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Featured Application: This work can be applied to analyze and reduce the WFV effect of TFETs.

Abstract: Metal gate technology is one of the most important methods used to increase the
low on-current of tunnel field-effect transistors (TFETs). However, metal gates have different
work-functions for each grain during the deposition process, resulting in work-function variation
(WFV) effects, which means that the electrical characteristics vary from device to device. The WFV of
a planar TFET, double-gate (DG) TFET, and electron-hole bilayer TFET (EHBTFET) were examined by
technology computer-aided design (TCAD) simulations to analyze the influences of device structure
and to find strategies for suppressing the WFV effects in TFET. Comparing the WFV effects through
the turn-on voltage (Vturn-on) distribution, the planar TFET showed the largest standard deviation
(σVturn-on) of 20.1 mV, and it was reduced by −26.4% for the DG TFET and −80.1% for the EHBTFET.
Based on the analyses regarding metal grain distribution and energy band diagrams, the WFV of
TFETs was determined by the number of metal grains involved in the tunneling current. Therefore,
the EHBTFET, which can determine the tunneling current by all of the metal grains where the main
gate and the sub gate overlap, is considered to be a promising structure that can reduce the WFV
effect of TFETs.

Keywords: tunnel field-effect transistors (TFETs); work-function variation (WFV); electron-hole
bilayer TFET (EHBTFET)

1. Introduction

The trend towards reducing the power consumption and improving the scale-down properties
of complementary metal-oxide semiconductor (CMOS) devices results in a decreased voltage supply.
To achieve a high on/off current ratio at a low supply voltage, the subthreshold swing (SS) must
be lowered. However, metal-oxide-semiconductor (MOS) field-effect transistors (MOSFETs) cannot
lower the SS below 60 mV/dec due to the physical limitations of their operation [1–3]. To overcome
this problem, new devices based on various principles have been proposed and studied, such as the
negative capacitance field-effect transistor (NCFET) [4–6], resistive gate field-effect transistor (FET)
(ReFET) [7], nano-electro mechanical FET (NEMFET) [8,9], positive feedback FET [10,11], impact
ionization metal-oxide-semiconductor (I-MOS) [12,13], conventional transistor with an oxide-based
threshold switching device [14], and tunnel FET (TFET) [15–22]. Among them, TFETs are considered
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as one of the most promising ultra-low power devices due to its high CMOS process compatibility and
low-level leakage current [15–22].

However, TFETs suffer from low-level on-current (Ion) as an alternative of MOSFETs. Therefore,
there have been much research to improve the Ion of TFETs by modifying the materials and structures
of TFETs [23–31]. Among them, metal gate technology, which is also widely used in MOSFETs,
can improve the gate controllability and increase Ion by eliminating the polysilicon depletion effect [32].
However, metal gates have different work-functions for each grain due to different grain orientations
during the deposition process. This results in a work-function variation (WFV) effect that causes
variations in the threshold voltage (Vth) and other electrical characteristics of TFETs [33]. In this
study, the WFV effects of a planar TFET, a double gate (DG) TFET, and an electron-hole bilayer TFET
(EHBTFET) are compared using technology computer-aided design (TCAD) simulations to analyze
the effects of the structure and to find a way to improve the WFV of TFETs. In the case of the planar
TFET and DG TFET, a tunneling current occurs along the channel (lateral tunneling) at the source
junction. On the contrary, the tunneling current of the EHBTFET is generated across the channel
(vertical tunneling) at the body between two gates, and the electrical characteristics of this structure
have been actively studied through TCAD simulations and modeling [34–38].

2. Device Structure and Simulation Method

Figure 1 shows the structures of MOSFET (Figure 1a), planar TFET (Figure 1b), DG TFET (Figure 1c),
and EHBTFET (Figure 1d) used in this research. The design parameters used for the simulations are
summarized in Table 1. In the modern integrated chip (IC) process, the grain size of the metal gate has a
range of approximately 5 to 20 nm [39,40]. The grain size decreases when the DC (direct current) power
of the sputtering process increases [40]. On the other hand, the grain size increases when the process
temperature increases during or after the deposition process [39,41]. In this research, TiN (titanium
nitride) was applied as the gate metal for the WFV effect analysis. In the case of TiN, it is also known
that the grain size can be reduced by incorporating Cu or C when the TiN layer is deposited [42,43].
In this simulation and analysis, each metal grain was assumed to be a cube with a side length of 10 nm
within the general range of the modern IC process. With regard to the WF value distribution of TiN,
much research is still on-going, in order to develop a better understanding of the WF variation in TiN
(e.g., considering the work-function (WF) of the grain boundary [44] and increment of the high-WF
grain portion with the increased process temperature [41]). In this study, it was assumed that 60%
of TiN grains were crystallized in <200> with 4.6 eV WF and 40% were crystallized in <111> with
4.4 eV WF, which are generally accepted values [39]. The blue arrows in Figure 1 indicate the positions
where the tunneling mainly occurs in the on-state of each structure. Unlike the planar TFET and DG
TFET, where tunneling occurs at the boundary between the source and channel region, EHBTFET has
a tunneling current between the main gate (MG) and the sub gate (SG), as shown by the arrow in
Figure 1d.
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Figure 1. Basic schematics and major parameter definitions of the (a) metal-oxide-semiconductor
field-effect transistor (MOSFET), (b) planar tunnel field-effect transistor (TFET), (c) double-gate (DG)
TFET, and (d) electron-hole bilayer TFET (EHBTFET) used in this research.

Table 1. Device parameters of devices used for the technology computer-aided design (TCAD) simulation.

Parameter Value

Gate length (LG) 70 nm
Channel width (W) 70 nm

Equivalent oxide thickness (EOT) 2 nm
Channel length (LCH) 90 nm

Channel thickness (TB) 10 nm
Drain underlap (LUD) 20 nm
Source underlap (LUS) 20 nm

MOSFET source/drain doping concentration 1020 cm−3

TFET p-type source doping concentration 1020 cm−3

TFET n-type drain doping concentration 1018 cm−3

Gate work function 4.6 eV (60%)
4.4 eV (40%)

In order to compare and analyze the WFV effects of each structure, three-dimensional
(3D) simulations were conducted using Synopsys SenataurusTM (Ver. K-2015.06-SP1, Synopsys,
Mountain View, CA, USA) [45]. Fermi–Dirac statistics, doping concentration dependent mobility,
Shockley–Read–Hall (SRH) recombination, and modified local density approximation (MLDA) models
were used to calculate and extract the electrical characteristics of TFETs in the simulation. For an
accurate calculation of band-to-band tunneling (BTBT), a dynamic non-local BTBT model was applied
with theoretically calculated parameters [46] generally used in recent TFET research [47–49].

3. Results and Discussions

Figure 2 shows the transfer characteristics of the MOSFET, planar TFET (Figure 2b), DG TFET
(Figure 2c), and EHBTFET (Figure 2d) when the drain voltage (VD) is 0.5 V and source voltage (VS) is
0 V. The metal grain profiles of the gate area were randomly generated by the randomization algorithm
provided in the Sentaurus tool, depending on the TiN grain orientation. Thirty samples with uniquely
randomized metal gate grain profiles for each structure were used for the simulation and the WFV
effect analysis in this research. In the case of the EHBTFET in Figure 2c, a voltage of −0.67 V was
applied to the SG to transport the holes from the source region to the channel region near SG and
generate BTBT between the MG and the SG. For a comparison of the WFV effects, the average and
standard deviation of Vth, SS and Ion for each structure were obtained and are summarized in Table 2.
The Vth of MOSFET is defined as the gate voltage when VD is 0.5 V and the drain current is 10−12 A.
Instead of Vth, the turn-on voltage (Vturn-on) of TFETs is defined as the gate voltage when BTBT starts
to occur at the source junction and the drain current increases compared to the leakage current, and is
extracted when VD is 0.5 V and the drain current is 10−18 A. In this research, Vturn-on was used for the
WFV analysis instead of Vth, because the drain current of TFETs is much lower than that of MOSFETs,
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the definition of Vth in TFETs is controversial [50,51], and the SS variation effect of TFETs is large [33].
SS is defined as an average swing when the drain current is increased from 10−12 to 10−10 A (MOSFET)
or 10−18 to 10−16 A (TFET). Ion is defined as the drain current when VG is average Vturn-on (average Vth

in MOSFETs) + 0.6 V and VD is 0.5 V. As shown in Figure 2 and Table 2, the σVturn-on of the planar
TFET has the largest value (20.1 mV). In the case of the DG TFET, σVturn-on is reduced by −26.4% in
comparison to the planar TFET. Moreover, in the EHBTFET, the σVturn-on is drastically reduced to
−80.1% compared to the planar TFET, showing the smallest σVturn-on among the three types of TFET
structures. The σSS and normalized σIon also show the same tendency as σVturn-on.
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Figure 2. Transfer characteristics of the (a) MOSFET, (b) planar TFET, (c) DG TFET and (d) EHBTFET
when the drain voltage (VD) is 0.5 V.

Table 2. Average and standard deviation of the turn-on voltage (Vturn-on), subthreshold swing (SS),
and on-current (Ion) of the devices extracted from Figure 2.

MOSFET Planar TFET DG TFET EHBTFET

Average Vth or Average Vturn-on −55.0 mV 325.1 mV 283.0 mV 680.4 mV
σVth or σVturn-on 14.0 mV 20.1 mV 14.8 mV 4.0 mV

Average SS 121.6 mV/decade 64.3 mV/decade 54.5 mV/decade 4.6 mV/decade
σSS 0.5 mV/decade 5.6 mV/decade 4.7 mV/decade 1.2 mV/decade

Average Ion 7.11 × 10−4 A/µm 1.08 × 10−9 A/µm 3.26 × 10−9 A/µm 4.33 × 10−10 A/µm
σIon/Average Ion 0.122 0.348 0.263 0.155

Vth: threshold voltage.

The reduction in the WFV effect on the DG TFET and EHBTFET compared to the planar TFET can
be interpreted as a result of an increase in the number of metal grains that affect Vturn-on determination.
It is known that as the number of metal grains affecting Vturn-on increases, the WFV effect is suppressed
by a higher averaging effect [52–54]. When the number of grains changes, the variance of the WF
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distribution (var(ΦM)) according to the number of grains (N) can be expressed as the following
equation [55]:

var(ΦM) =
1
N

 r∑
i=1

PiΦ2
i −

 r∑
i=1

PiΦi

2
 (1)

where Φi and Pi represent the WF value of each grain and the probability of achieving the WF value.
As can be seen from (1), var(ΦM) and the resulting WFV effects change when N changes. For example,
as the grain size of the metal gate increases during the fabrication process (e.g., increase in the heat
budget), the number of grains affecting the characteristics of the device decreases and the WFV effects
increase. If the grain size is large enough that the overall gate area is filled by one metal grain,
the Vturn-on of 60% of devices is determined by a metal grain with a 4.6 eV WF and the Vturn-on of the
other 40% of devices is determined by a metal grain with a 4.4 eV WF. On the other hand, when the
grain size of the metal gate is reduced during the fabrication process (e.g., by incorporating carbon into
TiN), the WFV effects can be reduced [43]. If the grain size is continuously reduced and the metal gate
reaches an almost amorphous state, it can be considered that there is no difference among the grain
distributions of each device and the Vturn-on values of all the devices converge to the average Vturn-on.

As the grain size controlled by the process condition can affect the number of grains and the WFV
effects, the device structure of TFETs can also affect the WFV effect if the structure can change the
grain number, having effects on the Vturn-on determination. In order to analyze the reason why the
σVturn-on of the TFETs is different, depending on the structures, the metal grain distributions and the
energy band diagrams were compared for the lowest and highest Vturn-on among the simulated results
of planar TFETs with the randomly generated metal grain profiles. Figure 3a,b show the metal grain
distributions of planar TFETs, with the highest value of Vturn-on at 0.367 V and the lowest value at
0.289 V, respectively. In the gate region of Figure 3a,b, a red color represents metal grains with WF of
4.6 eV, while a blue color shows other grains with WF of 4.4 eV. Comparing Figure 3a,b, there is a clear
difference between the two samples in terms of the distribution of metal grains adjacent to the source
region. Figure 3a, with high Vturn-on, shows that most of the metal grains close to the source region
have a WF of 4.6 eV, while Figure 3b, with low Vturn-on, shows that there are more metal grains with a
WF of 4.4 eV around the source region.
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Figure 4 shows the energy band diagrams of these two extreme cases of planar TFETs when VD 
is 0.5 V and VG is 0.4 V. Due to the difference in the distribution of the metal grains analyzed above, 
the energy band bending between the source and the channel region becomes larger in the case of 
Vturn-on = 0.289 V (red dash line) than in the case of Vturn-on = 0.367 V (black solid line). As a result, when 
the same VG is applied, there is a difference in the tunneling width of the two cases and accordingly, 
the Vth is also different. As described above, the planar TFET is relatively vulnerable to the WFV 
effect, as the Vth of the planar TFET is only determined by the energy band of the channel adjacent to 
the source region, while the Vth of the conventional MOSFET is determined by the entire channel 
under the gate [33]. In the metal grain distributions shown in Figure 3a,b, planar TFETs have a ΔVturn-

on of 78 mV (0.367 V–0.289 V) between the two cases. On the other hand, the DG TFET and EHBTFET 

Figure 3. Metal grain distributions of planar TFETs in extreme cases (red color: metal grains with a
work-function (WF) of 4.6 eV, and blue color: metal grains with a WF of 4.4 eV) among the simulated
samples. (a) Maximum Vturn-on (0.367 V) case of planar TFETs. (b) Minimum Vturn-on (0.289 V) case of
planar TFETs.

Figure 4 shows the energy band diagrams of these two extreme cases of planar TFETs when
VD is 0.5 V and VG is 0.4 V. Due to the difference in the distribution of the metal grains analyzed
above, the energy band bending between the source and the channel region becomes larger in the
case of Vturn-on = 0.289 V (red dash line) than in the case of Vturn-on = 0.367 V (black solid line). As a
result, when the same VG is applied, there is a difference in the tunneling width of the two cases and
accordingly, the Vth is also different. As described above, the planar TFET is relatively vulnerable to
the WFV effect, as the Vth of the planar TFET is only determined by the energy band of the channel
adjacent to the source region, while the Vth of the conventional MOSFET is determined by the entire
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channel under the gate [33]. In the metal grain distributions shown in Figure 3a,b, planar TFETs have a
∆Vturn-on of 78 mV (0.367 V–0.289 V) between the two cases. On the other hand, the DG TFET and
EHBTFET show a ∆Vturn-on of 65 mV (0.371–0.306 V) and 5 mV (0.685–0.679 V), respectively, when one
of two gates has the same metal grain distribution, as shown in Figure 3a,b.
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Figure 4. Energy band diagrams of planar TFETs with the highest value of Vturn-on at 0.367 V (black solid
line) and the lowest value of Vturn-on at 0.289 V (red solid line) among the simulated samples when VD

is 0.5 V and VG is 0.4 V. The blue dashed line and magenta dashed line show the most extreme cases in
theory when the entire gate of the planar TFET is 4.6 and 4.4 eV, respectively.

As confirmed in the analysis of Figures 3 and 4, only seven metal grains near the source junction
mainly affect the tunneling current and the Vturn-on of the planar TFET. Meanwhile, in the case of DG
TFETs, the addition of another gate on the opposite side doubles the number of metal grains (14 metal
grains) that affect the tunneling current and reduces the effect of WFV. Unlike the planar TFET or DG
TFET, in the on-state of the EHBTFET, electrons are collected under MG and holes are collected under
SG. As the bias of MG increases, energy band bending and a tunneling current are generated in the
channel between the two gates. The EHBTFET has a tunneling current at the channel between MG and
SG, and all of the metal grains (70 metal grains) where MG and SG overlap are included in Vturn-on

determination, which greatly reduces the effect of WFV.
This analysis can be confirmed indirectly by comparing the probabilities of the most extreme

theoretical cases of the planar TFET, DG TFET and EHBTFET. As discussed above, the Vturn-on of the
planar TFET and DG TFET is controlled by the metal grains near the source. Therefore, the planar
TFET has the maximum value of Vturn-on when all WFs of seven metal grains adjacent to the source
are 4.6 eV and the minimum Vturn-on when they are all 4.4 eV; the probabilities are 2.8% (0.67) and
0.2% (0.47), respectively. Similarly, for the DG TFET, the probability of the maximum Vturn-on is
7.8 × 10−2% (0.614) and the probability of the minimum Vturn-on is 2.7 × 10−4% (0.414). In the case of
the EHBTFET, as tunneling occurs from the valence band of the channel near SG to the conduction
band of the channel near MG, the Vturn-on reaches the maximum when all MG grains have a WF
of 4.6 eV and all SG grains have a WF of 4.4 eV where MG and SG overlap, as shown in Figure 5a;
its probability is 2.0 × 10−20% (0.635

× 0.435). Additionally, in the opposite case, as shown in Figure 5b,
the Vturn-on reaches the minimum and its probability is equal to the probability of the maximum Vturn-on.
By comparing the probabilities of the most extreme cases in the three structures, it was confirmed
that the EHBTFET has the smallest probabilities, and this difference is caused by the difference in the
number of metal grains that affect the Vturn-on.
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Figure 5. Expected metal grain distributions of EHBTFETs in the most extreme theoretical cases
(red color: metal grains with a WF of 4.6 eV, blue color: metal grains with a WF of 4.4 eV, and black
color: metal grains that have less effect on the Vturn-on of EHBTFET). (a) Expected maximum Vturn-on

case of EHBTFETs in theory. (b) Expected minimum Vturn-on case of EHBTFETs in theory.

In order to prove that the WFV improvement of the EHBTFET is due to the large number of metal
grains, the σVturn-on of the planar TFET, DG TFET, and EHBTFET was examined while reducing the
LG of the EHBTFET, as shown in Figure 6. The WFV effects of the planar TFET and DG TFET were
determined by the metal grains located at the edge between the source and the channel. Therefore,
the σVturn-on of the planar TFET and DG TFET is not significantly affected by the change in the gate
length. On the other hand, when the LG of the EHBTFET decreases, the number of metal grains in the
overlapping areas of MG and SG decreases and the σVturn-on of the EHBTFET increases accordingly.
By comparing when LG was 70 nm and when LG was 30 nm, it can be seen that the σVturn-on of the
EHBTFET increased from 4.0 to 9.9 mV as the number of metal grains affecting the tunneling current
decreased from 70 to 14, respectively. Therefore, if LG continues to decrease, the WFV effects of the
EHBTFET are expected to be similar to those of other TFET structures. In addition, the electrical
performance (e.g., Ion) also degrades as the tunneling area (i.e., overlap area between main and sub
gates) of the EHBTFET decreases with the smaller LG. Consequently, when the scaling down of TFETs
continues, it is necessary to maintain the LG by using a vertical channel [38] to maintain the advantages
of the EHBTFET in the WFV effects.
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4. Conclusions

In this research, the WFV effects of the planar TFET, DG TFET, and EHBTFET were compared
and analyzed by TCAD simulation. As a result of extracting the σVturn-on and examining the metal
grain distributions, it was confirmed that the planar TFET has the greatest WFV effect because only a
few metal grains around the source region affect the Vturn-on. On the other hand, the EHBTFET is the
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most immune from the WFV effect, as all of the metal grains where MG and SG overlap determine
the Vturn-on.
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