Structural Tunable Plasma Photonic Crystals in Dielectric Barrier Discharge
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yablonovitch, E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett. 1987, 58, 2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, S. Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Phys. Rev. Lett. 1987, 58, 2486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarado-Beltrán, C.; Almaral-Sánchez, J.; Ramirez-Bon, R. Low temperature processing of multilayer dielectrics mirrors by sol–gel method. Mater. Lett. 2015, 161, 523. [Google Scholar] [CrossRef]
- Yang, H.W.; Pan, L.; Han, Y.P.; Ma, L.H.; Li, Y.; Xu, H.B.; Zhao, J.P. A visual water vapor photonic crystal sensor with PVA/SiO2 opal structure. Appl. Surf. Sci. 2017, 423, 421. [Google Scholar] [CrossRef]
- Lai, W.C.; Chakravarty, S.; Wang, X.; Lin, C.; Chen, R.T. On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide. Opt. Lett. 2011, 36, 984. [Google Scholar] [CrossRef]
- Pana, I.; Vitelaru, C.; Kiss, A.; Zoita, N.C.; Dinu, M.; Braic, M. Design, fabrication and characterization of TiO2-SiO2 multilayer with tailored color glazing for thermal solar collectors. Mater. Des. 2017, 130, 275. [Google Scholar] [CrossRef]
- Paul, B.K.; Khalek, M.A.; Chalcma, S.; Ahmed, K. Chalcogenide embedded quasi photonic crystal fiber for nonlinear optical applications. Ceram. Int. 2018, 44, 18955. [Google Scholar] [CrossRef]
- Suslik, L.; Pudis, D.; Goraus, M.; Nolte, R.; Kovac, J.; Durisova, J.; Gaso, P.; Hronec, P.; Schaaf, P. Photonic crystal and photonic quasicrystal patterned in PDMS surfaces and their effect on LED radiation properties. Appl. Surf. Sci. 2017, 395, 220. [Google Scholar] [CrossRef]
- Monfareda, Y.E.; Ling, C.; Khosravi, R.; Kacerovska, B.; Yang, S. Selectively toluene-filled photonic crystal fiber Sagnac interferometer with high sensitivity for temperature sensing applications. Results Phys. 2019, 13, 102297. [Google Scholar] [CrossRef]
- Monfared, Y.E.; Hajati, M.; Liang, C.; Yang, S.; Qasymeh, M. Quasi-D-Shaped Fiber Optic Plasmonic Biosensor for High-Index Analyte Detection. IEEE Sens. J. 2019, 1, 1. [Google Scholar] [CrossRef]
- Fan, C.; Wang, J.; Zhu, S.; He, J.; Ding, P.; Liang, E. Optical properties in one-dimensional graded soft photonic crystals with ferrofluids. J. Opt. 2013, 15, 055103. [Google Scholar] [CrossRef]
- Takeda, H.; Yoshino, K. Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors. Phys. Rev. B 2003, 67, 245109. [Google Scholar] [CrossRef]
- Kitagawa, J.; Kodama, M.; Koya, S.; Nishifuji, Y.; Armand, D.; Kadoya, Y. THz wave propagation in two-dimensional metallic photonic crystal with mechanically tunable photonic-bands. Opt. Express 2012, 20, 17271. [Google Scholar] [CrossRef] [PubMed]
- Chong, H.M.; De La Rue, R.M. Tuning of Photonic Crystal Waveguide Microcavity by Thermooptic Effect. IEEE Photonics Technol. Lett. 2004, 16, 1528. [Google Scholar] [CrossRef]
- Yang, D.; Tian, H.; Ji, Y. Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays. Opt. Express 2011, 19, 20023. [Google Scholar] [CrossRef]
- Park, W.; Lee, J.B. Mechanically tunable photonic crystal structure. Appl. Phys. Lett. 2004, 85, 4845. [Google Scholar] [CrossRef]
- Guo, B. Photonic band gap structures of obliquely incident electromagnetic wave propagation in a one-dimension absorptive plasma photonic crystal. Phys. Plasmas 2009, 16, 043508. [Google Scholar] [CrossRef]
- Shiveshwari, L.; Mahto, P. Photonic band gap effect in one-dimensional plasma dielectric photonic crystals. Solid State Commun. 2006, 138, 160. [Google Scholar] [CrossRef]
- Zhang, L.; Ouyang, J.T. Experiment and simulation on one-dimensional plasma photonic crystals. Phys. Plasmas 2014, 21, 103514. [Google Scholar] [CrossRef]
- Zhang, H.F.; Liu, S.B.; Jiang, Y.C. Tunable all-angle negative refraction and photonic band gaps in two-dimensional plasma photonic crystals with square-like Archimedean lattices. Phys. Plasmas 2014, 21, 092104. [Google Scholar] [CrossRef]
- He, X.; Chen, J.P.; Ni, X.W.; Chen, Y.D.; Zeng, X.J.; Gu, T.T. Numerical investigation on interference and absorption of Electromagnetic Waves in the Plasma-Covered Cavity Using FDTD Method. IEEE Trans. Plasma Sci. 2012, 40, 1010. [Google Scholar] [CrossRef]
- Wang, B.; Cappelli, M.A. A plasma photonic crystal bandgap device. Appl. Phys. Lett. 2016, 108, 161101. [Google Scholar] [CrossRef]
- Suthar, B.; Bhargava, A. Optical Properties of Plasma Photonic Crystals. Silicon 2015, 7, 433. [Google Scholar] [CrossRef]
- Zhang, H.F.; Liu, S.B. The Tunable Omnidirectional Reflector Based on Two-Dimensional Photonic Crystals With Superconductor Constituents. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 1–8. [Google Scholar] [CrossRef]
- Zhang, H.F.; Liu, S.B.; Kong, X.K.; Zou, L.; Li, C.Z.; Qing, W.S. Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer. Phys. Plasmas 2012, 19, 022103. [Google Scholar] [CrossRef]
- Tan, H.Y.; Jin, C.G.; Zhuge, L.J.; Wu, X.M. The SLR-Dependent Negative PBG in 1-D Plasma Photonic Crystal. IEEE Trans. Plasma Sci. 2019, 47, 3986. [Google Scholar] [CrossRef]
- Sakaguchi, T.; Sakai, O.; Tachibana, K. Photonic bands in two-dimensional microplasma arrays. I. Theoretical derivation of band structures of electromagnetic waves. J. Appl. Phys. 2007, 101, 073304. [Google Scholar]
- Liu, Y.Y.; He, F.; Zhao, X.F.; Ouyang, J.T. Evolution of Striation in Pulsed Glow Discharges. Plasma Sci. Technol. 2016, 18, 30. [Google Scholar] [CrossRef]
- Khalkhali, T.F.; Bananej, A. Effect of shape of scatterers and plasma frequency on the complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals. Phys. Rev. A 2016, 380, 4092. [Google Scholar]
- Chaudhari, M.K.; Chaudhari, S. Tuning photonic bands in plasma metallic photonic crystals. Phys. Plasmas 2016, 23, 112118. [Google Scholar] [CrossRef]
- Chern, R.L.; Chang, C.C.; Chang, C.C. Analysis of surface plasmon modes and band structures for plasmonic crystals in one and two dimensions. Phys. Rev. E 2006, 73, 036605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Cappelli, M.A. A tunable microwave plasma photonic crystal filter. Appl. Phys. Lett. 2015, 107, 171107. [Google Scholar] [CrossRef]
- Sheng, Z.M.; Zhang, J.; Umstadter, D. Plasma density gratings induced by intersecting laser pulses in underdense plasmas. Appl. Phys. B 2003, 77, 673. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.C.; Sheng, Z.M.; Zhang, J. Chirped pulse compression in nonuniform plasma Bragg gratings. Appl. Phys. Lett. 2005, 87, 201502. [Google Scholar] [CrossRef]
- Dong, L.; Yin, Z.Q.; Wang, L.; Fu, G.S.; He, Y.F.; Chai, Z.F.; Li, X.C. Square pattern formation in a gas discharge system. Thin Solid Films 2003, 435, 120. [Google Scholar] [CrossRef]
- Fan, W.L.; Sheng, Z.M.; Dang, W.; Liang, Y.Q.; Gao, K.Y.; Dong, L.F. Spatiotemporally Controllable Plasma Lattice Structures in Dielectric Barrier Discharge. Phys. Rev. Appl. 2019, 11, 064057. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Fan, W.; He, Y.; Liu, F.; Li, S.; Gao, R.; Wang, L. Square superlattice pattern in dielectric barrier discharge. Phys. Rev. E 2006, 73, 066206. [Google Scholar] [CrossRef]
- Matlis, E.H.; Corke, T.C.; Neiswander, B.; Hoffman, A.J. Electromagnetic wave transmittance control using self-organized plasma lattice metamaterial. J. Appl. Phys. 2018, 124, 093104. [Google Scholar] [CrossRef]
- Dong, L.; Qi, Y.; Liu, W.; Fan, W. Measurement of the electron density in a subatmospheric dielectric barrier discharge by spectral line shape. J. Appl. Phys. 2009, 106, 013301. [Google Scholar] [CrossRef]
- Dong, L.; Ran, J.; Mao, Z. Direct measurement of electron density in microdischarge at atmospheric pressure by Stark broadening. Appl. Phys. Lett. 2005, 86, 161501. [Google Scholar] [CrossRef]
- Strümpel, C.; Purwins, H.G.; Astrov, Y.A. Spatiotemporal filamentary patterns in a dc-driven planar gas discharge system. Phys. Rev. E 2001, 63, 026409. [Google Scholar] [CrossRef] [PubMed]
- Zamani, M.; Amanollahi, M.; Hocini, A. Photonic band gap spectra in Octonacci all superconducting aperiodic photonic crystals. Phys. B Condens. Matter 2019, 556, 151. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, K.; Liang, Y.; Liu, C.; He, Y.; Fan, W.; Liu, F. Structural Tunable Plasma Photonic Crystals in Dielectric Barrier Discharge. Appl. Sci. 2020, 10, 5572. https://doi.org/10.3390/app10165572
Gao K, Liang Y, Liu C, He Y, Fan W, Liu F. Structural Tunable Plasma Photonic Crystals in Dielectric Barrier Discharge. Applied Sciences. 2020; 10(16):5572. https://doi.org/10.3390/app10165572
Chicago/Turabian StyleGao, Kuangya, Yueqiang Liang, Chengyu Liu, Yafeng He, Weili Fan, and Fucheng Liu. 2020. "Structural Tunable Plasma Photonic Crystals in Dielectric Barrier Discharge" Applied Sciences 10, no. 16: 5572. https://doi.org/10.3390/app10165572
APA StyleGao, K., Liang, Y., Liu, C., He, Y., Fan, W., & Liu, F. (2020). Structural Tunable Plasma Photonic Crystals in Dielectric Barrier Discharge. Applied Sciences, 10(16), 5572. https://doi.org/10.3390/app10165572