourteen points) vs. Surface-based (occlusal surface) | Rapidform XOV2 software (Inus Technology Inc., Seoul, Korea) | Accuracy, reliability |
Swennen et al. (2009) | 10 | CBCT (i-CAT, Imaging Sciences International Inc., Hatfield, PA, USA) | - | CBCT (i-CAT, Imaging Sciences International Inc., Hatfield, PA, USA) | Triple voxel-based (manual pre-registration) | Maxilim software program 2.1.1. (Medicim NV, Mechelen, Belgium) | Feasibility, Accuracy |
Study | No. of Patients | Facial Skeleton | Extraoral Soft Tissues | Dentition | Superimposition Method | RMS (Root Mean Square) of the Distance Measurements | Mean Absolute Distance |
---|---|---|---|---|---|---|---|
Almutairi et al. * (2018) | 6 | CBCT | - | IOS | Fiducial markers, Point-based | - | 0.13–0.19 mm on intraoral markers |
Ayoub et al. (2007) | 6 | CT | Stereophotogrammetry | - | Point-based | - | ±1.5 mm |
Jayaratne et al. (2012) | 29 | CBCT | Stereophotogrammetry | - | Surface-based | 0.74 mm whole face error 0.04 mm: registration error | - |
Lin CY et al. (2015) | 30 | CBCT | Stereophotogrammetry | - | Surface-based | 1.8 ± 0.4 mm | 0.1 ± 0.07 mm |
Nahm et al. (2014) | 4 | CBCT | Structured light scan | - | Surface-based | - | 0.60 ± 0.12 mm |
Noh et al. (2011) | 30 | CBCT | - | DLS | Surface-based | - | 0.27–0.33 mm |
Rangel et al. (2018) | 20 | CBCT | - | DLS | Voxel-based vs. fiducial markers-point based | - | 0.39 upper jaw 0.30 lower jaw |
Uechi et al. (2015) | 30 | CT | - | DLS | Fiducial markers, surface-based | 0.12–0.02 mm | - |
Yang et al. (2013) | 5 | CBCT | - | CBCT | Fiducial markers surface-based | - | 0.20 ± 0.03 maxillary teeth 0.27 ± 0.05 mandibular teeth |
Choi et al. (2014) | 10 | CT | - | DLS | Point based vs. surface-based | - | point based: 0.16 mm (seven points) to −0.20 mm (14 points) Surface based: 0.116 mm |
Lin H et al. (2013) | 14 | CBCT | - | DLS | Surface-based | - | ± 0.5 mm |
Swennen et al. * (2009) | 10 | CBCT | - | CBCT | Triple voxel-based | - | 0.08 ± 0.03 mm |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marradi, F.; Staderini, E.; Zimbalatti, M.A.; Rossi, A.; Grippaudo, C.; Gallenzi, P. How to Obtain an Orthodontic Virtual Patient through Superimposition of Three-Dimensional Data: A Systematic Review. Appl. Sci. 2020, 10, 5354. https://doi.org/10.3390/app10155354
Marradi F, Staderini E, Zimbalatti MA, Rossi A, Grippaudo C, Gallenzi P. How to Obtain an Orthodontic Virtual Patient through Superimposition of Three-Dimensional Data: A Systematic Review. Applied Sciences. 2020; 10(15):5354. https://doi.org/10.3390/app10155354
Chicago/Turabian StyleMarradi, Francesca, Edoardo Staderini, Maria Antonietta Zimbalatti, Andrea Rossi, Cristina Grippaudo, and Patrizia Gallenzi. 2020. "How to Obtain an Orthodontic Virtual Patient through Superimposition of Three-Dimensional Data: A Systematic Review" Applied Sciences 10, no. 15: 5354. https://doi.org/10.3390/app10155354
APA StyleMarradi, F., Staderini, E., Zimbalatti, M. A., Rossi, A., Grippaudo, C., & Gallenzi, P. (2020). How to Obtain an Orthodontic Virtual Patient through Superimposition of Three-Dimensional Data: A Systematic Review. Applied Sciences, 10(15), 5354. https://doi.org/10.3390/app10155354