
applied  
sciences

Article

Local CPG Self Growing Network Model with
Multiple Physical Properties

Ming Liu 1, Mantian Li 1, Fusheng Zha 1,2,*, Pengfei Wang 1 , Wei Guo 1 and Lining Sun 1,*
1 State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China;

14B308017@hit.edu.cn (M.L.); limt@hit.edu.cn (M.L.); wangpengfei1007@163.com (P.W.);
wguo01@hit.edu.cn (W.G.)

2 Shenzhen Academy of Aerospace Technology, Shenzhen 518057, China
* Correspondence: zhafusheng@hit.edu.cn (F.Z.); lnsun@hit.edu.cn (L.S.); Tel.: +86-451-8641-4462 (F.Z. & L.S.)

Received: 23 June 2020; Accepted: 5 August 2020; Published: 8 August 2020
����������
�������

Abstract: Compared with traditional control methods, the advantage of CPG (Central Pattern
Generator) network control is that it can significantly reduce the size of the control variable without
losing the complexity of its motion mode output. Therefore, it has been widely used in the motion
control of robots. To date, the research into CPG network has been polarized: one direction has
focused on the function of CPG control rather than biological rationality, which leads to the poor
functional adaptability of the control network and means that the control network can only be used
under fixed conditions and cannot adapt to new control requirements. This is because, when there are
new control requirements, it is difficult to develop a control network with poor biological rationality
into a new, qualified network based on previous research; instead, it must be explored again from the
basic link. The other direction has focused on the rationality of biology instead of the function of CPG
control, which means that the form of the control network is only similar to a real neural network,
without practical use. In this paper, we propose some physical characteristics (including axon
resistance, capacitance, length and diameter, etc.) that can determine the corresponding parameters
of the control model to combine the growth process and the function of the CPG control network.
Universal gravitation is used to achieve the targeted guidance of axon growth, Brownian random
motion is used to simulate the random turning of axon self-growth, and the signal of a single neuron
is established by the Rall Cable Model that simplifies the axon membrane potential distribution.
The transfer model, which makes the key parameters of the CPG control network—the delay time
constant and the connection weight between the synapses—correspond to the axon length and axon
diameter in the growth model and the growth and development of the neuron processes and control
functions are combined. By coordinating the growth and development process and control function
of neurons, we aim to realize the control function of the CPG network as much as possible under the
conditions of biological reality. In this way, the complexity of the control model we develop will be
close to that of a biological neural network, and the control network will have more control functions.
Finally, the effectiveness of the established CPG self-growth control network is verified through the
experiments of the simulation prototype and experimental prototype.

Keywords: CPG; self-growing network; quadruped robot; trot gait

1. Introduction

Compared with traditional control methods, Central Pattern Generator (CPG) network control
has been widely used for the motion control of bionic robots because it can significantly reduce the
dimension of control variables without losing the complexity of its output motion mode; the method
also has some other advantages [1–3]. However, the study of CPG control network to date has been
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polarized: one direction has focused on the control function [4–6] and ignored the biology rationality.
In this direction, a control network is designed only for certain fixed situations, which leads to the poor
functional adaptability of the control network. Once there are new control requirements, it is difficult
for the control network to be developed into a new, qualified one according to the previous research;
instead, it has to be researched again from the basic link. Especially when applied to the motion control
of a bionic robot, the above-mentioned CPG control network will have the following disadvantages:
with excessive prior knowledge and excessive factors given by humans in each link of the control
system, which includes the design of the CPG network, the setting method of network parameters and
the establishment of the neuron model in the control network, the control function of the CPG network
has lower complexity, worse adaptability and worse inheritance capabilities in future research.

Another direction has focused on biological rationality, but not the function of CPG control,
which means that the control network is only similar to a real neural network in form but of no practical
use [7–9]. Dehmamy et al. [10] modeled axon growth with driven diffusion. Their simulation showed
that with background potential derived from the concentration guiders, even coupled random walkers
can generate realistic paths for axons. Marinov et al. [11] proposed an ad-hoc growth model built
upon the diffusion principle to reproduce the shape of Micro-Tissue Engineered Neural Networks
(Micro-TENNs). The proposed model imposed various rules for individual neuronal growth to a 3D
diffusion equation. Fard et al. [12] proposed a generative growth model to investigate growth rules for
axonal branching patterns in cat area 17. The model achieves better statistical accuracy both locally and
globally than the commonly used Galton–Watson model. Gafarov et al. [13] proposed a closed-loop
growth model in which neural activity affects neurite outgrowth in an interactive way. Experiments
showed that the model can be potentially used to form large-scale neural networks by self-organization.
However, it is very difficult to study how the scattered neurons in different parts of the growth region
form the whole network through interactive behaviors with biological methods, because the growth
environment of cells is complex, and so it is difficult to precisely control their growth conditions to
verify the specific growth mechanism. Therefore, the study of the growth process of a neural network
by numerical simulation is very effective. In a simulation environment, researchers can set strict growth
conditions and analyze the growth result of the network in a variety of ways and then compare it with
a real biological neural network to verify the validity of the designed model [9,14–16].

However, the numerical simulation of the growth of a biological neural network has often been
unable to simulate the control function of the network, and it can only compare the simulation model
with the real biological network in terms of morphology and statistics. At the same time, in the control
based on a neural network, it is precisely the complexity of the formation process of the biological
neural network and the simplifications and assumptions made for the simulation model that make the
network control model unrealistic and not universally applicable [17]. Therefore, it is necessary to
combine the growth process with the control function in the control of bionic robots based on the CPG
network to allow the two to develop in a coordinated way in the long term.

Therefore, we propose some physical characteristics (including axon resistance, capacitance,
length and diameter, etc.) that can determine the corresponding parameters of the control model to
combine the growth process and the function of the CPG control network. By coordinating the two,
we aim to realize the control function of the CPG network under the condition of biological reality as
far as possible. In this way, the complexity of the developed control model will be closer to that of a
biological neural network, and the control network will have more control functions.

2. Establishment of Self-Growing Model of Neurons

In the formation process of a neural network, the position of each neuron is fixed, axons and
dendrites grow from the neuron, and the axon of the former neuron and the dendrite of the latter
neuron form a synaptic contact and finally realize the connection of the whole network. Studies have
shown that, with the continuous elongation and swerving of the axon, the growth of the tail end of
the neuron will not change the shape of the other part [9]. Therefore, the process of growing and
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eventually forming synaptic connections with another neuron in the neuron model can be simplified
into the following model:

⇀
F =

k∑
j=1

⇀
F j =

k∑
j=1

gm
M j

d j2
·
⇀
e j (1)

where k is the number of neurons in the gravitational field, dj is the distance from the growth cone

to the jth neuron and
⇀
e j is the direction vector of gravitation on the growth cone generated by the

jth neuron.
In Equation (1), the growth cone can be regarded as a particle with a mass of m. Regard the neuron

as a sphere with a mass M concentrated in the center; the distribution range of dendrites is understood
as a sphere with radius r because the dendrites are numerous and dense. The guiding effect of the
chemical molecules on the growth cone can be equivalent to the gravitational effect on particle m in the
gravitational field generated by mass M, and the motion trajectory of the particle in the gravitational
field can be regarded as the axon. The position of growth cone particle in the gravitational field is
Pi(xi, yi, zi) at a certain time, with a growth rate of Vi(vxi, vyi, vzi), and the gravitation on the growth
cone can be determined from Newton’s law of gravitation. Thus, the acceleration is

⇀
a =

k∑
j=1

⇀
a j =

k∑
j=1

g
M j

d j2
·
⇀
e j = (axi, ayi, azi) (2)

After a short period of time ∆t (∆t is defined as 0.01 s in this paper), the displacement of the
growth cone is 

∆xi = vxi · ∆t + 1
2 axi · ∆t2

∆yi = vyi · ∆t + 1
2 ayi · ∆t2

∆zi = vzi · ∆t + 1
2 azi · ∆t2

(3)

Thus, the new position Pi+1(xi+1, yi+1, zi+1) of the growth cone is
xi+1 = xi + ∆xi
yi+1 = yi + ∆yi
zi+1 = zi + ∆zi

(4)

and the new growth rate Vi+1 (vxi+1, vyi+1, vzi+1) is
vxi+1 = vxi + axi · ∆t
vyi+1 = vyi + ayi · ∆t
vzi+1 = vzi + azi · ∆t

(5)

Pi+1(xi+1, yi+1, zi+1) and Vi+1 (vxi+1, vyi+1, vzi+1) can be used for the next iteration. In this way, the continuous
growth process of axons is discretized into a programmable iterative process.

Although it is reasonable to use the gravitational field model to describe the chemotaxis of growth
cones, the growth of the model’s axon is quite different from that in the actual situation. Experiments
show that the overall deflection of the axon does not become more obvious as the concentration
gradient increases gradually, because the axon grows faster on the side of the inverse gradient than
the side along the gradient (growth rate regulation), which counteracts the chemotaxis. The results
show that when the concentration gradient is large, the chemotactic deflection plays a leading role [8].
In addition, the guiding effect of chemical factors on the growth cone is either attraction or repulsion,
but we only consider the case of attraction when modeling, because the mathematical model of the
repulsion case is the same as that of the attraction case except with the opposite direction of force.

In fact, the growth direction of the growth cone depends on many intracellular and extracellular
signals, which may lead to large fluctuations in the growth direction [9]. For example, the noise gradient
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in the chemoattractant orientation perception stage mentioned in [18,19] is one of the factors making the
deflection direction of the growth cone uncertain when proceeding. In order to describe the uncertain
component of the deflection direction of the growth cone, many studies on the mathematical modeling
of the axon growing process introduce a random motion component based on the deterministic motion
generated by gravity [20,21], as shown in Figure 1.
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Figure 1. Diagram of a single growth iteration of an axon.

In Figure 1, Pi is the position of the growth cone after the i-1th growing process. Pi+1 is the position
of the growth cone after the ith growing process without the effect of a random motion component.
∆xi, ∆yi and ∆zi are the projected length of the ith growth length of the growth cone on the x, y, and z
axes, and P′i+1 is the real position of the growth cone after the ith growing process under the effect of
random motion component.

As can be seen from Figure 1, we can calculate the angle between the ith growth segment and the
coordinate axis, (θxi, θyi, θzi) using the following formula:

θxi = arctan

√
∆y2

i +∆z2
i

∆xi

θyi = arc tan

√
∆x2

i +∆z2
i

∆yi

θzi = arc tan

√
∆y2

i +∆x2
i

∆zi

(6)

Furthermore, we add a random motion component to this growing process:
θxi
′ = θxi + ∆θx

θyi
′ = θyi + ∆θy

θzi
′ = θzi + ∆θz

(7)

where ∆θx, ∆θy and ∆θz meet uniform distribution in the interval (−cδ, cδ). δ > 0, which ensures that
the random motions lead to the largest deflection angle, c ∈ (0, 1) implies the intensity of random
motion, and (θ′xi, θ

′

yi, θ
′

zi) is the real deflection angle of this growing process considering the random
motion. Then, we can calculate the real displacement of the growth cone in this process, (∆x′i , ∆y′i ,
∆z′i ), using the following formula: 

li =
√

∆x2
i + ∆y2

i + ∆z2
i

∆xi
′ = li · cosθxi

′

∆yi
′ = li · cosθyi

′

∆zi
′ = li · cosθzi

′

(8)

where li is the length of the axon segment of the ith growing process; the random motion only changes
the deflection of each growing process, but not the step size. Finally, we calculate the real position of
the growth cone after the ith growing process, P′i+1(x′i+1, y′i+1, z′i+1), using the following formula:
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xi+1

′ = xi + ∆xi
′

yi+1
′ = yi + ∆yi

′

zi+1
′ = zi + ∆zi

′

(9)

Then, we use P′i+1(x′i+1, y′i+1, z′i+1) and Vi+1 (vxi+1, vyi+1, vzi+1) calculated from Equations (2)–(5)
for the next iteration.

Three intensities of random motion values are selected as c = 0.05, c = 0.15 and c = 0.56, and 20 of
the corresponding 200 axons are selected to draw the growing diagram of the growth cone under the
effect of random motion of different intensities, as shown in Figure 2.
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Figure 2. Growth of growth cone under different intensities of random motion.

According to the growth details that can be seen in Figure 2, the growth of the growth cone is
relatively smooth around c = 0.05 with small random fluctuations. The random fluctuations increases
gradually around c = 0.15, but the deflection angle of the growth cone does not change extremely,
and the growth of the growth cone is still in order. However, when c = 0.56, the trajectory of the growth
cone changes abruptly and the partial shape of the growth cone is obviously out-of-order. Therefore,
the randomness of the growing process of the growth cone increases gradually with the increase of the
effect intensity of random motion.

3. Establishment of Neuronal Axonal Signal Transmission Model

In order to describe the signal transmission process of the neurons listed above, a simplified
model of neuron signal transmission, as shown in Figure 3, is established in this paper.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 20 

1y

2y

ny

1a

2a

na

Σ s θ− x
( )f s θ− ( )y g x=

 
Figure 3. The signal transmission model of the neuron. 

If there are n neurons on a neuron’s dendrite to form synaptic connections with it, the output 
signals of these n neurons are y1, y2, …, yn,, the connection weights of synapses are a1, a2, …, an, the 
change of membrane potential caused by the input is s and the excitation threshold is θ; the 
membrane potential is x when reaching the axon’s terminal after being transmitted through the whole 
axon, and the neuron output signal is y. Then, the signal transmission process of the neuron is 

1

(s )

(x)

n

i i
i

s a y

x f

y g

θ
=


=

 = −



=


 (10) 

where f(.) represents the function of an axon on membrane potential and g(.) represents the nonlinear 
output function of neurons, which is different for different biological neurons. In this paper, the 
commonly used threshold function is taken; i.e., g(x) = max(0, x). 

In 1957, W. Rall proposed the equivalent cable model of an axon during signal transmission [22], 
which regarded the cable as composed of many identical resistance capacitance circuits, considered 
the current flow in extracellular fluid and the distribution of extracellular potential and finally 
obtained the distribution of membrane potential in time space λ2(∂2V/∂x2) = τ(∂V/∂t)+V, where V is the 
potential of the membrane and λ and τ are the time constant and length constant of the thin film of 
the cable joint. This model is a second-order partial differential equation, and the solution is relatively 
complex. In this paper, we only consider the input and output characteristics of the neuron as a signal 
processing unit instead of the distribution of membrane potential on the whole axon, so we assume 
that the extracellular potential along the whole axon is always 0—equivalent to grounding—as can 
be seen in Figure 4. Thus, U is equal to the membrane potential. Given the output change of an input 
signal after the membrane potential is transmitted through the whole axon, we can calculate f(.) as 
shown in Formula (10). 

1R

2RC

3R

iU oU

2i1i

 
Figure 4. The cable model without considering the extracellular potential. 

First, we analyze the basic resistance capacitance circuit in Figure 4 separately and calculate the 
transfer function between the output U0 and the input Ui of each section. In Figure 4, i is the current, 
R is the resistance and C is the capacitance [18]. The following equation can be obtained from 
Kirchhoff’s law and Ohm’s law. 

Figure 3. The signal transmission model of the neuron.

If there are n neurons on a neuron’s dendrite to form synaptic connections with it, the output signals
of these n neurons are y1, y2, . . . , yn, the connection weights of synapses are a1, a2, . . . , an, the change of
membrane potential caused by the input is s and the excitation threshold is θ; the membrane potential
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is x when reaching the axon’s terminal after being transmitted through the whole axon, and the neuron
output signal is y. Then, the signal transmission process of the neuron is

s =
n∑

i=1
aiyi

x = f (s− θ)

y = g(x)

(10)

where f (.) represents the function of an axon on membrane potential and g(.) represents the nonlinear
output function of neurons, which is different for different biological neurons. In this paper, the commonly
used threshold function is taken; i.e., g(x) = max(0, x).

In 1957, W. Rall proposed the equivalent cable model of an axon during signal transmission [22],
which regarded the cable as composed of many identical resistance capacitance circuits, considered the
current flow in extracellular fluid and the distribution of extracellular potential and finally obtained the
distribution of membrane potential in time space λ2(∂2V/∂x2) = τ(∂V/∂t)+V, where V is the potential
of the membrane and λ and τ are the time constant and length constant of the thin film of the cable
joint. This model is a second-order partial differential equation, and the solution is relatively complex.
In this paper, we only consider the input and output characteristics of the neuron as a signal processing
unit instead of the distribution of membrane potential on the whole axon, so we assume that the
extracellular potential along the whole axon is always 0—equivalent to grounding—as can be seen in
Figure 4. Thus, U is equal to the membrane potential. Given the output change of an input signal
after the membrane potential is transmitted through the whole axon, we can calculate f (.) as shown in
Formula (10).
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First, we analyze the basic resistance capacitance circuit in Figure 4 separately and calculate the
transfer function between the output U0 and the input Ui of each section. In Figure 4, i is the current, R is
the resistance and C is the capacitance [18]. The following equation can be obtained from Kirchhoff’s
law and Ohm’s law.

i1 = C
dUo

dt
(11)

Uo = i2R2 (12)

Ui = (i1 + i2)(R1 + R3) + Uo (13)

Equations (11) and (12) are substituted into Equation (13):

Ui = (C
dUo

dt
+

Uo

R2
)(R1 + R3) + Uo (14)

The Laplace transform of Equation (14) is

Ui(s) = (sCU0(s) +
Uo(s)

R2
)(R1 + R3) + Uo(s) (15)
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Finally, we obtian the transfer function between U0 and Ui:

G(s) =
Uo(s)
Ui(s)

=
1

C(R1 + R3)s +
R1+R2+R3

R2

(16)

Assume τ and b as Equation (17):  τ = C(R1 + R3)

b = R1+R2+R3
R2

(17)

Then, Equation (16) is

G(s) =
1

τs + b
(18)

As can be seen from Figure 4, the total transfer function of the axon to the membrane potential is
F(S) = GN(S). N is the number of basic links on the whole axon. Thus far, the signal transmission model of
the neuron has been determined. Finally, the amplitude–frequency and phase–frequency characteristics
of G(S) are analyzed to determine the physical characteristics of the neuron self-growing model:

G( jω) =
1

τ jω+ b
(19)

where ω is the angular frequency.
The amplitude–frequency characteristic of Equation (19) is

|G( jω)| =
1

√
τ2ω2 + b2

(20)

The phase–frequency characteristic of Equation (19) is

∠G( jω) = −arctan(
τω
b
) (21)

(1) Influence of axon length on amplitude and phase lag

Suppose an axon cable is composed of N basic links as shown in Figure 4; then, the amplitude of
the input signal is attenuated to (1/

√
τ2ω2 + b2)N after being transmitted through the axon, and the

phase lag is –Narctan(τω/b). The longer the axon is, the more basic links in the corresponding cable
model there should be; in other words, the larger N is. We can see that b > 1 from Equation (17),
and so the longer the axon is, the larger N is and the larger the amplitude attenuation and phase lag
are. The length of the axon can be obtained by the iteration in Equation (8). If the length of the axon
corresponding to the basic link of a resistance capacitance loop is l1 and the total length of the axon
is L [23], then the amplitude of the signal will decay to (1/

√
τ2ω2 + b2)L/l

1 and the phase lag will be
–Narctan(τω/b) after passing through the whole axon.

(2) Diameter of the axon

As can be seen from Equations (20) and (21), the amplitude–frequency and phase–frequency
characteristics of the neuron signal transmission are determined by the two parameters τ and b.
In Equations (16) and (17), R2 is the electrical leakage resistance between the inside and outside of the
cell within a basic link, whose resistance value is much higher than R1 and R3, which is equivalent
to the myelin sheath of the outer layer of the axon of biological neurons and plays an insulating role.
C is the leakage capacitance between the inside and outside of the cell within a basic link. R3 is the
conductive resistance of the extracellular fluid within a basic link. R2, R3 and C are the same for every
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neuron and do not change with the gradual growth of axons. R1 represents the resistance of the axon
core within a basic link, which can be obtained according to the resistance law:

R1 = ρ
l1
s

(22)

where ρ is the resistivity of the inner core of the axon, s is the cross-sectional area of the axon—s = π2d/4
since the cable model is cylindrical—and d is the diameter of the axon. The axon diameters of different
neurons determine the amplitude–frequency and phase–frequency characteristics of the basic link in
the cable model.

(3) Connection weight to the postsynaptic neuron

Since |G(jω)| < 1, the cable model shown in Figure 4 must cause the attenuation of signal amplitude
during signal transmission. However, we occasionally want a single neuron to transmit the signal
without changing its amplitude when controlling, only changing its phase. For example, in the CPG
control network of the joint of a legged robot, each joint is controlled by a motor neuron with joint
angular displacement output, and the output signals of the motor neuron in the symmetrical position
of the body need to have the same amplitude, because the joint angle of these joints has the same range.
If all the intermediate neurons in the network do not change the amplitude of the signal during signal
transmission, the output of each joint with the same amplitude can be obtained from the input with
the same amplitude. In this paper, a proportional amplification link is artificially added after each
basic link to prevent the change of signal transmission amplitude, as shown in Figure 5.
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According to Equation (20), we can obtain K in Figure 5:

K =
1∣∣∣G( jω)

∣∣∣ = √
τ2ω2 + b2 (23)

As can be seen from Equation (23), the amplitude of the output signal from the original single basic
link remains constant after passing the proportional amplification link. The output signal of the whole
axon is equivalent to multiplying the original output by KN. According to the definition of connection
weight, this is equivalent to the connection weight between the neuron and the postsynaptic neuron:

a = KN =
(√
τ2ω2 + b2

)N
(24)

If the input signal of the neuron is an ideal impulse signal or step signal, then we can say that
ω = 0. According to Equation (17), Equation (24) is

a = bN =
(R1 + R2 + R3

R2

)N
(25)

Because R2 is much larger than R1 and R3, we know that b tends to 1. According to N = L/l1,
we can select l1 reasonably so that the order of magnitude of N will not be too large, and this will mean
that the connection weights between all the neurons in the network meet a ∈ (1, 2).
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In Equation (18), the transition time of the first-order system’s response to the impulse signal and
the step signal—called the delay—is proportional to the time constant τ, which is assumed to be kτ,
where k is a constant coefficient related to the allowable error value of the response. If there are N
basic links on the whole axon, as shown in Figure 5, the total delay of the output signal relative to the
input signal will be Nkτ = Lkτ/l1, which is equivalent to the delay of the output of a basic link with a
time constant of Lτ/l1 to the input:

Tr = Lτ/l1 (26)

Therefore, when the input signal is an impulse signal or a step signal, the self-growing model of a
neuron with multiple physical properties can be simplified as follows: the whole neuron is regarded
as a basic link, and the length of the axon obtained from the self-growing is used as the total time
constant Tr of the neuron to the input signal. A random number from (1, 2) is selected as the connection
weight value a between the neuron and the postsynaptic neuron. In addition, the ends of the axons of
biological neurons diverge and form synaptic connections with dendrites of many other neurons; thus,
multiple axons of the neurons are made to grow directly from the cell body without considering the
choice of branching points to simplify the model.

4. Structure of Local CPG Network

(1) Study of neuron model

In 1987, Matsuoka proposed a mathematical neuron monomer model and studied the “oscillator”
network output with different numbers of neurons and different connection structures based on it [24].
The mathematical model of the neuron monomer is

Tr
dx
dt + x = s− b f

y = g(x− θ), (g(x) = max{0, x})
Ta

d f
dt + f = y

(27)

where x represents the membrane potential of the neuron; s stands for neuron input; y is the output
of the neuron; f is the quantity reflecting the fatigue effect of neurons; b is a constant coefficient
representing the size of fatigue effect; θ presents the membrane potential threshold that activates
the neuron, and without losing generality, we can take θ = 0; g(x) is the nonlinear output function;
and Tr represents the time constant of the rise of the membrane potential caused by the input signal.
Ta represents the time constant of the neuronal fatigue effect. Since the physical characteristics of
neurons of the model were not taken into account, there is no concept of the axon, and thus the
membrane potential will not change after axon transmission. We continue to regard x as the membrane
potential at the end of the axon, and so this model differs from the model established in Equation (10)
by only one fatigue characteristic characterized by f and Ta. Set s as the step input signal with n
amplitude of 1, Tr = 1, b = 10, Ta = 10, and calculate the change of the output signal of the neuron
monomer model over time; the results are shown in Figure 6.
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As can be seen from Figure 6, first, the neuron is activated and the membrane potential rises; then,
the membrane potential declines slowly due to the fatigue effect and remains at a low level. Although
the step signal continues, the neuron will not be activated again. We can see that, under appropriate
parameters, the mathematical model of the neuron monomer conforms to the signal transmission
characteristics of biological neurons.

(2) Double neural oscillator model

Connect two neuron monomer models and make the two inhibit each other as shown in Figure 7.
If N1 and N2 are the neurons, the hollow endpoint connection presents the excitatory connection and
the solid endpoint connection presents the inhibitory connection; S1 and S2 are the step input signals
with an amplitude of 1 with slightly different step times. If S1 and S2 have the same step time, the two
neurons will have the same output and will not produce an oscillation because of the symmetrical
structure of the network.
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The mathematical model of each neuron monomer is
Tri

dxi
dt + xi = si − bi fi −

n∑
j=1

a jiy j

yi = max{0, xi}

Tai
d fi
dt + fi = yi

(28)

where
∑

ajiyj are the inputs from other neurons. If the input is excitatory, the operator preceding it has
a plus sign, with a minus sign for the inhibitory input.

Assume Tr1 = Tr2 = 1, b1 = b2 = 2.5, a21 = a12 = 1.5 and Ta1 = Ta2 = 12 and calculate the variation
of the output signal of the oscillator model with time. The results are shown in Figure 8.Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 20 
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In the spinal CPG network of mammals, the interactivity of neurons responsible for the coordination
of the left and right sides of the body and the coordination of the extensor and flexor muscles of
each joint inhibits the output [25]. It can be seen in Figure 5 that the reciprocal inhibition outputs
of the two neurons have the same form as the reciprocal inhibition outputs of the neurons in the
biological CPG network, indicating that the neuron monomer model in Equation (26) can reflect the
characteristics of the reciprocal inhibition output caused by the reciprocal inhibition structure in the
biological CPG network.
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(3) Connection structure of local CPG network

As can be seen from the analysis above, as long as the neuron model represented by Equation (27)
is composed of inhibitory connections among the neurons and appropriate parameters are taken,
the interactive inhibitory output between the neurons will be obtained. Since each neuron monomer in
the neuron model represented in Equation (27) has two time constants, Tr and Ta, and each neuron in
the simplified model of self-growing neurons established in Section 3 has only one time constant, Tr,
we cannot make the growth algorithm of single neuron grow into a local CPG network which has the
function of controlling a robot joint. In order to solve this contradiction, we modify the original neuron
monomer model, as shown in Equation (29), according to the characteristics of the neuron connections
in a biological CPG network.  Tri

dxi
dt + xi = si −

n∑
j=1

a jiy j

yi = max{0, xi}

(29)

The original neuron monomer model is described with the structure shown in Figure 6. We can see
that the excitatory connection from the input neurons to the output neurons in Figure 9 is equivalent to
the input signal S of the original model. The inhibition from the Renshaw Cell to the output neurons is
equivalent to the fatigue characteristic in the original model; thus, the input and output characteristics
of signal transmission of the structure shown in Figure 9 are essentially the same as those in the
Matsuoka neuron monomer model.
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According to Equation (29), the modified neuron monomer model only contains one time constant,
Tr, and each axon contains a connection weight a to the postsynaptic neuron, which is consistent
with the simplified model of self-growing neurons established in Section 3. Moreover, the connection
structure shown in Figure 6 has the anatomical basis of the biological CPG network. Known as an
inhibitory intermediate neuron directly connected to motor neurons, the Renshaw Cell is involved in
the coordination of most extensor and flexor muscles as part of the ipsilateral inhibitory network [14,25].
Moreover, the structure in Figure 6 can be seen in many models of spinal motor nerve circuits [26,27].

A local CPG network for the control of a quadruped robot’s hip joint can be formed with four
identical structures, as shown in Figure 10. In Figure 10, N1, N2, N3 and N4 are the output neurons,
respectively corresponding to the four hips of the quadruped robot. N5, N6, N7 and N8 are input
neurons, and S1, S2, S3 and S4 are step input signals of the same amplitude. N9, N10, N11 and N12 are
four output neurons connected with Renshaw Cells, Tri is the time constant of each neuron and ai,j is
the connection weight of the synapse between the axon of neuron i and the neuron j; the connection
weights between peripheral neurons are not shown in Figure 10. The network structure is the growth
target of the local CPG network self-growing algorithm.
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of a quadruped robot.

(4) Output of local CPG network

One of the basic features of a biological CPG network is that it can obtain a periodic output
signal with a certain rhythm from a simple non-rhythmic input signal. In order to verify that the
network growth model proposed in this paper can obtain growth results with biological CPG network
characteristics, a CPG network growth experiment was carried out and is presented in this section.
Assume that the radius r of a single neuron in the growth model is 0.1 units of length and the growth
space is a cube with a side length of 5; 12 neurons were randomly distributed in the growth space as
shown in Figure 11.
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In Figure 11, a circle represents a neuron, and the number (1, 2, . . . , 12) next to it shows the
number of neurons. The neurons numbered 1, 2, 3 and 4 are the output neurons, represented by N1,
N2, N3 and N4 (as shown by the green arrow in Figure 11); the neurons numbered 5–12 are peripheral
neurons, represented by N5–N12. Numbers N5, N6, N7 and N8 are input neurons (as shown by the
red arrow in Figure 11). The solid blue lines are the growing connections, as shown in Figure 11.

For simplicity, take l1 = r = 0.1, τ = 10. Putting the length of the blue solid line in Figure 11 into
Equation (26), the value of Tr can be obtained as shown in Table 1.

Table 1. The time constant of the axon in the network.

Time Constant Length of Corresponding Axon Value

Tr1 Length of axon between output neuron N1 and Renshaw Cell N6 2.1801
Tr2 Length of axon between output neuron N2 and Renshaw Cell N5 2.5868
Tr3 Length of axon between output neuron N3 and Renshaw Cell N8 1.1984
Tr4 Length of axon between output neuron N4 and Renshaw Cell N11 1.9691
Tr5 Length of axon of Renshaw Cell N5 2.8071
Tr6 Length of axon of Renshaw Cell N6 2.2821
Tr7 Length of axon of input neuron N7 3.7401
Tr8 Length of axon of Renshaw Cell N8 1.2096
Tr9 Length of axon of input neuron N9 5.4620
Tr10 Length of axon of input neuron N10 4.8037
Tr11 Length of axon of Renshaw Cell N11 1.8388
Tr12 Length of axon of input neuron N12 4.6752

Tr13–Tr24 Length of interactional axon between N1, N2, N3 and N4 0

Step input signals with amplitude of 1 were input to the four input neurons. Observe the output
signals of the network; a representative growth result was taken for discussion. The connection
structure of the network growth is shown in Figure 11. In Figure 11, each neuron axon contains two
parameters: the time constant Tr and the connection weight a. Since there are 24 axons in the network,
there are 48 parameters with 24 time constants and 24 connection weights in the network. Such a large
number of parameters in the network is not conducive to the study of the rule between the output and
growth results of the network. In order to facilitate the analysis, the axons in the network are divided
into two categories: in the first category are the axons that inhibit the connection between the output
neurons, with a total of 12; the second category are the axons connected with the peripheral neuron
(the input neuron and the Renshaw Cell) between the output neuron, with a total of 12. For the first
type of axons, only the connection weights in the growth results are used, and the time constants are
all set to 0. For the second type of axon, only the time constant in the growth result is used, and the
connection weights are all fixed values. This halves the network’s parameter variables. The time
constants of the axons of each neuron after a certain growing process are shown in Table 1.

According to Equation (25), the connection weight a ∈ (1, 2) can be obtained. In order to simplify
the calculation, a random number between (1, 2) is taken as the value of a. The connection weights
obtained are shown in Table 2, and the connection weights between the output neuron and the
peripheral neuron are set to 1 and 2, which meet a ∈ [1, 2]. The output result of the entire network is
calculated according to Equation (29), as shown in Figure 12.

Table 2. The connection weight of neuronal axons in the network.

a10,1 a7,2 a9,3 a12,4 a1,6 a2,5 a3,8 a4,11 a6,1 a5,2 a8,3 a11,4

1 1 1 1 1 1 1 1 2 2 2 2

a1,2 a1,3 a1,4 a2,1 a2,3 a2,4 a3,1 a3,2 a3,4 a4,1 a4,2 a4,3

1.24 1.49 1.64 1.90 1.23 1.72 1.78 1.15 1.92 1.77 1.16 1.31
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5. Experiment and Analysis 
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a cycloid, as shown in Figure 14b. The height of the robot’s hip joint is h = 100 cm from the ground, 
and the step length of each stride is 30 cm. The former leg is taken as an example to calculate the joint 

Figure 12. Output signal of the local CPG network.

As can be seen from Figure 12, the output signals of the four output neurons have the same period
and phase difference and a similar range of amplitude after a period of stability. Furthermore, it is
verified that the self-growing network model established in this paper can obtain a local CPG network
which can satisfy the biological CPG network input and output characteristics, and the output of
the network can be used for the control of the hip joint of quadruped robot. If the output signal of
neuron N1 is used as the basis to calculate the phase difference, it can be determined that the output
phase difference between N2 and N1 is 168.0◦, the output phase difference between N3 and N1 is
33.6◦ and the output phase difference between N4 and N1 is 264.0◦. The ideal phase differences of the
corresponding hip joints of the quadruped robot at the walk gait are 180◦, 90◦ and 270◦. We can see
that the phase difference between N3 and N1 is large, but the other two phase differences are very
close, which shows that the local CPG network obtained by self-growing can output the corresponding
control signals for the hip joint to the quadruped robot at a walking gait.

5. Experiment and Analysis

(1) Quadruped robot prototype

The experimental platform of the quadruped robot is shown in Figure 13. There are three joints
on each leg: the hip joint α, knee joint β and ankle joint θ. The size of the platform is 1.2 m × 0.5 m
× 1.4 m, and the weight is 150 kg. Figure 13a is the simulation prototype of the quadruped robot,
and Figure 13b is the experiment of the quadruped robot.
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Figure 13. Quadruped robot. (a) Simulation prototype of quadruped robot. (b) Experimental prototype
of quadruped robot.
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(2) Foot trajectory and joint trajectory planning

Since the ideal angular displacement of the hip joint can be approximated as a cosine function [14],
we assume that the control signal of the hip joint is α = 3cos(2πt/T). The trajectory of the foot is a
cycloid, as shown in Figure 14b. The height of the robot’s hip joint is h = 100 cm from the ground,
and the step length of each stride is 30 cm. The former leg is taken as an example to calculate the joint
angular displacement and that of the knee and ankle joints, as shown in Figure 14a; thus, we obtain the
following formula:

l1 cosα− l2 cos(β− α) + l3 cos[θ− (β− α)] = x
l1 sinα+ l2 sin(β− α) + l3 sin[θ− (β− α)] = h− y

}
(30)

where l1 = 45 cm, l2 = 60 cm and l3 = 50 are the lengths of the robot’s thigh, middle leg and calf; x and y
are the analytic coordinates of the foot trajectory, as shown in Figure 14c, where α and h are known.
Thus, Equation (30) is a system of two equations with two unknowns, β and θ, whose solution is
unique. The calculated relationship between β, θ and α is shown in Figure 15. α ranges from 30◦ to 50◦,
which can be seen from the solid blue line in Figure 15, in order to make sure that the quadruped robot
has a large stability margin when walking. The joint trajectory planning process of the hind leg of the
robot is the same as that of the foreleg except for the different range of joint angles and the different
shape of the curve.
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Figure 15. Trajectory planning of the knee and ankle joints.

Thus, the experimental prototype of the quadruped robot used for local CPG network gait control
has been completed. It is only necessary to input periodic control signals corresponding to the angular
displacements of the four hip joints into the prototype, and then the control signals of the knee and
ankle joints of each leg will be obtained according to the corresponding relations in Figure 15; thus,
we can drive the robot prototype to walk.

(3) Experiment on simulation prototype and experimental prototype

The random selected parameters a ∈ [1, 2] of the self-growing network are shown in Table 3.
The time constant Tr is shown in Table 1. After calculating the output of the network and cosine to
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fit the output signal according to Equation (29), the result is shown in Figure 16. We can see that the
output of the network is definitely the interaction oscillations between N1, N3, N2, and N4. N1 and
N3 are input to the left front and the right hind hip joint of the simulation prototype, while N2 and N4
are input to the right front and the left hind hip joint of simulation prototype; then, the trot gait of the
robot is implemented, and the simulation decompositions are shown in Figure 17a. As can be seen
from Figure 17a, from t = 0.2 s to t = 1.7 s, the left front leg and the right hind leg are in the swing
phase and swing forward; from t = 1.9 s to t = 3.4 s, the right front leg and the left hind leg are in the
swing phase and swing forward. Each swing time is about 1.6 s.

Table 3. The connection weight of neuronal axons in the network.

a9,1 a8,2 a12,3 a11,4 a1,10 a2,6 a3,7 a4,5 a10,1 a6,2 a7,3 a5,4

1 1 1 1 1 1 1 1 2 2 2 2

a2,1 a3,1 a4,1 a1,2 a3,2 a4,2 a1,3 a2,3 a4,3 a1,4 a2,4 a3,4

1.19 0 1.22 1.25 1.56 0 0 1.41 1.88 1.84 0 1.64
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Figure 17. Simulation decomposition diagram of the trot gait of the simulation prototype. (a) Simulation
diagram of trot gait. (b) The y-direction velocity and x-direction displacement curve of a quadruped robot.

The y-direction velocity and x-direction displacement of the simulation prototype are shown
in Figure 17b, where the red solid line is the y-direction velocity curve and the blue solid line is the
x-direction displacement curve. It can be seen from Figure 17b that the simulation prototype enters a
stable walking state gradually, and the y-direction velocity and x-direction displacement reach a stable
change when t = 16 s.
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In Figure 16, N1 and N3 in the output of the self-growing network are input to the left front and the
right hind hip joint of the experimental prototype, respectively, while N2 and N4 are input to the right
front and the left hind hip joint of the experimental prototype respectively. The trot gait decompositions
of the experimental prototype obtained are shown in Figure 18. Combining Figure 17a and Figure 18,
we can see that the experimental prototype and the simulation prototype have the same gait cycle
(about T = 1.7 s) under the control of the same self-growing network, and the self-growing network
can achieve stable control of the trot gait of the simulation prototype and the experimental prototype.
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The experiment above shows that the quadruped robot control system based on a CPG neural
network self-growing algorithm can accomplish the growth of the network, the signal output of the
network and the control of a robot’s joint, and then realize the rhythmic movement of a quadruped
robot. This shows that the CPG neural network self-growing algorithm can be well applied to the
rhythm control of a robot. The experiment preliminarily simulated the process from growth to mastery
of a certain rhythmic movement of the CPG neural network and verifies the feasibility of the idea of
realizing robot rhythmic movement control by combining the microscopic mechanism of the growth
and the macro characteristics of the output of the neural network.

6. Conclusions

In this paper, the biological neuron axon could continuously elongate and turn, and the growth
of the back part did not change the shape of the previously used grown part. Combined with the
law of gravitation, random motion, the Rall cable model and the Matsuoka oscillator model, a local
CPG self-growing network with multiple physical characteristics was established. The fusion of a
self-growing network and CPG has been realized, the control ability of self-growing network was
presented, and the motion control of a quadruped robot was completed. Our conclusions are as follows.

(1) An axon self-growing algorithm based on universal gravitation and random motion was
established, the Rall Cable Model for studying the potential distribution of an axon membrane
was analyzed and simplified, and multiple physical properties of the synapse (including resistance,
capacitance, axon length and diameter, etc.) were combined with the Rall Cable Model to establish a
simplified model of single neuron signal transmission, as shown in Equation (19). The multi-physical
properties obtained by the neuron self-growth model (such as the synapse length calculated by
Equation (9) and the resistance R1 calculated by Equation (22)) were added to Equation (17) to calculate
parameters τ and b of Equation (19). On this basis, the entire synapse system of the neuron’s self-growth
is taken as a whole, as well as the key parameters in the control model: the delay time constant Tr
and the synapse, as shown in Equations (25) and (26). The connection weight corresponds to the axon
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length and axon diameter in the growth model, which allows the combination of the growth and
development process of the neuron and the control function.

(2) By analyzing the Matsuoka oscillator model (shown in Equation (27)) and comparing the
difference between the mathematical model of its neuron monomer and the model built in this article,
a local CPG network topology is proposed as shown in Figure 10. This topology is regarded as the
goal of network self-growth. A neural network growth model based on gravitational field control
is established, meaning that the network can grow the target topology from any initial position of
the neuron, as shown in Figure 11, to obtain the rhythm output signal corresponding to the angular
displacement of the hip joint of the quadruped robot, as shown in Figure 12.

(3) The quadruped robot motion control simulation prototype and experimental prototype are
used as shown in Figure 13: the output signal of the local CPG network (as shown in Figure 16) is used
as the hip joint control signal of the simulation prototype and the experimental prototype to control
the quadruped robot simulation. The prototype and the experimental prototype realized walking
with a trot gait, as shown in Figures 17 and 18, which verified the feasibility of the local CPG network
self-growth model with multi-physical characteristics proposed in this paper for the gait control of a
quadruped robot.

Since the gait control of the quadruped robot by the CPG network in this article is still an open-loop
control system, it was not possible to change the gait of the robot through environmental feedback
information or to adapt to the complex road conditions and change the rhythm and mode of the
network output accordingly. Therefore, in order to give the self-growth-based network model higher
practical value when applied to the motion control of a footed robot, the research work that needs to be
done in the next stage is as follows:

(1) Continue to improve the self-growth model of neurons, considering more physical
characteristics that can be linked to the control model parameters, so that the built model can
be constantly close to the complexity of the biological neural network in terms of its microstructure
and control function. For example, in this paper, the diameter of the neuron axon is constant.
The fundamental reason for this is that only a one-dimensional size of the axon can be obtained by using
the trajectory of the particle in the gravitational field as the axon model. The biological mechanism
that determines the diameter must be introduced into the self-growth model to obtain a biologically
reasonable diameter, so that the control model does not lose its general applicability.

(2) Study how many parameters obtained by network self-growth affect the network output.
In the simulation experiment, we found that the time constant only affects the shape, amplitude and
period of the output signal and does not affect the mutual inhibition mode, which is mainly affected
by the connection weight. Moreover, not every time the network grows can the interactive inhibition
output between output neurons be obtained. On occasion, individual or all output neurons will output
a constant value signal after reaching stability; that is, the acquisition of the interactive inhibition
output is important for the network growth parameters. This is conditional, but we still do not know
the necessary condition.

(3) Study the micro-mechanism of interaction with the environment and the adjustment of the
upper central system during the development of the CPG network and construct feedforward and
feedback pathways for network development, so that the growth and development of the network can
change the connection weights between synapses in biological neural networks by learning. Based on
the research of (2), weight change is carried out in the direction in which the desired network output
can be obtained to realize closed-loop control.
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