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Abstract: For accurate design, construction, and maintenance, it is important to identify the elastic
modulus of concrete. This is usually achieved using a destructive test based on American Society for
Testing and Materials (ASTM) C469. However, obtaining an appropriate static elastic modulus (Ec)
requires many specimens, and the testing is difficult and time-consuming. Thus, a dynamic elastic
modulus (Ed) is often obtained through a natural frequency for a specific size (e.g., the longitudinal
(LT) or transverse (TR) mode) based on a resonance frequency test. However, this method uses a
gradient at a very low-stress part of the stress–strain curve and assumes a completely elastic body.
In fact, the initial chord elastic modulus (Ei) of the stress–strain curve in a concrete fracture test differs
from the Ed, owing to the non-homogeneity and inelasticity of the concrete. The Ei of the experimental
value may be more accurate. In this study, the Ei was predicted using machine learning methods
for natural frequencies. The prediction accuracy for Ei was analyzed based on f1–f4, as calculated
through the LT and TR modes. The predicted Ei had higher correlations with the actual Ec and
compressive strength (fc) than Ed. Thus, more accurate prediction of concrete mechanical properties
is possible.

Keywords: initial chord elastic modulus; resonance frequency test; static elastic modulus; dynamic
elastic modulus; compressive strength; non-destructive testing; concrete; machine learning

1. Introduction

The elastic modulus of concrete is an important factor for the trustworthy design, construction,
and maintenance of structures, and can predict the deformation in an actual stress state [1,2]. The static
elastic modulus (Ec) of concrete uses the secant elastic modulus of the stress–strain curve as obtained
by ASTM C469. However, a large number of specimens is required to obtain a reliable representative
value, and it is difficult to provide a sufficient assessment, owing to constraints on time and the
difficulty of testing [3,4]. One alternative method comprises obtaining a dynamic elastic modulus (Ed),
while resonance frequency test and ultrasonic pulse velocity method can be applied according to ASTM
C215 and ASTM C597, respectively [5,6]. Among ultrasonic test methods, a pressure wave (P-wave)
measurement provides easy and convenient testing, but the distribution of the data is large, owing to
uneven distributions of aggregates, moisture, and voids in the test piece. In addition, although a large
correlation between Ec and compressive strength (fc) has been reported as a result of using a shear
wave (S-wave), which has a larger energy than a P-wave, it is difficult to measure and obtain consistent
data (especially at low ages), owing to the influences of voids and moisture in the concrete [7–10].
The resonance frequency test is known for consistently predicting the Ed with less fluctuation in
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the collected data, as it is simple to measure and grasps the overall dynamic characteristics of the
specimen. The resonance frequency test assumes that the concrete has a homogeneous elastic modulus,
density, Poisson’s ratio, etc., and uses a method to calculate a theoretical elastic modulus for an initial
stress range [6,11]. In the ASTM, the relationship between the dynamic modulus for the longitudinal
(LT) and transverse (TR) modes was proposed using physical parameters such as the dimensions,
mass, and first resonance frequency (f1) [6]. Subramaniam et al. applied f1 and the second resonance
frequency (f2) of the LT mode in the Rayleigh Ritz theory, proposing a general equation for the Ed and
dynamic Poisson’s ratio [11]. The Eds measured by these non-destructive examination (NDE) methods
were larger than the value of Ec, and several empirical equations for predicting Ec through a certain
reduction in the Ed ratio have been proposed [12–14]. However, the Ed measured according to the
NDE method has a large deviation and degree [10]. In addition, the Ed measured with the resonance
frequency test has been assumed to be the initial chord elastic modulus (Ei), owing to the deformation
of an initial very small stress in the stress-strain curve. Nevertheless, concrete is a nonhomogeneous,
inelastic material, and thus the value of Ed as measured with the theoretical equation such as ASTM’s
is different from the actual Ei value [10]. In previous studies, the Ei was defined as a slope in the range
of 10–50 µ in the stress-strain curve, and was compared to Ed and Ec. The modulus of elasticity was Ed
> Ei (10 µ–50 µ) > Ec, and it was determined that there was a difference of 11.62% between the Ec and
Ei. [15]. However, if the range of Ei is set to (10–50 µ) as in the previous studies, the correlation with Ec
may be small, as the measured value in the initial part of the stress-strain curve is unstable, and has
high variation [9,16]. Therefore, if the correct Ei value is extracted, the correlation of Ei–Ec is expected
to be greater than that of Ed–Ec. To overcome the limitations of the fracture test and predict Ec more
accurately, a non-destructive method for accurately predicting Ei is required.

In recent years, studies have been conducted to overcome the nonlinearity and improve the
prediction accuracy of the mechanical properties (such as the Ec and fc) of concrete by considering
various variables such as the water/binder ratio, type of binders/aggregates and corresponding ratios by
machine learning (ML), rather than by general regression analysis. These studies focused on predicting
the concrete strength and integrity more accurately with general ML algorithms, such as the support
vector machine (SVM), ensemble and artificial neural network (ANN), and provided predictions with
relatively improved accuracy [17–20]. For example, Erdal et al. used ensemble and ANN methods
with cement, blast-furnace slag, water, and aggregate, and compared the accuracies of fc prediction for
high-performance concrete; they found that the ensemble method was slightly better [21]. Park et al.
predicted the Ec and fc using four Eds with SVM, ensemble, ANN, and multiple linear regression (MLR)
methods, and announced that the ensemble and ANN were suitable [8]. Yan and Shi predicted the
Ec by the fc using an ANN, SVM, linear regression, and four theoretical equations, and reported that
the ML methods were more suitable than linear regression and theoretical equations [22]. Young et al.
used an ANN, SVM, and linear regression to predict a 28-day intensity from data with varying mixing
ratios and reported that ML methods were more accurate than linear regression [23]. Cihan used ANN,
ensemble, and SVM methods to estimate the fc and slump values of concrete and reported that the
ANN and ensemble approaches were superior to the SVM [24]. Among the ML methods, the ANN and
ensemble methods overcome the nonlinear behavior of concrete and provide suitable contributions
to quality prediction. However, although some studies have been conducted on the prediction of Ec
and fc with Ed, few studies have been conducted with Ei. Therefore, it is necessary to analyze the
relationships among Ed, Ec, and fc for the application of Ei, and to predict the correct Ei.

In this study, the difference between the dynamic elastic modulus (Ed) and initial chord elastic
modulus (Ei) values obtained with the ASTM theoretical equation was analyzed based on the results of
the resonance frequency test, and the relationship between the Ec and fc was analyzed through accurate
prediction of the Ei. Three Ed values were obtained using the theoretical equations suggested by ASTM
C215-14 and Subramaniam, as the frequencies of the LT and TR modes of the resonance frequency test.
In addition, the exact Ei value at the origin was extracted through curve fitting to the stress–strain
curve, and was compared with the Eds. The Ei was predicted using ML (ensemble, ANN) for the
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frequency, and the Ed was obtained by the resonance frequency test. In addition, the contributions of
the variables were analyzed. The ML method was trained on several combinations, and a five-fold
cross validation was performed to prevent the overfitting of the predicted results. The mean squared
error (MSE) and mean absolute percentage error (MAPE) were used to analyze the errors between
the predicted and actual Ei values. In addition, the relationships with the Ec and fc were analyzed to
confirm the predicted possibility of using the Ei.

2. Materials and Methods

2.1. Materials and Preparation of Specimens

The concrete consisted of Type I Portland cement, river sand, supplementary cementitious
materials (SCMs), and crushed granite (up to 25 mm in size). The concrete in this study replaced
approximately 50% of the cement with granulated blast furnace slag (GBFS) and fly ash. It possessed
high strength in the long term, but the initial strength development could be slow. Two concrete
mixtures (Mix 1, Mix 2) were prepared with W/B ratios of 0.45 and 0.35, respectively, and were expected
to develop fcs of 20 and 40 MPa at 28 days, respectively. The ratios of concrete mixture are summarized
in Table 1. 300 cylinders were cast to a size of 150 × 300 mm according to ASTM C31/C31M-12 [25].
The Ec, fc, and Ed values were tested at different ages, i.e., 4, 7, 14, and 28 days. The 28-day fcs for the
Mix1/Mix2 cylinders were 19.26 MPa /43.99 MPa, similar to the expected fc.

Table 1. Proportions of the concrete mixture groups 1.

ID Cement
Type W/B S/A W C S G

Unit Quantity (kg/m3)
Mineral Admixture Chemical Admixture

FA GBFS AE
(Binder%)

SP
(Binder%)

Mix1 (20 MPa)
Type I

0.45 0.46 259 121 777 934 58 69 0.9 -

Mix2 (40 MPa) 0.35 0.47 308 166 761 886 81 85 - 1
1 SCMs: Supplementary cementitious materials, W: water, C: cement, S: sand, G: crushed cobblestone, FA: fly ash,
SC: slag cement, AE: air-entraining agent, SP: superplasticizer, GBFS: granulated blast furnace slag.

2.2. Destructive Tests for Elastic Modulus and Compressive Strength

For the measurement of the static elastic modulus (Ec) and compressive strength (fc), each cylinder
was positioned vertically, with both ends polished, and the protrusions on the specimen surface
removed. As shown in Figure 1, the Ec and fc for each concrete cylinder were measured with a universal
testing machine (UTM, Instruments, Instron, MA, USA) with a capacity of 1000 kN, according to ASTM
C39/C39M-14a and ASTM C469/C469M-14 [3,26]. The UTM was operated at a speed of approximately
0.28 MPa/s.
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Figure 1. Experimental setup for static destructive test.

2.3. Dynamic Elastic Modulus Measurements with Resonance Frequency Tests

As shown in Figure 2, the three to four longitudinal and transverse resonance frequencies of the
concrete cylinders were measured based on ASTM C215-14 [6]. A steel ball hammer with a diameter
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of 10 mm was used to generate stress waves in the concrete cylinder. This hammer was suitable for
generating very low to 20 kHz frequency signals. An accelerometer (PCB 353B16, PCB, Depew, NY,
USA) with a resonance frequency of approximately 70 kHz was used to measure the dynamic response
of the concrete cylinders. The time signals measured with the accelerometer were stabilized by a signal
conditioner (PCB 482C16, PCB, Depew, NY, USA) and were digitized with 1 MHz sampling through
an oscilloscope (NI-PXIe 6366). The time signals were transformed into the frequency domain by a fast
Fourier transform algorithm.
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Figure 2. Resonance frequency test setup. (a) longitudinal mode and (b) transverse mode.

Figure 3 shows typical spectral amplitudes of the concrete cylinders at 4, 7, 14, and 28 days in
the Mix 2 cylinder. The resonance frequency appears as a large amplitude in the amplitude spectrum.
The most dominant frequency was considered as the basic resonance frequency of the longitudinal
fLT and transverse fTR modes, with four resonance frequencies in the LT mode and three resonance
frequencies in the TR mode. The first of these frequency values was used to calculate the Ed of the LT
and TR modes, using Equations (1) and (2) from ASTM C215-14.

ASTM.LT = αLTm f 2
LT(Pa) (1)

ASTM.TR = αTRm f 2
TR(Pa) (2)
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In the above, ASTM.LT and ASTM.TR are the Ed values calculated with fLT and fTR, respectively,
as the first resonance frequencies. αLT has a constant value with regard to the dimensions of the
specimen (=5.093 × (L/d2)), where d is the diameter and L is the length. αTR has a constant value with



Appl. Sci. 2020, 10, 5464 5 of 21

regard to Poisson’s ratio and the size of the cylinders (=1.6067 × (L3T/d4)). T is a correction factor
corresponding to the Poisson’s ratio, and m is the mass of the cylinders in kg [6].

In addition, as in the method of predicting the dynamic elastic modulus (Ed) with two frequencies
as proposed by Subramaniam et al., the dynamic Poisson’s ratio was obtained through Equation (3),
and the Ed was predicted through Equation (4).

µ = A1

(
f2
f1

)2

+ B1

(
f2
f1

)
+ C1 (3)

f 1, f 2.LT = 2(1 + µ)ρ

(
2π f1R0

f 1
n

)2

(4)

Here, f1, f2.LT is the Ed value calculated with f1 and f2, f1 is the first frequency, f2 is the second
frequency, R0 is the diameter of the cylinder, A1, B1, and C1 are correction factors, ρ is the density,
and f 1

n is a correction factor based on the dynamic Poisson’s ratio [11].

2.4. Initial Chord Elastic Modulus Measurement

To calculate the initial chord elastic modulus (Ei) from the measured stress and strain data,
a predictive equation for the stress-strain curve of the existing concrete (such as Equations (5) and (6))
can be used [27,28]. However, the existing theoretical equations are suitable for hardened concrete;
when measuring the slope of the 10 µ and 50 µ strain ranges applied in previous studies, the initial data
value was unstable, and the variability was large. Thus, the error could be large. Therefore, as shown
in Figure 4, instead of extracting the Ei with an existing theoretical equation, the curve was predicted
through best curve fitting from the origin to the max fc′, and the slope of Ei was calculated from
the origin.

f c =
2 f c′

(
x
εce

)
1 +

(
x
εce

)2 (5)

f c = f c′
[
2
( x
εce

)
−

( x
εce

)2
]

(6)
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3. Machine Learning Methods

3.1. Ensemble Method

The ensemble method combines several weak learners to create learners with strong predictive
power. This study used a regression tree ensemble method and boosting method to combine weak
learners. The boosting method performs slightly better than a bagging method and shows a higher
predictive power. In addition, the boosting method can compensate for weaknesses in learning the next
regression tree, by assigning weights to reduce the error between the predicted and output values of the
previously learned regression tree. Here, a least squares method was to calculate the error. As shown
in Figure 5, least squares boosting (LSBoost) is a sequential ensemble method that sequentially builds
a decision tree. It works in a way that compensates for errors in the previous tree and is defined as
shown in Equation (7) [29,30].

FT(x) =
T∑

t=1

ft(p) (7)

Here, x, ft, and FT(p) represent the input variable, weak learner, and strong learner, respectively.
Each weak learner produces an output which is a hypothesis for each sample of the training set.

One weak learner is selected in each repetitive step t. Then, a coefficient is allocated to minimize the
sum of the training errors at the final t-step acceleration classifier, as follows (Equation (8)):

Et =
∑

i

E[Ft−1(pi) + αth(pi)] (8)

In the above equation, Ft−1(p) and E(F) are the accelerated learners and error functions generated
up to the previous training stage, respectively, and ft(p) = αth(p) is weak learner considered for the
final learner. In each iteration step of the training process, a weight of a value equal to the current error
E(Ft−1(pi)) for the training data set is reflected in the next data set, thereby compensating for the error.
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3.2. Artificial Neural Network (ANN)

An ANN is a statistical learning algorithm based on a biological neural network, i.e., its structure
and function. ANNs make use of connected artificial neurons and perform nonlinear modeling through
neurons explaining their unique behaviors by learning input parameters. The multilayer perceptron
(MLP) is the most commonly employed ANN architecture; it is comprised of input, hidden, and output
layers, as shown in Figure 6 [31]. As shown in Equation (9), all the neurons connected in every layer of
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the ANN include weights (w) and biases (b). In addition, the neuron values of the previous layers are
modified by various weights and compensated through biases.

yi = f (net) = f

 n∑
i=1

ωipi + b j

 (9)

In the above, p is the input value (i = 1, . . . , n), b denotes the bias of the neuron, w denotes the
weight vector between neurons, f is the activation function, and y represents the output value. An MLP
is ordinarily trained using an inverse propagation algorithm, where interconnected weights in the
network are repeatedly adjusted to minimize errors (defined as root mean square errors) (RMSEs) [32].
Previous studies have reported that the Levenberg–Marquardt algorithm is suitable as it produces
coherent results for the majority of ANNs [33].
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4. Results and Discussion

4.1. Experimental Consistency of Static and Dynamic Tests

The static elastic modulus (Ec), initial chord elastic modulus (Ei), and compressive strength (fc)
values were collected through static testing of the concrete according to ASTM C469/C469M-14 and
ASTM C39/C39M-14a [3,26], and the Eds (ASTM.LT, f1,f2.LT, and ASTM.TR) values calculated as the
first and second resonance frequencies were calculated using Equations (1)–(4), for frequencies obtained
by dynamic testing according to ASTM C215-14. The ranges of physical and mechanical properties
of the specimens in the Mix1 and Mix2 were summarized in Table 2 and the coefficient of variation
(COV) which means the standard deviation (σ) divided by the mean value (µ) of the same group was
used to evaluate the consistency of the test results in Table 3. Outliers were detected using the Z-score
method, and some data were removed from the statistical analysis [34]. The COV of the Ec by static
testing ranged from 4.60% to 14.31%, and the COV of the fc ranged from 3.03% to 5.47%. The 28-day
fc values of Mix1 and Mix2 were 19.26 MPa and 43.99 MPa, respectively, i.e., similar to the target
fc. However, the COV of the Ec, which was slightly higher in Mix 1 (low curing age), was slightly
distorted on the opposite side of the test piece; thus, the deformation during compression was not
uniform. This appears to make the Ec more sensitive than the fc in static testing. The COV of the Ei
ranged from 4.31% to 7.89%, and by using the method shown in Figure 4, it was possible to overcome
the instability in the initial part of the stress–strain curve to collect consistent values. The COV ranges
of ASTM.LT and ASTM.TR as measured by the longitudinal and transverse resonance frequency tests
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were 2.14%–4.36% and 2.71%–5.16%, respectively. The COV of f1f2.LT, in which the first and second
frequencies in the longitudinal mode of the resonance frequency test were used, ranged from 2.35% to
4.71%. For ASMT.LT, f1,f2.LT, and ASTM.TR, the COV remained reasonably consistent.

Table 2. The range of physical and mechanical properties in the Mix 1 and 2.

w/c
The

Number of
Specimens

Weight
(kg)

Dimension
Density
(kg/m3) Age (Day) fc (MPa) Ec (MPa)Diameter

(mm)
Length
(mm)

0.45
(Mix1) 91

10.66
~12.12
(11.19)

150
~150
(150)

290.95
~298.10
(293.97)

2051.58
~2340.38
(2153.14)

4 7.33~8.56
(7.91)

9202~15,929
(10,368)

7 9.31~10.85
(10.07)

10,930~13,256
(11,784)

14 12.67~14.63
(13.87)

12,723~16,883
(14,735)

28 17.65~20.68
(19.26)

14,552~20,915
(17,041)

0.35
(Mix2) 194

11.10
~12.08
(11.63)

150
~150
(150)

293.30
~299.70
(297.50)

2125.88
~2290.24
(2212.76)

4 20.96~26.19
(24.12)

14,566~23,879
(16,796)

7 27.21~32.56
(29.62)

15,431~19,807
(18,079)

14 32.82~42.38
(38.17)

15,523~24,009
(20,904)

28 40.21~47.34
(43.99)

18,686~26,530
(22,860)

Table 3. Summary of statistical analysis.

Days/Variable
ASTM.LT [MPa] f1f2.LT [MPa] ASTM.TR

[MPa] Ei [MPa] Ec [MPa] fc [MPa]
Mix 1 Mix 2 Mix 1 Mix 2 Mix 1 Mix 2 Mix 1 Mix 2 Mix 1 Mix 2 Mix 1 Mix 2

Day 4
N 24 49 24 49 24 49 24 49 24 49 24 49
µ 15,378 24,348 15,643 24,813 14,850 23,914 10,745 18,650 10,368 16,796 7.91 24.12

COV 4.36% 3.81% 4.71% 4.00% 4.56% 4.01% 7.89% 7.36% 14.31% 7.84% 4.29% 5.10%

Day 7
N 19 49 19 49 19 49 19 49 19 49 19 49
µ 17,643 26,166 18,003 26,561 17,151 25,294 13,301 20,467 11,784 18,079 10.07 29.62

COV 4.30% 2.39% 4.36% 2.57% 5.16% 2.71% 4.36% 4.31% 4.90% 4.60% 4.57% 3.03%

Day 14
N 25 50 25 50 25 50 25 50 25 50 25 50
µ 20,696 28,543 21,057 28,973 20,074 27,530 16,804 24,003 14,735 20,904 13.87 38.17

COV 3.72% 2.47% 3.80% 2.64% 3.88% 3.01% 5.35% 5.81% 6.10% 6.96% 3.35% 5.47%

Day 28
N 23 46 23 46 23 46 23 46 23 46 23 46
µ 23,814 30,348 24,239 30,805 22,959 29,652 19,648 25,853 17,041 22,860 19.26 43.99

COV 3.94% 2.14% 4.35% 2.35% 3.92% 2.73% 6.25% 4.90% 6.88% 6.21% 4.09% 4.32%

4.2. Relationship among Static and Initial Chord and Dynamic Elastic Modulus

The static elastic modulus (Ec) of concrete can be determined using a dynamic test method. Various
empirical equations have been proposed for the prediction of Ec in several studies, using measured
Ed values. Popovics considered the density of concrete in the relationship between Ed and Ec and
proposed Equation (10) for lightweight concrete and general concrete. ωc represents the density of
hardened concrete (kg/m3) [12].

Ec =
446.09Ed

1.4

ωc
(MPa) (10)

As another example, the British standard BS8110 Part 2 proposed Equation (11). This equation
does not apply to concrete or lightweight aggregate concrete containing more than 500 kg of cement
per 1 m3 of concrete [13].

Ec = 1.25Ed − 19000(MPa) (11)

Lydon and Balendran proposed an empirical relationship (Equation (12)) between the Ed and
Ec [14].

Ec = 0.83Ed(MPa) (12)
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The values of dynamic elastic modulus (Ed) as measured by the three methods in Figure 7 were
almost similar, and the values followed Eds (f1, f2.LT, ASTM.LT, and ASTM.TR) calculated as the
first and second resonance frequencies. Compared to the added empirical equation, the predicted
static elastic modulus (Ec) and measured value of do not match, and in fact, the Ed value may vary
greatly depending on the test methods and size and type of cylinder. Therefore, it is difficult to select
the correct empirical equation for producing the minimum error for the various dynamic tests and
cylinders. As expected, the initial chord elastic (Ei) had a large margin of error with the Ed, and was in
the middle of the Ed and Ec. In addition, the Ei is less variable and more consistent than the Ed in
relation to the Ec. Table 4 summarizes the correlations between Ed, Ei, and Ec. The correlation between
the three Ed values and Ec was 0.93, and Ei and Ec were analyzed to have a greater correlation, at 0.96.
Therefore, it is necessary to accurately predict the Ei as having a greater correlation with Ec.
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Table 4. Correlation between static elastic modulus (Ec) and E-modulus.

Correlation ASTM.LT-Ec f1,f2.LT-Ec ASTM.TR-Ec Initial Chord Elastic Modulus (Ei)-Ec

Value 0.9376 0.9362 0.9364 0.9645

Next, the E-moduli are compared, based on the most commonly used ASTM.LT value among the
resonance frequency test for predicting the Ed. By comparing ASTM.LT values, other Eds (ASTM.LT,
f1,f2.LT, and ASTM.TR) show linear trend, but the Eds, initial chord elastic modulus (Ei), and static
elastic modulus (Ec) have nonlinear relationship. Ei and Ec show similar trends and data distributions;
thus, it is more appropriate to use the Ei rather than Eds, according to the theoretical equation for
Ec prediction.

In Table 5, the errors and correlations of Ed and Ei are analyzed. MSE, RMSE, and MAPE were
used as methods for confirming errors. The MSE and MAPE are defined in Equations (13) and (14),
respectively, where n is the number of data, Ai is the Ei value, and Pi is the Ed value.

MSE =
1
n

n∑
i=1

(Ai − Pi)
2 (13)
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MAPE =
1
n

n∑
i=1

∣∣∣∣∣Ai − Pi
Ai

∣∣∣∣∣ (14)

As the three Eds have almost similar values and trends for the same cylinder, the correlation with
Ei was close to 0.95. ASTM.TR had the smallest MAPE with the Ei.

Table 5. Comparison of errors and correlations between Ei and dynamic elastic moduli (Eds).

Type of Errors ASTM.LT f1,f2.LT ASTM.TR

Mean square error (MSE) 2.53 × 107 2.95 × 107 1.88 × 107

Root MSE (RMSE) 5031 5427 4338
Mean absolute percentage error (MAPE) 26.32% 28.39% 22.59%

R 0.9572 0.9556 0.9551

Figure 8 shows the relationships between the ASTM.LT and initial chord elastic modulus (Ei)
according to mixes and ages. The MAPEs of the dynamic elastic modulus (Ed) and Ei were large at
low age and decreased as age increased. In addition, the difference between the Ed and Ei in Mix 2,
a higher strength mixture, was smaller. This trend is considered to decrease the difference between
the Ed value and Ei in the theoretical equation, as the moisture content inside the concrete is small
(because the w/c ratio is small).
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The difference between the dynamic elastic modulus (Ed) and initial chord elastic modulus (Ei)
values from the three theoretical equations was confirmed using the method shown in Figure 9, and an
analysis was conducted to confirm how accurately the Ei could be predicted by correcting for the
Eds. The correction factors and MAPE according to the mixes and ages are summarized in Table 6.
Although the MAPE with the Ei could be lowered to 4.69%, 2.81%, 3.12%, and 3.43% (for days 4, 8,
14, 28, respectively) with corrections based on mixes and ages for the Eds values, this process was
quite complicated and difficult. Therefore, the entire data were applied for the ASTM.LT, f1,f2.LT,
and ASTM.TR, average correction factors of 0.80, 0.79, and 0.82. Compared to the actual Ei value,
the MAPE values of ASTM.LT, f1,f2.LT, and ASTM.TR according to the correction factors showed
errors of 6.40%, 6.50%, and 6.43%, respectively. However, the Ei is not suitable for predicting the entire
section, as it is nonlinear with the theoretical equations.
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Table 6. Correction factors and MAPE for ages and mixes between Ed and Ei.

ID Mix Day 4 Day 7 Day 14 Day 28 Average

ASTM.LT
Mix 1 0.70

(6.38%)
0.75

(2.81%)
0.81

(3.12%)
0.83

(3.43%)
0.77

(7.47%)

Mix 2 0.77
(4.69%)

0.78
(3.42%)

0.84
(4.69%)

0.85
(3.19%)

0.81
(5.94%)

f1,f2.LT
Mix 1 0.69

(7.02%)
0.74

(3.35%)
0.80

(3.51%)
0.81

(3.91%)
0.76

(7.63%)

Mix 2 0.75
(5.54%)

0.77
(4.14%)

0.83
(4.81%)

0.84
(3.24%)

0.80
(6.12%)

ASTM.TR
Mix 1 0.72

(6.25%)
0.78

(4.17%)
0.84

(4.29%)
0.86

(4.79%)
0.80

(7.32%)

Mix 2 0.78
(4.81%)

0.81
(3.82%)

0.87
(5.28%)

0.87
(4.13%)

0.83
(5.98%)

Next, as a method for predicting the Ei, an analysis was conducted with the fundamentally
collected frequencies in the resonance frequency test. Figure 9 shows the relationship between the
first resonance frequency in the longitudinal mode and the E-modulus. The first to fourth frequencies
are defined as f1 to f4. For f1, the ASTM equation has an exponential function form. The Ei and Ec
have the same form. Based on these results, the Ei and Ec could be predicted using the ASTM method
(correction coefficient, etc.), and the Ei and Ec could be predicted using the resonance frequencies
(such as f1 and f2) collected in the resonance frequency test. Therefore, an analysis was conducted with
the f1 to f4 resonance frequencies collected through the resonance frequency test.

Figure 10a shows the relationship between the four frequencies in the longitudinal (LT) mode and
initial chord elastic modulus (Ei), and Figure 10b shows the relationship between the three frequencies
in transverse (TR) mode and Ei. The number of used data and frequency range for the frequency
combination of LT and TR modes are summarized in Tables 7 and 8. The data with unclear peaks or
inconsistent with others in the frequency domain were excluded from the analysis. As both the LT
and TR modes increased from f1 to f4, the variance of the data increased, and the consistency of data
decreased. f1 and f2 of the LT and TR modes have relatively small coefficient of variation (COV) values
and are statistically stable, whereas the trend can be identified from f3, but the statistical stability is
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poor. The ratio of f1, f2, f3, and f4 at the bottom and top of the LT mode was similar to 1.9, 2.43, and 2.82,
but in the TR mode, f1-f2 was 1.85, and f1-f3 showed a large error.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 22 
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Table 7. Summary of used data in the LT mode for machine learning analysis.

Type of
Mode

The
Number of
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Variable f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz) Weight
(kg)

Diameter
(mm)

Length
(m)

Density
(kg/m3)

LT.f1 285 Range 4450
~6400

10.66
~12.12 150 290.95

~299.70
2051.58

~2340.38

Average 5641 11.49 150 296.38 2193.72

LT.f2 283 Range 8500
~12,100

10.66
~12.12 150 290.95

~299.70
2051.58

~2340.38

Average 10,757 11.49 150 296.39 2193.79
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10.66
~12.12 150 295.00

~299.40
2051.58

~2340.38

Average 13,677 11.50 150 297.41 2194.86

LT.f4 230 Range 12,400
~20,250

10.66
~12.12 150 295.00

~299.60
2051.58

~2340.38

Average 15,838 11.48 150 297.68 2191.51

LT.f1,f2 283 Range 4450
~6400

8500
~12,100

10.66
~12.12 150 290.95

~299.70
2051.58

~2340.38

Average 5640 10,757 11.49 150 296.39 2193.79

LT.f1,f2,f3 275 Range 4450
~6400

8500
~12,100

10,550
~15,500

10.66
~12.12 150 295.00

~299.40
2051.58

~2340.38

Table 8. Summary of used data in the LT mode for machine learning analysis.

Type of
Mode

The Number
of Specimens Variable f1 (Hz) f2 (Hz) f3 (Hz) Weight

(kg)
Diameter

(mm)
Length

(m)
Density
(kg/m3)

TR.f1 285
Range 2750

~3900
10.66

~12.12 150 290.95
~299.70

2051.58
~2340.38

Average 3441 11.49 150 296.38 2193.72

TR.f2 105
Range 5150

~7700
10.71

~12.12 150 290.95
~299.50

2069.88
~2340.38

Average 6276 11.42 150 295.99 2182.91

TR.f3 105
Range 7750

~12,250
10.71

~12.12 150 290.95
~299.50

2069.88
~2340.38

Average 9919 11.42 150 295.99 2182.91

TR.f1,f2 105
Range 2750

~3850
5150

~7700
10.71

~12.12 150 290.95
~299.50

2069.88
~2340.38

Average 3351 6276 11.42 150 295.99 2182.91

TR.f1,f2,f3 105
Range 2750

~3850
5150

~7700
7550

~12,250
10.71

~12.12 150 290.95
~299.50

2069.88
~2340.38

Average 3351 6276 9919 11.42 150 295.99 2182.91
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Next, the correlation between the frequencies of the LT and TR modes and initial chord elastic
modulus (Ei) was analyzed, as shown in Table 9. In the LT mode, the correlation between the frequency
and Ei was f1 > f2 > f3 > f4. The correlation values of f1 and f2 were almost identical and had a high
correlation with Ei. In the TR mode, f1-Ei had the largest correlation at 0.94, but the correlation greatly
decreased from f2. It was confirmed that the Ei can be predicted with f1 and f2 with high correlation,
through analysis of the variability of the resonance frequency for each mode and correlation with
the Ei.

Table 9. Correlation of frequencies and Ei in LT and TR modes.

Correlation LT.f1-Ei LT.f2-Ei LT.f3-Ei LT.f4-Ei TR.f1-Ei TR.f2-Ei TR.f3-Ei

Values 0.9420 0.9397 0.8629 0.7071 0.9413 0.8992 0.7915

4.3. Prediction of Initial Chord Elastic Modulus with Multiple Linear Regression

Subramaniam et al. applied f1 and f2 to Equation (3) to obtain a dynamic Poisson’s ratio,
and proposed an equation for predicting the Ed through Equation (4) [11]. The multiple linear
regression (MLR) results using the LT mode’s f1 and f2 values with high correlations with the Ei
and small data variability were compared with those from the theoretical equation of Subramaniam.
Equations (15) and (16) for f1, f2, and E-modulus (f1,f2.LT: Ed measured by the first and second frequency
in LT modes, Ei) values were extracted using the curve fitting toolbox of MATLB R2019b and were
compared in three dimensions, as shown in Figure 11.

Ei = −3.0884 + 4.104× f 1 + 2.575× f 2 (15)

f 1, f 2.LT = −2.8534 + 11.9× f 1− 1.247× f 2 (16)

Generally, in the LT mode, f2 has a value of 1.8–2 times f1. The MLR plane has a similar specific
gravity to f1 and f2 and has a positive correlation. In the Subramaniam equation, f1 has a high specific
gravity and positive correlation, and f2 has a small specific gravity and negative correlation. The MAPE
of the Ei as predicted by the MLR with f1 and f2 and actual Ei could be lowered by 5.04%, i.e., higher
accuracy than the predicted result through general correction to the theoretical equation.
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regression (MLR), (b) Predicted Ed with Equation (4).

4.4. Prediction of Initial Chord Elastic Modulus with Ensemble Method

Recently, studies have been conducted to overcome the nonlinearity of data by applying machine
learning (ML) methods, and to improve prediction accuracy and reliability. In this study, ML methods
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are applied to overcome the nonlinearity of data that is difficult to predict using basic regression
analysis and correction factors. The errors of the initial chord elastic modulus (Ei) and actual Ei values
as predicted by various combinations of frequencies by the ensemble method are summarized in
Tables 10 and 11. As a result of the analysis, when a single frequency was used, MAPE values of
3.90% and 4.31% were found for the longitudinal (LT) and transverse (TR) modes, respectively. In the
ensemble method, using only f1 can reduce the error by 1–2% more than in the correction coefficient
and MLR method. Thus, it is possible to predict a sufficiently accurate Ei value using only f1. As the
number of frequencies being used increased, the accuracy tended to increase. In the LT/TR modes,
maximum MAPE values of 3.51%/3.40% were shown. Through the correlation analysis shown in
Table 10 and the predicted accuracy values in Tables 9 and 10, approximate contributions to f1 to f4 can
be inferred. However, as they are not exact values, an additional contribution analysis was performed.

Table 10. Ei predicted by LT mode frequencies with ensemble.

LT Mode f1 f2 f3 f4 f1~2 f1~3 f1~4

MSE 1.18 × 106 1.21 × 106 2.75 × 106 4.73 × 106 1.08 × 106 9.74 × 105 9.06 × 105

RMSE 1080 1100 1660 2170 1040 987 952
MAPE 3.90% 3.95% 5.69% 8.00% 3.67% 3.52% 3.51%

R 0.9716 0.9705 0.9332 0.8900 0.9738 0.9768 0.9798

Table 11. Ei predicted by TR mode frequencies with ensemble.

TR Mode f1 f2 f3 f1~2 f1~3

MSE 1.36 × 106 1.64 × 106 1.83 × 106 1.13 × 106 7.74 × 105

RMSE 1160 1280 1350 1060 879
MAPE 4.31% 4.44% 5.79% 3.87% 3.40%

R 0.9668 0.9620 0.9577 0.9740 0.9822

The relative importance (RI) was calculated using the Statistics and Machine Learning Toolbox of
MATLAB R2019b to identify the detailed contribution of each variable from a combination of four
frequency variables. As presented in Figures 12 and 13, the results of the contribution analysis showed
that f1 was more than 75% in the all combinations and had a dominant effect on the Ei prediction.
However, even if the contribution of other factors is low, they can contribute to some prediction
accuracy. Also, the difference in the contribution of each variable for each case is due to the data
difference, and especially when consistent data from f1 to f4 were used, the contribution of f1 tends to
be large.
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Next, an analysis was conducted by considering various variables for the concrete cylinder. The Ei
was predicted by the ML method by adding the mass (M), length/diameter (L/d), area (A), volume (V),
and density (ρ) as dimensional variables, with the frequency obtained by the resonance frequency test.
It was found that M, L/d, A, V, and ρ do not contribute to Ei prediction, as they have constant values for
the same specimen. Additionally, the Ei was predicted with variables such as the curing age (day), W/B,
frequencies of longitudinal (LT) and transverse (TR) mode, and RIs for each variable, as summarized
in Figures 12 and 13. In the LT and TR modes, f1 contributed more than 87%, and f2 contributed more
than 6%, accounting for most of the ratio. The W/B ratio was expected to have an impact but did not
contribute to the actual Ei prediction. Thus, it is considered that this factor is contained in the main
resonance frequencies such as f1 and f2, such that the elastic modulus and strength can be accurately
predicted using only the main resonance frequency, i.e., without W/B information.

Although the day variable was very small, it contributed partly to the accuracy of initial chord
elastic modulus (Ei) prediction, and the prediction results are shown in Figure 14. When the number of
frequencies (including the day) is increased from f1 to f4 for the LT mode, the errors are 3.79%, 3.69%,
3.51%, and 3.47% in the ensemble method, respectively, and 3.66%, 3.57%, 3.42%, and 3.31 in ANN
method, respectively. Even in the TR mode, the predicted results including the day improved from
0.1% to 0.2%. This means that the frequency obtained by the resonance frequency test includes the
day information, and it is sufficient to use only the frequency to predict the Ei. Moreover, although
the TR mode frequency predicted the Ei with higher accuracy, it is more appropriate to use the LT
mode, which appears accurately up to the fourth mode. This is because f3 of the TR mode has a large
dispersion and low consistency, and some frequencies are unclear.
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Additionally, the initial chord elastic modulus (Ei) values predicted with the ensemble, artificial
neural network (ANN), multiple linear regression (MLR), and correction factor methods are compared
with the actual Ei for the LT mode frequency (i.e., with a greater correlation with the Ei than the TR mode).
As a result of comparing the predicted Ei and actual Ei values, the MALR of the MLR method was
5.04%, and the correction factor method had an error of 6.33%. The MLR method using two frequencies
has a higher predictive performance than the normal correction. In addition, the nonlinearity of the
low age mix was partially compensated for by using two frequencies. For the ANN and ensemble
methods, the MAPEs were 3.31% and 3.51%, respectively, and the use of ML reduced the errors as
compared to normal calibration and MLR analysis. This is because the ANN and ensemble methods
can compensate for nonlinearity of data by providing weight correction for additional frequencies.
Therefore, it is possible to more accurately predict the Ei through the ML method.

4.5. Relationship between Initial Chord and Static Elastic Modulus

Table 12 shows the correction factors and MAPE for the Ei and Ec values extracted from Figure 4.
For Mix 1 and Mix 2, by applying the correction factors of 0.91–0.95 and 0.89–0.90 for each age,
respectively, the MAPE could be minimized. As a result of applying the average correction factor for
each mix, the Ec could be predicted with an error of approximately 5%. In addition, it was found that
the correction factor of 0.89 had the lowest MAPE for the entire data set (Mix 1 + Mix 2).

Table 12. Comparison of correction factors and MAPE of Ei and Ec according to mix and age.

Type Day 4 Day 7 Day 14 Day 28 Average

Mix 1 0.95
(5.51%)

0.89
(2.97%)

0.87
(3.94%)

0.91
(6.31%)

0.91
(5.27%)

Mix 2 0.90
(4.15%)

0.88
(2.97%)

0.88
(4.78%)

0.89
(4.88%)

0.89
(4.14%)

The initial chord elastic modulus (Ei) values predicted by the four methods had errors of 3–6%
from the actual Ei, so the correction factors with the static elastic modulus (Ec) were calculated to be
equal to 0.89. The Ec values were predicted by applying a correction factor (0.89) to the predicted Ei,
which is compared with the actual Ec in Figure 15. The LT mode has a higher correlation with the
Ei than the TR mode, and the frequency of the LT mode is used, because the resonance frequency is
clearly seen up to the higher-order mode.
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The predicted static elastic modulus (Ec) through the correction of ASTM.LT (Ed measured by the
first frequency in LT modes) and measured mean absolute percentage error (MAPE) of Ec was 6.57%
and had the largest error. It is difficult to overcome the nonlinearity of concrete, as the theoretical
ASTM equation based on the resonance frequency test has a constant density and Poisson’s ratio
within a general range. The MAPEs between the Ec values predicted by the ensemble, ANN, and MLR
methods and the actual Ec were determined to be 4.63%, 4.69%, and 5.53%, respectively. Two or more
frequencies are used to compensate for the nonlinearity of concrete, and have a linear relationship
with the actual Ec.

4.6. Relationship between Initial Chord and Compressive Strength

In the concrete cylinder in this study, materials similar to crushed cobblestone and granulated blast
furnace slag (GBFS) were used, and Equation (17) (proposed by Noguchi) was used for comparison with
the theoretical strength curve; k1 is the aggregate, and k2 is the correction coefficient of the SCMs [35].
According to Table 13, 0.95 for both k1 and k2 was used. Such concrete has the advantage of slow
strength development at an early age but demonstrates significant progress for long-term strength.

Ec = k1k233500( fc/60)1/3(ωc/2400)2(MPa) (17)

Table 13. Practical values of correction factor k1 and k2.

Lithological Type of Coarse Aggregate k1 Type of Addition k2

Crushed limestone, calcined bauxite 1.20 Silica fume, ground-granulated
blast-furnace slag, fly ash fume 0.95

Crushed quartzitic aggregate, crushed
andesite, crushed basalt, crushed clay slate,

crushed cobblestone
0.95 Fly ash 1.10

Coarse aggregate, other than above 1.00 Addition other than above 1.00

Figure 16 shows the relationship between the static elastic modulus (Ec) (Ec predicted from Ei,
actual Ec) and compressive strength (fc). The theoretical strength curve of the Noguchi equation and
trend of the measured Ec and fc data are suitable, and close to the line. Therefore, the Ec and fc are
well-measured, and the values of Ec and fc are within a reasonable range. The results were the same
for the Ec values predicted using the initial chord elastic modulus (Ei). Thus, it was confirmed that
there is a high correlation (with intensity) when predicting the correct Ec using the Ei.
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In this study, to confirm the accurate prediction and applicability of actual initial chord elastic
modulus (Ei) values, the Ei was compared with the dynamic elastic modulus (Ed) of three theoretical
equations, using a resonance frequency test. In addition, the relationship among the predicted Ei
and static elastic modulus (Ec) values and the compressive strength (fc) was analyzed. It was found
that the Ei is more correlated with the Ec than the Ed, confirming the need for accurate Ei prediction.
In addition, it was confirmed that the correlation between the frequencies collected by the resonance
frequency test according to the ASTM method (but not the fracture test) and the Ei and Ec was high,
and that the Ei and Ec could be predicted using the resonance frequency. As a result of predicting the
Ei using ML (ensemble, ANN), multiple linear regression (MLR), and correction factor methods from
the collected frequency, it was possible to overcome the nonlinear behavior of concrete in the range of
the initial Ec. Thus, the prediction error was smaller than when using the MLR or correction factor
methods. The predicted Ei showed a higher correlation with the Ec and fc than the Ed and was able to
identify the applicability of the Ei.

5. Conclusions

Predicting the static elastic modulus (Ec) is important for concrete structures. The ASTM resonance
frequency test is commonly used in predicting a consistent dynamic elastic modulus (Ed) using a
nondestructive method. The resonance frequency test calculates the Ed for a very small stress in
the stress–strain curve and assumes that the Ed is equal to the initial chord elastic modulus (Ei).
However, the calculated Ed derives a large error for utilizing the Ec and fc, owing to the nonlinearity
of the concrete. Therefore, the correct Ei as extracted through the curve fitting of the stress-strain
curve showed a better correlation between the Ec and fc than the Ed. These results indicate that it is
desirable to measure and utilize accurate Ei values. In this study, it was possible to predict the actual
Ei quite accurately by applying the ensemble, ANN, MLR, and correction factor methods to the f1 to f4
frequencies of longitudinal (LT) and transverse (TR) modes collected by the ASTM resonance frequency
test. If several frequency variables were used, the contributions of the variables were extracted, and the
relationships with the Ec and fc were analyzed using the predicted Ei. The following conclusions
were drawn.

• The Ed values calculated by three theoretical equations (ASTM, Rayleigh Ritz) of the resonance
frequency test were in the order of f1,f2.LT > ASTM.LT > ASTM.TR, and had nearly the same
values. The size of the elastic modulus as measured by static and dynamic tests was Ed > Ei >

Ec. In addition, it is determined that it is desirable to utilize the Ei, as the correlation with Ec is
analyzed as Ei > Ed.

• The Popovis equation for the relationship between Ec and Ed gives results similar to the Eds of
the ASTM, and the Lydon and Balendran equations are similar to Ei values. BS8110 Part 2 is not
suitable, as because it has a large error from the Ed and Ei in the resonance frequency test.

• As a result of comparing an E-modulus based on ASTM.LT, f1,f2.LT, and ASTM.TR had a clear
linear relationship, and they were close in the line of equality. They were identified as having a
nonlinear relationship with the Ei and Ec. As the theoretical equations assumed the concrete as a
perfectly elastic body for microscopic stress, it was difficult to overcome the nonlinear behavior
of the actual Ei and Ec, owing to challenges in considering inhomogeneity and inelasticity of
concrete. Thus, it is more appropriate to accurately predict and utilize the Ei, which has a similar
nonlinear behavior with the Ec.

• As a result of applying ASTM.LT, f1,f2.LT, and ASTM.TR to the correction factors, the MAPE
in the Ei could be lowered to 6.40%, 6.50%, and 6.43%, respectively. In addition, the Ed in the
three equations and Ei of the MAPE decreased in order in days 4, 7, 14, and 28. The theoretical
equation is suitable for concrete after 28 days but is considered difficult to use to accurately predict
lower ages.
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• In the relationship between Ei and frequency, the correlation of Ei-f1 was the largest, the nonlinearity
increased as the mode appeared later, and the density and consistency of the data gradually
decreased. In addition, the Ei and Ec values and first frequency of the resonance frequency test
tended to be similar to an exponential function, indicating that prediction of the Ei and Ec based
on frequency was possible.

• As a result of predicting the Ei using only frequencies through the ensemble and ANN methods,
the MAPE decreased by 3.90% in the case of using only f1, and by 3.51% in the case of using f1-f4.
Accordingly, the nonlinear behavior could be overcome by using ML.

• As a result of analyzing the contributions of variables in predicting the Ei, f1 and f2 were dominant,
the RI of the size factor was 0, and 0.3% of the day variables contributed to the Ei prediction.
Therefore, it is possible to predict a sufficiently accurate Ei using only the frequencies, i.e., without
other variables.

• As a result of predicting the Ec by applying a correction factor of 0.89 to the predicted Ei in four
ways, the MAPE ranged from 4.6% to 6.57%, and the correlation between the predicted Ec and fc
was high. Therefore, far more accurate Ei values can be predicted by the ASTM method in the
future, and more accurate design, construction, and maintenance will be possible if this approach
is used for calculating the Ec and fc.
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Abbreviations

ANN artificial neural network
ASTM.LT dynamic elastic modulus measured by the first frequency in longitudinal modes
ASTM.TR dynamic elastic modulus measured by the first frequency in transverse modes
COV coefficient of variation
f1,f2.LT dynamic elastic modulus measured by the first and second frequency in longitudinal modes
GBFS granulated blast furnace slag
LSBoost least squares boosting
LT longitudinal
MAPE mean absolute percentage error
ML machine learning
MLP multilayer perceptron
MLR Multiple linear regression
MSE mean squared error
RI relative importance
RMSE root mean square error
SCMs supplementary cementitious materials
SVM support vector machine
TR transverse
Ec static elastic modulus
Ed dynamic elastic modulus
Ei initial chord elastic modulus
fc compressive strength
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