
applied
sciences

Article

On Modeling and Simulation of Resource Allocation
Policies in Cloud Computing Using Colored
Petri Nets

Stavros Souravlas 1,*,† , Stefanos Katsavounis 2,† and Sofia Anastasiadou 3

1 Department of Applied Informatics, University of Macedonia, 54636 Thessaloniki, Greece
2 Department of Production and Management Engineering, Democritus University of Thrace, 67150 Xanthi,

Greece; skatsav@pme.duth.gr
3 Department of Early Childhood Education, University of Western Macedonia, 53100 Florina, Greece;

sanastasiadou@uowm.gr
* Correspondence: sourstav@uom.edu.gr
† These authors contributed equally to this work.

Received: 20 July 2020; Accepted: 11 August 2020; Published: 14 August 2020
����������
�������

Abstract: The Petri net (PN) formalism is a suitable tool for modeling parallel systems due to its
basic characteristics, such as synchronization. The extension of PN, the Colored Petri Nets (CPN)
allows the incorporation of more details of the real system into the model (for example, contention for
shared resources). The CPNs have been widely used in a variety of fields to produce suitable models.
One of their biggest strengths is that their overall philosophy is quite similar to the philosophy of the
object-oriented paradigm. In this regard, the CPN models can be used to implement simulators in
a rather straightforward way. In this paper, the CPN framework is employed to implement a new
resource allocation simulator, which is used to verify the performance of our previous work, where
we proposed a fair resource allocation scheme with flow control and maximum utilization of the
system’s resources.

Keywords: cloud computing; resource allocation; flow control; simulation; Colored Petri Nets

1. Introduction

The cloud provides a variety of resources for users based on their requirements. Each job
generated by a user in the cloud has some resource requirements. Thus, one important aspect of cloud
computing is the design of an efficient resource allocation scheme. A second but equally important
aspect is the evaluation of the different models of the cloud resources allocation and usage. It is
common knowledge that it is very difficult to experiment on real cloud environments. Moreover,
this experimentation is rather costly. Thus, many works focus on the design of simulation frameworks
for cloud computing. Necessarily, these efforts can cover only some details of the overall cloud
implementation, but they can serve as important experimentation tools. In this work, we extend our
previous work [1] and discuss these aforementioned aspects—first, we briefly discuss our previous
resource allocation scheme, to make the paper self-contained and to help the reader understand its
details. Then, we show how to implement our own simulator, which is based on the Colored Petri Net
formalism and incorporates the the main ideas of our resource allocation scheme.

The problem of resource allocation in the cloud is a challenging one, as the set of user jobs have
much different requirements [2,3]. Due to to the heterogeneity of both the available resources (like CPU,
bandwidth or memory) and the jobs themselves (for example, other jobs are CPU-intensive while
others are memory-intensive), the problem of distributing the resources in a fast and fair way while
regulating the resource utilization, becomes rather complex. By fairness, we actually mean a measure

Appl. Sci. 2020, 10, 5644; doi:10.3390/app10165644 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-9602-2663
http://dx.doi.org/10.3390/app10165644
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/16/5644?type=check_update&version=2

Appl. Sci. 2020, 10, 5644 2 of 23

of how well the resource allocation is balanced among the users jobs, but also satisfy their needs to the
maximum extent.

As the cloud usage is getting more and more intense, specifically due to the numerous big
data applications running over the cloud [4,5] lot of effort has been focused on the resource
allocation problem. The basic quality criteria for a good resource allocation technique, as described in
the literature, are the minimization of the resource allocation cost, the overall system utilization and
the job execution time. The techniques developed use different approaches in order to address these
three metrics. In Reference [6], the authors treat the problem of resource allocation as an optimization
problem and aim at reducing the total cost while they introduce the idea of increasing the overall
reliability. The reliability is modeled on a per virtual machine (VM) basis and depends on the number
of failures per VM.

In Reference [7] the authors divide the resource allocation technique into two phases: an open
market-driven auction process followed by preference-driven payment process. When a user requests
multiple resources from the market, the provider allocates them based on the user’s payment capacity
and preferences. The users pay for the VMs based on the quantity and the duration used. The authors
also aim at minimizing the total cost and allocate the resources in an efficient manner. Another work
that mainly focuses on the total cost and utilization maximization was proposed by Lin et al. [8],
where the authors propose a threshold-based strategy for monitoring and predicting the users’
demands and for adjusting the VMs accordingly. Tran et al. [9] present 3-stage scheme that allocates
job classes to machine configurations, in order to attain an efficient mapping between job resource
requests resource availability. The strategy aims at reducing the total execution time as well as the cost
of allocation decisions.

Hu et al. [10] implemented a model with two interactive job classes to determine the smallest
number of servers required to meet the service level agreements for two classes of arrived jobs.
This model aims at reducing the total cost of resource allocation.

Khanna and Sarishma [11] presented RAS (Resource Allocation System), a dynamic resource
allocation system, to provide and maintain resources in an optimized way. RAS is organized into
3 functions—Discovery of resources, monitoring of resources and dynamic allocation. The main goal
is to achieve high utilization. The total resource allocation cost is not taken into account and the VM
having minimum resource requirements suffer lower delay. In case of similar requirements, the VM
have a random, equal waiting time.

Two strategies focusing on the total execution time are found in Reference [12,13]. Saraswathi et al.
present a resource allocation scheme, which is based on the job features. The jobs are assigned priorities
and high priority jobs may well take the place of jobs with low priorities. In Reference [13], the authors
use the concept of “skewness” to measure the unevenness in the multidimensional resource utilization
of a server. Different types of workloads are combined by minimizing the skewness and the strategy
aims at achieving low execution times by balancing the load distributed over time. Table 1 summarizes
the discussion so far, by indicating the metrics considered by the papers described.

Table 1. Summary of related papers, based on the metrics used to evaluate resource allocation.

Paper Reference Cost Execution Time Utilization

[6] Yes No No

[7] Yes No Yes

[8] Yes Yes No

[10] Yes No No

[11] No No Yes

[9] Yes Yes No

[12] No Yes Yes

[13] No Yes Yes

Our work No No Yes

Appl. Sci. 2020, 10, 5644 3 of 23

Generally, the simulators have an important role in the development of every software application.
When a researcher tries to design a resource allocation strategy for the data centers of a cloud,
he focuses on the aspects mentioned above, that is, the minimization of the resource allocation
cost, the overall system utilization and the job execution time. A well-developed simulator will help
the researcher to grasp the main issues and challenges of the problem like the resource allocation
strategy to be used, the choice of the basic cloud resources (in an initial stage, it is necessary to keep
the most important resources, so that the simulator can be tested easily), and the other factors that
are important (for example, an input rate regulation policy, as will be discussed in the next section).
The simulator will provide answers to questions involving the effectiveness of resource utilization,
or the “fair” distribution among the competitive user jobs. Also, it may prove that an allocation
strategy performs better under certain job input rates, which are regulated based on the service time of
the resource allocations over the cloud. In the remaining of this section, we briefly discuss a few of the
typical cloud simulators found in the literature, which include modules for resource allocation based
on a certain policy. A detailed presentation of the existing cloud simulators can be found in a very
recent comprehensive work presented by Mansouri et al. [14].

One of the first cloud simulators, was introduced by Calheiros et al. [15] and was named CloudSim.
This simulator was the basis for the development for a number of other simulating tools
(examples include References [16–20]). CloudSim supports allocation provisioning at two levels—(1)
host level and (2), at the Virtual Machine level. At the host level, decisions are taken regarding
the percentage of the processing power of each cort that will be allocated to each VM. At the
VM level, the VM assigns a constant percentage of the processing power to the individual jobs
within the VM. Sqalli et al. [21] presented UCloud, which was developed for usage in a university
environment. The model combines public and private clouds and the resource allocation policy is based
on information like performance monitoring or security management. The DISSECT-CF (DIScrete
event baSed Energy Consumption simulaTor for Clouds and Federations) simulator presented by
Kecskemeti [22] includes a module that can track major resource conflicts (like CPU or bandwidth) to
take decisions regarding the resource sharing. These decisions are enhanced by a tool for performance
optimization, as far as the resource distribution is concerned.

Tian et al. [23] introduced their simulator named CloudSched simulator. The simulator includes
resource allocation policies in the cloud, which are built upon the consideration of the main resources
like CPU, memory and disk, and network bandwidth. The approach (like the one proposed in
this work) also makes use of the average service time, the job input rate and the service time to take
decisions on the resource allocation. However, it does not include a fairness mechanism and it does
not separate the user jobs into different classes, based on their dominant resource needs, as does
our strategy.

In Reference [24], the authors introduced SCORE , which includes a resource allocation module.
To create the model for the generated jobs, SCORE takes into account the job inter-arrival time, the job
duration and the resource usage, that is the amount of CPU and RAM that every job needs to consume.
Again, the module is not equipped with a fairness strategy and it does not take into account the nature
of each job, that is, some of the jobs are CPU intensive while others are memory intensive. The simulator
presented by Gupta et al. [25] also includes a resource management module. This module consists of a
set of schemes. The workload management is one of these schemes and its purpose is to decide where
to accommodate the workload. An optimization workload management algorithm may be used to
select among a set of feasible solutions. Also, a control based workload management algorithm can be
used to control the system. This type of management can closely track the performance parameters
(for example job service time) of jobs in order to regulate the workload input rate. A researcher can
examine these resource allocation algorithms with different workload distributions.

The Petri Net and Colored Petri Net formalism have been widely used in the literature,
in numerous fields [26,27]. Only a few are mentioned here: A few applications to mention here
include pipeline-based parallel processing [28], grid computing applications [29,30] or even traffic

Appl. Sci. 2020, 10, 5644 4 of 23

control [31]. In this paper we use an extension of Petri Nets, the Colored Petri Nets (CPN) to extend our
previous work [1], which proposed a resource allocation method, to maximize the resource utilization
and distribute the system’s resources in a fast and fair way. Compared to the other resource allocation
schemes found in the literature, this work introduces the control flow control mechanism based on the
available resources and the careful analysis of the dominant demands of each job. Also, the metric it
uses for performance evaluation is the system utilization (see Table 1 for comparisons to other schemes),
although its execution time could also be used since it is proven to be linear, as will be discussed
is Section 3. In this work, we capture the ideas of our previous work and use them to implement a
CPN model for resource allocation in the cloud. This model is the basis for the implementation of
our CPN-based resource allocation simulator (will be referred to as CPNRA (Colored Petri Net-based
Resource Allocator). This simulator is used to verify and evaluate the performance of our resource
allocation scheme. The advantages of the proposed model is that it is deadlock free and can be executed
in linear time. Moreover, because it is organized in an hierarchical manner, it can easily be expanded
for larger systems (larger number of users or available resources) only with minor changes. This is one
of its biggest strengths.

The remaining of this work is organized as follows—Section 2 briefly describes the resource
allocation model. More details can be found in Reference [1], but we present the basic ideas here,
so that the paper is standalone. Section 3 presents some CPN preliminaries which are necessary for
the reader to understand the model and then shows how we translated the resource allocation model
to a CPN model. In Section 4, we explain how the simulator executes giving a concrete example and
then we present our experimental results. Section 5 concludes this paper and presents aspects for
future research.

2. Resource Allocation Model

Consider a set S = {1, . . . , m} of m available resources, where Tr is the total amount of a resource
r available in the cloud. In our allocation model, the resources are considered as servers. Each resource
type r is modeled as a single server Sr, and each server has a single queue Qr of user jobs that require
the specific resource. The queue lengths are considered large enough to accommodate all the possible
user requests per resource. The jobs enter a queue Qr to request a resource type according to a Poisson
arrival process with rate λr. The service time (the time required for a job to obtain a certain resource)
is exponential with mean 1/µ. A cloud has an infinite number of users and each user executes a
number of jobs. Each job is described by its demand vector Vi = {Vi1, Vi2, . . . Vim}. The demand vector
shows the amount of each resource demanded by each job. A job’s job dominant resource, is the most
necessary resource for this job. For example, some jobs are CPU-intensive, while others require more
memory. This notion has been introduced in a number of papers (for example, see References [32,33]).
The dominant server queue (DSQ) is the queue of the dominant resource server. All the jobs requiring a
dominant resource enter the DSQ before entering any other queue to ask for other resources. In the
example of Figure 1, the DSQ is Q1. The remaining queues correspond to non-dominant resources.

A vector in the form K = (K1, K2, . . . , Km) expresses the cloud’s state. Here, K is the amount of
available resources in every server. Let us consider the conditional probability of moving from state K
to K′, denoted as p(K, t + δ | K, t), where δ is a very short period, enough to accommodate only one
change of state. The overall probability of reaching a state K′ is: [34]

p(K′1, K′2 . . . K′m) = p1(K′1) · p2(K′2) · · · · · pm(K′m) (1)

where
pj(K′j) = p

K′j
j (1− pj), (2)

with

pj =
λj

µj
≤ 1, the utilization of a resource server. (3)

Appl. Sci. 2020, 10, 5644 5 of 23

Q1

N1

S1

μ1

λ

μ2

λ2

λ3

μ3

S2

S3

μ0

DSQ Arrivals

End

End

Q2

Q3

1,
T12

T13

T21

T31

T21

Figure 1. Resource allocation model with 3 resources, i = 1 is the dominant resource.

Let us consider a system has the 3 most important resources, that is, CPU, RAM, and disk.
A resource allocator (see Figure 2) is used; the resource allocator is a central system that handles a
queue system. Generally, the resource allocator has m queue systems or classes, each having a structure
similar to the one shown in Figure 1. A class is characterized by the dominant resource. Each class
has m queues, one for each resource. For our example, m = 3. Thus, the total number of queues
in the system m2. Obviously, the dominant resource is different for each queue system and each
system handles and allocates a percentage of the overall available resources. We use bi to refer to
this percentage for each queue. In the example of Figure 1, b1 is the percentage of the dominant
queue (in our example Q1) and b2, b3 are the percentages for the remaining queues (Q2 and Q3 for
our example).

When a job requires resources, its dominant resource is examined and it is assigned to the proper
queue system, the one with the dominant resource as DSQ. Thus, a job requests resources starting from
DSQ and then it “moves” accross the other queues to request the remaining resources. Then, it may
“return” back to DSQ to request more resources. Mathematically, for the queue system of Figure 1,
this behavior is modeled by the following equations:

λ1 = λ + (µ2 + µ3)b1

λ2 = b1λ1 (4)

λ3 = b2λ2,

where λ denotes the total number of rate of all the jobs with Q1 as their DSQ. The bj’s have to be
regularly recalculated, as resources are allocated and de-allocated.

Therefore, by employing a queuing system, our resource allocation scheme is able to estimate the
maximum job arrival rate that the system can afford.

To distribute the resources in a fair way, our scheme introduces a max − job fair policy,
which initially considers the maximum number of jobs based on the demands on the dominant resource.
Let us define U = {U1, . . . , Un} as the set of n users that content for the dominant resource r̂. The users
are sorted by increasing order of their demands for the dominant resource into vector V̂r and then
Ui max, the maximum number of job assigned to each user is computed as follows:

Ui max =
T̂r
Vir̂

, for all users i. (5)

Appl. Sci. 2020, 10, 5644 6 of 23

Then, we find the sum of all the jobs computed in the first step, N =
n

∑
i=1

T̂r
Vir̂

, and we find the fair

resource allocation factor f for each of these jobs as follows:

f =
T̂r
N

. (6)

Finally, we use the fair resource allocation factor to compute the resources allocated fairly to each
user i, Fi as follows:

Fi = f ×U(n+1−i)max. (7)

Let us use an example to illustrate the process described. Assume that 4 users content for their
dominant resource, CPU, and the cloud system has 18 CPUs available and their demands are: 4 CPUS
for U1, 9 CPUs for U2, 6 CPUs for U3 and 5 CPUs for U4. By sorting in ascending order, we have:
V = [U1 = 4, U4 = 5, U3 = 6, U2 = 9]. From (4), we obtain that U1 max = 18

4 = 4.5, U2 max = 18
5 =

3.6, U1 max = 18
6 = 3, and U4 max = 18

9 = 2. The sum of these jobs is N = 4.5 + 3.6 + 3 + 2 = 13.1 jobs.
Then f = 18

13.1 = 1.374. Thus, from (6), we have:

F1 = 1.374×U4 max = 1.374× 2 = 2.748,

F2 = 1.374×U3 max = 1.374× 3 = 4.122,

F3 = 1.374×U2 max = 1.374× 3.6 = 4.97, and

F4 = 1.374×U1 max = 1.374× 2 = 6.18.

queue systemClass 1 End

queue systemClass 2 End

.

.

.
queue systemClass m End

User requests

Tasks with

allocated

resources

Figure 2. Resource Allocator with m Queue Systems.

Since the values [F1, F2, F3, F4] correspond to users [U1, U4, U3, U2] (recall that the users have been
sorted based on their requests, from Step 1). Thus, U1 will get 3 CPUs, U2 will get 6 CPUs, U3 will get
5 CPUs and U4 will get 4 CPUs.

To conclude, our resource allocation policy first examines the job arrival rate that the system can
afford by solving a system of equations like the one in Equation (4) and then it applies Equations (5)–(7)
to fairly distribute the resources. In cases when the requesting jobs arrival rate is such that the system
cannot handle, then the system reduces the resources assigned to each job by Equations (5)–(7), until the
rates are regulated to affordable values.

3. The CPN Model

In this section we present the CPN model, which is the basis for the implementation of
our simulator. The CPN model is composed of one “core” for each queue member of a queue system.

Appl. Sci. 2020, 10, 5644 7 of 23

The cores have the same structure and procedures described in this section, but they differ only on
the resource which is the dominant one. All the cores are executed in parallel and there is no need
to interconnect them. This increases the allocation speed. In the following subsections, we describe
the cores in detail, and then we present deadlock analysis. However, we initially have to provide the
necessary background of the CPN formalism.

3.1. The CPN Formalism

The CPN formalism is an extension of the basic PN formalism, which has been implemented
to overcome two important challenges—(1) The typical PN formalism does not distinguish between
the tokens, in other words all the tokens have the same meaning and they are used to represent
a system’s state. However, in most of the cases, a system’s entities may have some common
attributes but the values of these attributes differ from entity to entity, while these values are of
high importance for the study of the system. and (2) The typical PN formalism does not bother
about the actual timing of events that may change the system’s state, but only for the sequence of
these events. This is a disadvantage, when researchers try to model systems which have inherited
timing attributes. In the remaining of this subsection, we discuss the data and timing extensions of
the PN formalism, which have resulted to the CPN. Whenever necessary, we will give definitions
regarding other important elements of Petri Nets. Also, we will discuss another useful extension,
the guarding expressions, which generate the conditions under which an event can occur at a certain time.
The Colored Petri Nets, not only take the timing factor into account, but also they use the guards to
define conditions under which an event can (or cannot) occur at a certain time.

3.1.1. Data Extensions

In this paragraph, we discuss the first extension of Petri nets, where the tokens are distinguished
through the assignment of specific values to each one of them. This value is named color, hence the
name Colored Petri nets.

When modeling a system as a simple Petri net, the system’s elements are represented by
tokens, places, and transitions (definitions for the places and transitions are given later in this paragraph).
A token is a dynamic element of a Petri net, and it is used to define the network’s state. A token
can model an object or a set of objects and also states and conditions. For example, in a cloud
system a token may model a user job that is CPU intensive (requires more CPU processing resources)
while another token may model a memory intensive job (requires more memory). In a simple Petri
net, it is impossible to distinguish between these two tokens and describe their attributes. With the
CPN formalism, each token carries a value. Other token attributes may include the arrival time,
the mean service time, and so forth. We can describe a job with the five attributes: Job_Id, Job_Priority,
Arrival_Time, Service_Time, and Type_of_Resources_Requested, as will be discussed when we describe
our model. Then, each token will have its own values, like:

1, 1, 10, 50, [1,1,1] or 2, 1, 20, 60, [1,1,0]
To describe the network structure and the behavior of CPNs in a formal way, we need to define the

notions of places and transitions. A place is represented by circles and they are the containers of tokens.
The number and type of tokens inside a place define a network’s state. In other words, a place
represents a system’s state, which is defined by the number and type of tokens it contains. For example,
if a place has two jobs <1, 1, 10, 50, [1,0,0]> and <2, 1, 20, 60, [1,0,0]> then it represents
a state where two user jobs have been generated, one with Id = 1, Priority = 1, generated at time = 10,
scheduled to be served after 50 time units, and requesting only the dominant resource and another one
with Id = 2, Priority = 1, generated at time = 20 and scheduled to be served after 60 time units, and also
requesting only the dominant resource. A monitor, which is transparent to the core generates these
tokens (see Section 4.1). A place can only accept tokens of one form: this can include a certain type of
token (for example job tokens) or a union of tokens (tokens which are formed by the union of two or
more tokens).

Appl. Sci. 2020, 10, 5644 8 of 23

A transition represents an event that, whenever triggered, it may change the system’s state,
that is, the system may transition from one state to another. Transitions are represented by rectangles.
Generally, we use the verb “fire” to indicate that an event has occured. In order for a transition to fire,
all its conditions must be satisfied. In this case, we say that the transition is enabled. We use the
example of Figure 3 to show these considerations. In this figure (as well as in all the others), the types
of tokens are colored for clarity of the presentation.

τ = <1, 1, 20, 50, [1,1,1]> =<7, 40>

After t1 firing:

τ <1, 1, 20, 50+δt1, [1,1,1], 7, 40>

1
2τ

12

2

 p3

τ3 <1, 1, 20, 50+δt1+δt2, [1,1,1]>

After t2 firing:

τ4 <7,40>

After t2 firing:

p5

Figure 3. Example of an Enabled Transition in a Colored Petri Nets (CPN).

Figure 3 shows 5 positions, p1 and p3 which accommodate only red tokens and p2, p5 which
accommodates only black tokens, and p4 which accommodates red-black tokens (union of reds
and blacks). Also, there is one transition t1 that is fed by p1 and p2 and transition t2 which is fed by p4.
Transition t1 is enabled when its inputs p1, p2 have at least one token. The inputs to a transition are
indicated by arrows originating from one or more place to this transition. Thus, the existence of at
least one token to the transition’s input place forms the condition that must hold before it fires.

When firing, a transition will change the system’s state. Then, one token from each input place is
removed and placed to the transition’s output place, in our example p4. In the context of CPN, the two
different types are united. If we consider two tokens τ1, τ2 as a set of elements or values in the form
{τ1_Value1, τ1_Value2, . . . τ1_ValueN} and {τ2_Value1, τ2_Value2, . . . τ2_ValueN} then the new token
is the union of the two sets:

τ12 = {τ1_Value1, τ1_Value2, . . . τ1_ValueN} ∪ {τ2_Value1, τ2_Value2, . . . τ2_ValueN}
= {τ1_Value1, τ1_Value2, . . . τ1_ValueN, τ2_Value1, τ2_Value2, . . . τ2_ValueN}.

In Figure 3, notice the new token τ12 in place p4. It is the union of the set of values of τ1 and τ2.
Its color is red-black, to denote this union in a pictorial manner. Now, t2 and t3 are also enabled,
When t2 is also enabled. When it fires, the token τ12 is split again and its red part only moves to p3 as a
new token τ3 (recall that p3 accommodates only red tokens) while its black part only moves to p4 as a
new token τ4 (recall that p4 accommodates only black tokens).

Now, we can typically define a CPN network. It is composed of 4 elements:

1. A set of places P
2. A set of transitions T
3. An input function I
4. An output function O

Appl. Sci. 2020, 10, 5644 9 of 23

The input and output function relate places to transitions. An input function I is a mapping from
a set of places to a transition ti. It is denoted by I(ti) and the set of places is called input places for
the transition. As mentioned in our example, It1 = {p1, p2}. The output function O is a mapping from
a transition to a set of places. It is denoted by O(ti) and the set of places is called output places for
the transition. As mentioned in our example, Ot1 = {p4}. The tokens τi are distinguished according to
the CPN formalism, as described above.

Then, a Colored Petri Net C is typically defined as a quadruple of the form C = {P, T, I, O},
where:
P = {p1, p2, . . . , pn, } is a finite set of places, n ≥ 0
T = {t1, t2, . . . , tn, } is a finite set of transitions, n ≥ 0
R→ T is an input function from a subset of places R to a transition of set T, and
T → R is an output function from a transition of set T to a subset of places R.

Finally, we define the marking of a network C as the number and type of all the tokens residing in
all the places at a certain time. An initial marking is necessary when we start the simulation engine.
This initial marking defines the initial system conditions.

3.1.2. Timing Extensions

Now, we address the second extension of Petri nets, where the transitions are not timeless
but timed. The provision of time gives our model the opportunity to describe the temporal details of
a system in a precise manner. The approach combines three characteristics—(1) Each token carries
one time stamp, a timing value used to determine the firing time of the transitions fed by the place
this token is located (2) a transition may fire and produce new tokens with a delay, and (3) a guard
expression can be used when we need to assign conditions regarding the time of firings. When we
consider time, there is always a global clock for keeping the time. Time is usually advances in time
units and not in real time metrics (hours, minutes, seconds, etc.). For transition firings, it is a common
practice to add a delay, which is analogous the time required for the system changes to take effect.

To determine the firing time of a transition, we first examine all the input places and from
each place, we find the token with a minimal time stamp (that is, the next token to leave this place).
In case of a draw between time stamps residing in a place, the system chooses the one with the smaller
Job_Id. Thus when a transition has b input places, we take into account b tokens, one token with the
minimum time stamp from each of these places. Then, the firing time is equal to the maximum of the
selected time stamps, ti max indicating that the last condition required to enable transition ti became
true at time ti max. This procedure will be clarified with an example in Section 3.2.4, where the firing
time of our model is described.

When the firing time is determined, a delay time stamp determines the time of birth for the new
token in its next place (the transition’s output place). In other words, the time stamp of the newly
produced token is the sum of the determined firing time and the introduced delay. The delay is
an indication that the proper time has elapsed before the new token is produced and located to its
new place. This means that we have to take into account the time required for an event to complete
and affect the system’s state.

3.1.3. Guarding Expressions

There are cases where multiple transitions can be enabled at a time. In this case, there must be
some type of referee, who decides which transition to fire first. In the CPN, the role of the referee is
given to a special type of expressions called guards or guarding expressions. In this context, the guards
are written in parentheses. In Section 3.2.3 we describe the guard expressions that define the necessary
conditions for our model and provide details on how they operate.

The notions and ideas described in this paragraph will be used next, in the description of our
CPN based model for resource allocation over the cloud.

Appl. Sci. 2020, 10, 5644 10 of 23

3.2. The CPN Model

In this subsection we present the CPN model, which is the basis for the implementation of
our CPNRA simulator. The CPN model is composed of one “core” for each queue member of a
queue system. The cores have the same structure and procedures described in this section, but they
differ only on the dominant resource. All the cores are executed in parallel and there is no need to
interconnect them. This increases the allocation speed. In the following subsections, we describe the
cores in detail, and then we present deadlock analysis.

3.2.1. The Core of Queue Members of a Queue System

Our resource allocation scheduler is composed of m queue systems, each having m queues. In this
subsection we will describe the core for the DSQ (the first queue, Q1) of a queue system. Figure 4 shows
this core. Inside each core a number of transitions which involve the DSQ are implemented. These
transitions are symbolized by

−→
T 1x and

−→
T x1, where x 6= 1, xin[2, . . . m], and are described as follows:

(1)
−→
T 12: The transition from the DSQ Q1 to Q2, in other words, the dominant resources have been

allocated to a job, which then applies for resources from server S2 , thus it enters its queue.
(2)

−→
T 13: The transition from the DSQ Q1 to Q3, in other words, the dominant resources have been

allocated to a job, which then apply for resources from server S3 , thus it enters its queue.
(3)

−→
T 21: The transition from the Q2 to the DSQ; the requested resources have been allocated from S2

to a job, that returns to request extra resources from the DSQ, thus it re-enters its queue.
(4)

−→
T 31: The transition from the Q3 to the DSQ; the requested resources have been allocated from S3

to a job, that returns to request extra resources from the DSQ, thus it re-enters its queue.

(G4)

(G1)

(G2)

(G3)

(G5)
(G6)

Figure 4. The dominant server queue (DSQ) core.

The places and transitions of the DSQ core are given below:

Places
p1: Jobs requesting DSQ resources
p2: Processing of next job request
p3: Jobs requesting resources from server Q2
p4: Fair allocation policy over DSQ

Appl. Sci. 2020, 10, 5644 11 of 23

p5: All ToRRs (Type of Resources Required, see Section 3.2.2 where the token structure is described)
updated, Next job selection
p6: S1 Fair allocation policy over Q2
p7: S2 Fair allocation policy over Q3
p8: Jobs requesting resources from server Q3

Transitions
t1: Compute DSQ resources to be allocated for the job in a fair way
t2: Process the next job’s allocation request,
t3: Compute Q2 resources to be allocated for the job in a fair way
t4: Allocate DSQ resources, update ToRRs accordingly
t5: Allocate Q2 resources
t6: Compute Q3 resources to be allocated for the job in a fair way
t7: Allocate Q3 resources

One should notice the hierarchy behind this model: each of the queues is implemented with a
subset of places and transitions and also, the queues have some places and transitions in common.
For example, the DSQ is implemented with places p1 and p4 and with transitions t1 and t4 and shares p2

and p5 with both the other queues. This sort of design can be helpful in expanding the model for more
resources (queues) and larger number of tokens (that is, larger number of resource requests). The places
and transitions of the core model presented in Figure 4 translate in a pictorial straightforward way
the basic procedures of our resource allocation strategy described in Section 2. These procedures are
repeatedly executed into different parts of the hierarchical model, depending on the resource being
allocated (DSQ or Q1 or Q2).

Procedure 1-Requests for resources: When one job requests a DSQ resource (meaning that there
is a red token in place p1), then it enters the DSQ and has to wait there until its turn. When the preceding
job finishes, then the next job request can start. This is modeled by places p1 and p2. When they have
one token, the next job’s request can be processed. Then, transition t1 can fire, which triggers our
fair allocation policy: the DSQ resources must be computed, in order to fairly allocate the dominant
resource to the requesting job. This fair allocation policy terminates when a token is placed in p4.
Similarly, places p3, p2, and p6 along with transition t3 are used to model the requests for Q1 resources
and places p8, p2, and p7 along with transition t6 are used to model the requests for Q2 resources.

Procedure 2: Next job selection: Once a job finishes from a queue, it may either leave the system
(all its requests are fulfilled) or continue to another one (request other resources). In the first case,
another job enters the system, starting from the DSQ. In the second case, it moves to a next queue and
remains in the system until its service finishes. This procedure is modeled by places p5 and p2 and
transition t2, which are common for all the hierarchy parts (or resource types). Place p5 describes the
condition that the type of requested resources have been updated. To do so, a bit array with m positions
(recall that m is the number of resources or queues) is used, one bit for each resource. A value of 1 in
a position of this array indicates that the job has not been equiped with the corresponding resource.
When this occurs, the array is updated and this value changes to 0, indicating the completion for
this request. Transition t4 triggers the allocation of DSQ resources and the ToRR updates, transition t5

triggers the allocation of Q2 resources and the ToRR updates, and transition t7 triggers the allocation of
Q3 resources and the ToRR updates. All these transitions have a common output place, p5. When one
of these events occur depending on the resource being allocated, Procedure 1 is called, from transition
t2 and the processing of the next request can start.

Appl. Sci. 2020, 10, 5644 12 of 23

3.2.2. Token Structure

A token is a dynamic element of a Petri net, and it is used to define the network’s state. Unlike the
traditional Petri nets, in the colored Petri net formalism each token can belong to a token type and have
its own fields. Here, we define two token types, which we call job and Next_Selected. A job has the
following fields:

Job_Id: The ID of a job requesting some resources.

Job_Priority: The priority of a job, which can be 1 for job that request resources from the DSQ(Q1), 2 for
jobs that request resources from Q2, and 3 for jobs that request resources from Q3. The smaller the
priority value, the largest the jobs priority for service. This is important for the simulation part of our
work, as will be explained in the next section.

Arrival_Time: The time a job enters the system to request resources.

Service_Time: The time it takes for a job to take the requested resources from each queue.

Type_of_Resources_Requested (ToRR): A binary array of m elements indicating which of the resource
types (m in total) have been requested. A value of 1 indicates a desirable resource, a value of 0 indicates
a non-desirable resource. Whenever a job gets a resource type, the corresponding 1 value changes to 0.

The job tokens are divided into 3 categories based on their Priority_Id: Red, that correspond
to jobs that request resources from Q1 (DSQ), Green, that that correspond to jobs that request
resources from Q2, and Blue, that correspond to jobs that request resources from Q3. A Red token is
characterized by a Job_Priority value equal to 1. Similarly Job_Priority values of 2 and 3 characterize the
Green and Blue tokens, respectively. Examples follow

Red: < Job_Id, Job_Priority, Arrival_Time, Service_Time, Type_o f _Resources_Requested > =

< 1, 1, 20, 50, [1, 1, 1] >
Green: < Job_Id, Job_Priority, Arrival_Time, Service_Time, Type_o f _Resources_Requested > =

< 5, 2, 20, 50, [0, 1, 1] >
Blue: < Job_Id, Job_Priority, Arrival_Time, Service_Time, Type_o f _Resources_Requested > =

< 8, 3, 20, 50, [0, 0, 1] >

When a job leaves one queue to enter another, its priority (thus, its color) also changes. This simple
transformation is used for the simulator that will be described in the beginning of Section 4.

The next_Selected token has two fields:

Job_Id: The ID of the next job to be selected.
Arrival_Time: The time this selection takes place (this is the moment from which a new allocation
can start).

3.2.3. The Guard Expressions

The guard expressions (or guards) provide the conditions for a transition firing. These expressions
are written in parentheses, close to the transition on which the condition is imposed. In Figure 4,
there are 6 guard expressions. We use the labels G1–G6 to show them due to lack of space.
In this context, we do not just use the guard expressions in the way defined in CPNs, but we have also
added our own extension to make the model more flexible: Specifically, our guards not only determine
firing conditions, but also they determine if a token is to be generated in an output place. This will be

Appl. Sci. 2020, 10, 5644 13 of 23

explained in the description of our guards that follows:

G1: (IF token_Id.ToRR = [1,x,x]): This indicates that t1 can fire only if there is a request for the
DSQ regardless of the other values of ToRR. In other words, when the first ToRR value is 1, transitions
t1 and t4 can fire. Once a job gets the DSQ resources, the first ToRR value, ToRR[1] becomes 0. It can
become 1 again, only if the job requests extra DSQ resources, after its requests for non-dominant
resources have been fulfilled.

G2: (to p1: IF token_Id.ToRR = [1,x,x]): This is our own extension to the CPN guards.
This extension forces t4 to generate a token for p1 only if G2 is true. If not, then even if t4 fires,
no “actual” token will move to p1. Because the CPN formalism forces the generation of a new token
anytime there is a firing, we handle the situation by generating a red token for p1, with a time stamp
much larger than the total simulation time (this will be denoted by ∞). This token will never be
processed again and hence the word “actual”.

G3: (IF token_Id.ToRR = [0,1,x]): This indicates that t3 can fire only if there is no request for the
DSQ resources (it has been fulfilled) and a pending request for Q1 resources, regardless of the last
value of ToRR. Once a job gets the Q1 resources, the corresponding ToRR value, ToRR[2] becomes 0.
It can become 1 again if the user returns for extra resources for this job.

G4: (to p3 : IF token_Id.ToRR = [0,1,x]): As in G2, for transition t5. This extension forces t5 to
generate a token for p3 only if G4 is true. If not, then even if t5 fires, no “actual” coupon will move
to p1. This time, a green token for p3, with a time stamp equal to ∞ is generated. This token will never
be processed again.

G5: (IF token_Id.ToRR = [0,0,1]): This indicates that t6 can fire only if there is no request for
the DSQ and Q1 resources (they have both been fulfilled or there was never a Q1 request from the
job being processed) and a pending request for Q2 resources. Once a job gets the Q2 resources,
the corresponding ToRR value, ToRR[3] becomes 0. It can become 1 again if the user returns for extra
resources for this job.

G6: (to p8 : IF token_Id.ToRR = [0,0,1]): This extension forces t7 to generate a token for p8 only if
G6 is true. If not, then even if t7 fires, no “actual” coupon will move to p8. This time, a blue token for
p8, with a time stamp equal to ∞ is generated. This token will never be processed again.
Comment: In the analysis of the guard expressions, we assumed that there are 3 resources. Apparently,
a similar analysis can be done for more resources.

These guard expressions will be used to describe how the simulator executes, in the Simulation
Results and Discussion section.

3.2.4. Transition Firing Time

To determine the transition firing time, we implement the following steps:

Step 1: For the places that share a transition: Use the Arrival_Time values as time stamps, and compare
all the arrival times for all the tokens of each place. Then, obtain the tokens with the minimum
time stamp per place.

Step 2: Find the max values from the tokens found in Step 1. Symbolically, we denote these values as
ti max, where i is the transition number. This max value gives the transition to fire next and
the time of this firing.

Step 3: If more than one transitions are active at a time, we find their firing time using the two steps
above and then we choose the one withe the minimum firing time.

Appl. Sci. 2020, 10, 5644 14 of 23

For the example of Figure 5, which shows a part of our core, p2 is a common input to
transitions t1, t3 and the transitions are active (there is at least one token in each of their input places,
p1, p2 and p3). Then, we compare the minimum Arrival_Time values that exist in every place that
shares the transition.

t1 max = max(20, 40) = 40

t2 max = max(40, 50) = 50.

Then, the minimum of these values is t1 max, thus t1 will fire at time t = 40. In case of a draw,
the solution is given by the guard expression: t3 can fire only if t_green<t_red, in other words if the
minimum Arrival_Time in p3 is less than the minimum Arrival_Time in p1. In any other case, the DSQ
(Q1) has the higher priority.

<1, 2, 50, 90, 0,1,1]><1, 1, 20, 50, [1,1,1]> <2, 1, 30, 50, [1,1,1]> <7, 40> <1, 2, 60, 90, [0,1,1,]>

 BLACK TOKEN FORMAT:

 <Id, Arrival_Time>

 GREEN TOKEN FORMAT:

<Job_Id, Priority, Arrival_Time, Departure_Time, Type_of_Resources_Requested><Job_Id, Job_Priority, Arrival_Time, Departure_Time,

 Type_of_Resources_Requested>

RED TOKEN FORMAT:

Figure 5. Transition firing time example.

3.2.5. Deadlock Analysis

Generally, deadlocks occur when processes stay blocked for ever (waiting for an event caused by
another process that never occurs) and in such cases, probably the whole system needs to be restarted.
To show that a model is deadlock-free, we will show that an initial marking will appear again after
a number of transition firings [35]. In the CPN context, the deadlocks are analyzed as in the simple
PN context. We start with an initial desirable for the model purposes marking and we analyze all the
possible firings. If the system does not have blocked processes, then it is deadlock free. One indication
for the non-existence of deadlocks is the ability of the model to start from a marking and, after a series
of firings, to return to the same marking.

Proposition 1. The model of Figure 3 is deadlock-free.

Proof. Assume that initially there is one token in places p1 and p2, that is, there is one job that requests
its dominant resource and there is an initial input rate regulation. Then t1 is active and one token will
move to p4. This enables t4 and when t4 fires, one token moves to p1 and one to p5. This enables t2,
which places one token to p2 and with one token to p1, t1 is reactivated. This circle can repeat itself
forever, indicating that the model is network-free for the part that involves the overall processing for
the DSQ (places p1, p2, p4, and p5). The other two parts can be analyzed in a similar manner and also
be proven to be deadlock-free.

3.3. Complexity Analysis: Execution Timing of the CPN Model

In this subsection, we formally analyze the execution time of the proposed model. To compute
the complexity, we simply consider that each queue system has m queues and there are at most m
queue systems executing for a resource allocation problem. This means that the tokens are transferred
among the model’s places in parallel for every queue system. In total, we have m2 queues and due
to parallelism (effectively, m queues are executed in parallel, thus tokens are moving in parallel

Appl. Sci. 2020, 10, 5644 15 of 23

within m cores). Thus, the time required to complete the scheduling is O(mNmax), where Nmax

is the maximum number of jobs (or tokens) generated during the allocation process. During the
model execution, there is a flow control policy. However, the solution for the system of Equation (4)
also depends on m. Since m is generally limited compared to the number of jobs that can be generated,
the overall model is executed in O(N) time, that is, linear to the number of jobs generated.

4. Simulation Results and Discussion

In this section we show how we use the CPNRA simulator to verify the correctness of the results
we obtained in our previous work. In the first part of this section, we show how our simulator executes
to distribute fairly the available resources over the cloud.

4.1. CPNRA Simulator Execution

Let us assume an initial marking with two jobs (red tokens) in place p1 and a token in place p2

that is, there are two jobs that require the dominant resource and the system is ready to accept the
next job request. These two jobs arrived at the same time. In Section 2, we mentioned the existence
of m system queues. In each of these queues, there is a different dominant resource. Each user job
entering a system queue, first makes a request for the dominant resource and then it proceeds to the
next queues (if required) to request the non-dominant resources. The jobs are generated by a monitor
entity, which examines the available resources and generates requests with mean arrival rate λ. Also,
it can regulate the maximum arrival rate, using our probability based policy described in Section 2.
The monitor operates for as long as the current time Cur_Time is less than the total simulation time,
which is defined by the user (see the guarding expression G7 of Figure 6a).

 Monitor
G7: (IF Cur_Time<Sim_Time)

Examines available resources,

generates requests with

mean arrival rate λ, and regulates

the maximum input rate.

(a)

τ1 = <1, 1, 20, 30, [1,0,0]> =<1, 20>

Before firing

3τ

(b)

 τ2 = <1, 1, 20, 25, [1,1,0]>

(G1)

(G2)

 τ2 = <1, 1, 20, 25, [1,1,0]>
 τ4 = <1, 1, o , 25, [0,0,0]>o

p5

 τ5 = <2, 50>

(d)

 After firing

τ <1, 1, 20, 50, [0,0,0], 1, 20>

3τ

13

(c)

 τ2 = <1, 1, 20, 25, [1,1,0]>

 τ6 = <2, 50+δ>

(e)

p1

 Monitor

G4: (IF Cur_Time<Sim_Time)

(f)

tp1

3

G7: (IF Cur_Time<Sim_Time)

tp3

 τ2 = <1, 7, 20, 50+δ, [1,1,0]>

 τ7 = <1, 8, 20, 50+δ, [1,1,0]>

 After firing

τ <1, 7, 20, 75+δ, [0,1,0], 2, 50+δ>26

(g)

 τ2 = <1, 7, 20, 50+δ, [1,1,0]>

 τ6 = <2, 50+δ>

After firing

τ <1, 8, 20, 100+δ, [0,1,0], 3, 75+δ>78

(h)

p6

p2 p3

(G4)

τ = <3, 75+δ> (in p2 before firing) 8

 τ9 = <3, 100+δ>

 τ10 = <1, 10, o , 25, [0,0,0]>o

(i)

 τ11 = <3, 100+2δ>

(j)

3

Figure 6. Simulation execution example.

To describe how the simulator operates, let us consider an example, with these two jobs that have
arrived to the system queue. Their requests are given in Table 2. The values of the black coupon τ3 are:
< 1, 20 >.

Appl. Sci. 2020, 10, 5644 16 of 23

Table 2. An execution example.

Job_Id Priority Arrival_ Time Service_Time Type_of_Resources_Requested

1 1 20 30 [1,0,0]
2 1 20 25 [1,1,0]

At current time 20, there are two red tokens in place p1 (τ1, τ2) and a black at p2 (τ3) (see Figure 6b).
We now use the ideas of Section 3.1.2 to determine the firing time of the only enabled transition t1.
For the red tokens, the minimal stamp is 20 and because this value is found in both tokens, we choose
the one with the smaller Job_Id = 1. Notice that the guard expression for t1 is G1: (IF token_Id.ToRR
= [1,x,x]), which is also true. Thus, t1 can fire at time 20 + δ, where δ is a delay value. This value is
produced by a random number generator with mean µ and it indicates the time required for the system
to arrive to a new state according to the event that incurred by the transition’s firing. In our example,
the service time is 30 time units. This means that the time elapsed until the token reaches p4 should
equal 30 and the newly generated token will be placed to p4 at time = 50 time units. The result
of this first firing are shown in Figure 6c: A red-black token is placed to p4 and its values will be
the union of the red and black tokens, that is: τ12 = τ1 ∪ τ3 =< 1, 1, 20, 30 + 20, [0, 0, 0], 1, 20 >=<

1, 1, 20, 30 + 20, [0, 0, 0], 1, 20 > (see Section 3.1.1). Also, the resource request has been fulfilled, thus
τ13.ToRR = [0, 0, 0]. Once t1 fires, the fair allocation policy of Section 2 has completed its work, that is,
it has determined a fair amount of DSQ resources for the job, the resources have been allocated and the
next job to be processed can be determined. The token in p4 activates t4 at time 20 + 30 = 50 (notice the
change at the red-black token of Figure 6c). Thus, the fair allocation policy procedure executes.
However, the execution of t4 will not produce an “actual token” to p1 because the guard G2 is false.
Instead, it will produce a red token with an ∞ time stamp. On the other side, the token produced for
p5 will be a black one. Figure 6d shows this situation. Now, a black token in p5 activates t2 and the
processing of next request can start. Here, we consider the delay δ required to take the decision for the
next job to be processed as a trivial latency, and we just write it as δ. Thus, the value of Arrival_Time
for token τ6 is 50 + δ as seen in Figure 6e. Now, transition t1 is enabled: because the condition (see
Section 3.2.3 for the description of the guard expressions used here):

G1: (IF token_Id.ToRR = [1,x,x]) or (IF 2.ToRR = [1,x,x]) (Guard.1)

holds for the next chosen token with token_id = 2 (which also has a time stamp of 20 time units).
By applying the firing time strategy of Section 3.1.2 we find that the process of resource allocation will
start for τ2 at time 50 + δ (the maximum of the two time stamps in positions p1 and p2).

For the second request, when the monitor sees the request [1, 1, 0], it places one green token in
p3 as seen in Figure 6f using the transition tp3. Now, there are two transitions enabled, but because
the condition

G3: (IF token_Id.ToRR = [0,1,x]) (Guard.3)

does not hold, t3 will not fire. However t1 can fire and this will place a token in p4 (see Figure 6g).
Now, the newly generated red-black token proceeds as explained before for τ1, until it reaches p2,
where it places a black token τ8 =< 3, 75 >. This will be used for the firing of t3 next. Now, the DSQ
request has been fulfilled and the execution of t4 has updated the ToRRs for both the green and red
tokens to [0,1,0]. Now, transition t1 is not enabled because of G1, but now t3 can fire since the condition

G3: (IF token_Id.ToRR = [0,1,x]) (Guard.3)

now holds. Thus, the fair resource allocation policy can be implemented and a green-black token will
be placed to p6 (see Figure 6h). Then t5 is enabled and, as before, a token with infinite time stamp will
be placed to p3 while p5 will get a black token, which indicates the beginning of processing for the
next request (see Figures 6i,j).

Appl. Sci. 2020, 10, 5644 17 of 23

Now, if a third token appears with requests [1,1,1], the same form of execution will follow, but with
some differences:

1. The monitor will place a red, a green, and a blue token to p1, p3, and p8 respectively, with initial
ToRR=[1,1,1].

2. Transition t1 will have priority over t3 and t6 until the DSQ request is fulfilled. Then, a token with
infinite time stamp will be placed to p1.

3. Transition t3 will have priority over t6 until the Q2 request is fulfilled. Then, a token with infinite
time stamp will be placed to p3.

4. Transition t6 will have the lowset priority. When the Q3 request is fulfilled, a token with infinite
time stamp will be placed to p8.

Finally, if a job requires extra resources, it makes the request and the monitor treats it as a new
token, so that it keeps a fair policy in the way the tasks take turns for requesting resources.

4.2. Experiments with CPNRA

For our simulation environment, we used an Intel Core i7-8559U Processor system, with clock
speed at 2.7 GHz, equipped with four cores and eight threads/core, for a total of 32 logical processors.
In our simulations, each user is entitled of up to 4 CPUs, 4 GB RAM and 40 GB of system disk. We also
set that one CPU is one CPU unit, 1 GB RAM is one memory unit and 10 GB disk is one disk unit. Thus,
the demand (2 CPUs, 1 GB RAM and 10 GB disk) is translated into (2,1,1) and it is CPU-intensive and
the demand (1 CPU, 3 GB RAM, and 20 GB disk) is translated into (1,3,2) and it is memory-intensive.
In our experimental results, we used our CPN based simulator to study the effect of the job input rate
control and the system utilization. Finally, we studied the average response time, that is the average
time between a transition activation and the actual firing (triggering) that causes a system change.
This particular study will be supported by some more mathematical background, which we give in
this section for clarity and convenience.

4.2.1. Job Input Rate Control

To study the effect of job generation rate, we worked as follows:

1. We generated a random number of users, from 50–2000, and a set of requests for each user. We run
two sets of simulations. In every experiment, we used different total amounts of each available
resource (CPU, Memory, Disk), so that in some cases the resources available were enough to satisfy
all user requests, while in other cases, they were not. For example, in one experiment, the total
number of resources was (1 K, 1024, 10,000), that is (1024 CPUs, 1 Tb memory, 100 Tb disk) while
for next this number could be double or half and so forth.

2. We set the value of µ equal to 30 jobs per second, thus, the system’s input rate was at most λ = 30
jobs per second.

3. We kept tracing the system’s state at regular time intervals h and recorded the percentage
of resources consumed between consecutive time intervals, thus, we computed the bi values.
Every time a job i leaves a queue, the system’s state changes. For example, if a job leaves the
DSQ, it means that it has consumed F units of the dominant resource, changing the system’s state
from K = K1, K2, . . . Km to K′ = K1 − F, K2, . . . Km. On the other hand, when multiple jobs enters
a queue, the acceptable job input may be regulated accordingly, based on the model presented in
Section 2.

After running sets of simulations for different user numbers (from 50 to 2000), we averaged the
percentage of resources consumed during all the recorded time intervals, for different recorded values
of λi. The results are shown in Figure 7a,b. For Figure 7a, the total numbers of resources were (1 K,
1024, 10,000) and the number of users was between 50 and 1000, while for Figure 5b, the total number
of resources were double (2K, 2048, 20,000) and the number of users was from 1000 to 2000. When the

Appl. Sci. 2020, 10, 5644 18 of 23

number of users was relatively small (50–200), an average value of input rate λi = 15 was enough
to exhaust almost 100% of the resources during the successive intervals. A larger number of users
increases the competition for resources, thus the fair allocation policy is obliged to deliver far less
resources than the requested to each job. As the job service time was considered to be constant, a larger
input rate of λi = 26.5 jobs/s (among all queues) was necessary to exhaust the resources requested
over the time intervals when the number of users was 1000. This is more obvious in the second set of
experiments, where we doubled the number of users and the available resources. Notice that in order
to exhaust the resources, average input rates close to the maximum were required (see Figure 7b),
from 28–30 jobs/s.

0 3 6 9 12 15 18 21 24 27
0

0.2

0.4

0.6

0.8

 1.0

500-1000
200-500

30

Average number

of users

50 -200

% of

consumed

resources

Average task generation rate λ

0 3 6 9 12 15 18 21 24 27
0

0.2

0.4

0.6

0.8

 1.0

1500-2000
1200-1500

30

of users

1000 -1200

% of

consumed

resources

Average task generation rate λ

(b)(a)

(CPU, Memory, Disk) =

(1K, 1024, 10,000)

(CPU, Memory, Disk) =

(1K, 1024, 10,000)
Average number

Figure 7. The DSQ core.

4.2.2. Resource Utilization

Next, we used our simulator to study the utilization of each resource independently. The requests
were generated in such a manner, that the CPU was dominant for 40% of the cases, the memory was
dominant for 30% of the cases and the disk was dominant in 30% of the cases and the number of users
ranged between 50 and 1000. In all the simulation sets, the duration period was 360 s. As the time
proceeded and resources were being consumed, fewer jobs were generated and the overall resource
utilization decreased, but it never dropped below 90%. As can be seen in Figure 8, the CPU utilization
begins dropping after about 160 s while the utilization of memory and disk seems to be dropping
in a smoother way and at a later time (200 and 240 s, respectively). The peaks seen in this graph
represent the cases where some more resources become available and return to the pool, either due to
the allocation policy or due to returns from finished jobs that return the resources back to the pool.

In our last set of experiments, we averaged the utilization of all the resources under our policy
using a small number of users (up to 20), to fairly compare the utilization provided by our policy to
the utilization provided by a new algorithm DRBF [33], where the authors reported their results for
only a few users. The results are displayed in Figure 9. Again, our simulator verified that our resource
allocation strategy outperforms the DRBF strategy and achieves utilization of about 98–99% while the
changes are very small (notice that the line is rather smooth). The DRBF policy achieves a utilization
of about 94–98%, with some peaks where the utilization drops off in a non-smooth fashion. Also,
note that our strategy was found to achieve a utilization of over 90%, even for larger number of users,
which is not proven for the DRBF scheme.

Appl. Sci. 2020, 10, 5644 19 of 23

0 40 80 120 160 200 240 280

0.90

0.92

0.94

0.96

0.98

 1.0

CPU Dominant

Memory Dominant

Disk Dominant

Resource

utilization

Time (in secs)

320 360

Figure 8. Individual resource utilization over a period of one hour.

0 40 80 120 160 200 240 280

0.90

0.92

0.94

0.96

0.98

 1.0

DRBF

Our scheme

Resource

utilization

Time (in secs)

320 360

Figure 9. Average resource utilization with small number of users (up to 20).

4.2.3. Average Response Time

In Reference [36], it has been proven that the mean number of jobs N̂ in a service center i is equal
to the product of the mean arrival rate λi by the average response time (also known as turnaround
time), t̂i. The average response time is the time a jobs spends inside the service center:

N̂i = λi t̂i =
pi

1− pi
. (8)

Now, the average response time is

t̂i =
N̂i
λi

=
pi

λi(1− pi)
. (9)

Now, using Equation (3), we replace λi with pi × µ to get:

t̂i =
pi

(pi × µ)(1− pi)

=
1

µ(1− pi)
. (10)

Since pi is the resource server utilization, Equation (10) states that as the resource utilization increases,
the average response time also increases.

Appl. Sci. 2020, 10, 5644 20 of 23

In Figure 10, we present some average total response times for a simulation that was executed
for 3600 s (1 h) and a number of 300 users, which request all 3 resources. The reason we “forced” the
user jobs to request all the resources available was to have “fair” comparisons for the average response
times computed for different system utilization values. For example, if some jobs requested only the
dominant resource, their average response time would be far less compared to the corresponding time
for jobs that request all the resources. As in the other simulation sets, we set the value of µ for every
queue equal to 30 jobs per second, thus, the system’s input rate was at most λ = 30. Similar results can
be obtained even if we use different µ values for the queues. In this set, we use a constant value of µ

for simplicity. The total response time t̂Total is the sum of the response times computed per queue:

t̂Total =
1
µ

3

∑
i=1

1
1− pi

+ ∆, (11)

where ∆ is the time elapsed between the job arrival in the system and the sum of the times that it
is ready to be served (that is, the corresponding transition is enabled) and the actual service time
(transition firing and application of the relative changes in the system’s status). In Figure 10 we show
these t̂i values for system utilization 0.1 and for a system utilization that approaches 1. When the
system utilization was 0.1, we had a mean arrival rate of λ = 3 jobs/s and the mean response time
for all the user jobs (or tokens in the model) was found to be 0.04 s. When the system utilization
approached 1, we had a mean arrival rate of λ ≈ 30 jobs/s and the mean response time for all the user
jobs (or tokens in the model) was found to be 10 s. For a utilization equal to zero, from Equation (10)
we can see that the minimum average response time for all the jobs approaches 0.03 s. Thus, when the
system utilization is 0.1, then, the tokens remain in the system 0.04/0.03 = 1.33 times the minimum
value of t̂, while when the system utilization approaches 1, the tokens remain in the system about
10/0.03 = 333 times the minimum value of t̂.

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,99

0,01

0,1

1

10

Dominant queue Q1

Q2

Q3

Resource center utilization pi

A
v

er
ag

e
re

sp
o

n
se

 t
im

e
ti

t1= - Arrival Time in System + Activation Time (at Q1) + Service Time (Q1)

t2=Activation Time (at Q2) + Service time (Q2)

t3=Activation Time (at Q3) + Service time (Q3)

t1

t2

t3

t2

t1

t3

Figure 10. Average response times.

Appl. Sci. 2020, 10, 5644 21 of 23

5. Conclusions and Future Work

In this paper, we extended our previous work [1], where we presented a fair resource allocation
policy for cloud computing, which is includes a job generation (or flow) control, to determine the
maximum number of affordable user tasks at a time period. Specifically, we produced a deadlock-free
CPN model, which formed the basis for the development of our new CPNRA resource allocation
simulator for clouds. The simulator is simple and its basic components are the cores, one for each
queue system. Also, it presents no deadlocks and implements in a straightforward way our scheme.
Another advantage is that it can easily be expanded for large number of resources, due to its
hierarchical structure. Then, we used the simulator to analyze the system’s performance and we
verified that the flow control can help to improve the resource utilization.

In the future, we plan to add more features to our simulator, so that it can be used to execute more
different schemes. This will be a challenge, as many different resource allocator strategies can be found
in the literature. This will help us with to produce comparable results for larger networks. Moreover,
we need to improve the proposed allocation policy, so that it addresses other important issues like
the cost of each resource allocated and the execution time. One idea we currently work on in order to
reduce the total execution time is to pipeline the computations, but careful design is required to avoid
delays between the pipeline [37] stages. Also, the introduction of a CPU/GPU combination would be
of high interest, especially for large scale networks [38]. In this case, the model, and thus the simulator,
has to be equiped with cores which are able to model the pipeline operations. Finally, we need to
expand this simulator, so that, apart from resource allocation, it will include job scheduling strategies.
This is specifically important, as the number of big data applications running over the cloud is getting
larger and larger.

Author Contributions: Conceptualization, S.S., methodology, S.S.; software, S.S., S.K., and S.A.; validation, S.S.
and S.K.; formal analysis, S.S., and S.A.; investigation, S.A., S.K., and S.A., resources, S.K., S.A., writing—original
draft preparation, S.S., S.K., S.A.; writing—review and editing, S.S., S.K.; funding acquisition, S.A. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the University of Western Macedonia, Faculty of Education, Department
of Early Childhood Education.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
PN Petri Nets
CPN Colored Petri Nets
CPNRA Colored Petri Net-based Resource Allocation
ToRR Type_of_Resources_Requested

References

1. Souravlas, S.; Katsavounis, S. Scheduling Fair Resource Allocation Policies for Cloud Computing through
Flow Control. Electronics 2019, 8, 1348. [CrossRef]

2. Lu, Z.; Takashige, S.; Sugita, Y.; Morimura, T.; Kudo, Y. An analysis and comparison of cloud data center
energy-efficient resource management technology. Int. J. Serv. Comput. 2014, 23, 32–51. [CrossRef]

3. Jennings, B.; Stadler, R. Resource management in clouds: Survey and research challenges. J. Netw. Syst. Manag.
2015, 2, 567–619. [CrossRef]

4. Tantalaki, N.; Souravlas, S.; Roumeliotis, M.; Katsavounis, S. Pipeline-Based Linear Scheduling of Big Data
Streams in the Cloud. IEEE Access 2020, 8, 117182–117202. [CrossRef]

5. Tantalaki, N.; Souravlas, S.; Roumeliotis, M.; Katsavounis, S. Linear Scheduling of Big Data Streams on
Multiprocessor Sets in the Cloud. In Proceedings of the 2019 IEEE/WIC/ACM International Conference on
Web Intelligence (WI), Thessaloniki, Greece, 14–17 October 2019; pp. 107–115.

http://dx.doi.org/10.3390/electronics8111348
http://dx.doi.org/10.29268/stsc.2014.2.4.3
http://dx.doi.org/10.1007/s10922-014-9307-7
http://dx.doi.org/10.1109/ACCESS.2020.3004612

Appl. Sci. 2020, 10, 5644 22 of 23

6. Alam, A.B.; Zulkernine, M.; Haque, A. A reliability-based resource allocation approach for cloud computing.
In Proceedings of the 2017 7th IEEE International Symposium on Cloud and Service Computing,
Kanazawa, Japan, 22–25 November 2017; pp. 249–252.

7. Kumar, N.; Saxena, S. A preference-based resource allocation in cloud computing systems. In Procedings
of the 3rd International Conference on Recent Trends in Computing 2015 (ICRTC-2015), Delhi, India,
12–13 March 2015; pp. 104–111.

8. Lin, W.; Wang, J.Z.; Liang, C.; Qi, D. A threshold-based dynamic resource allocation scheme for cloud
computing. Procedia Eng. 2011, 23, 695–703. [CrossRef]

9. Tran, T.T.; Padmanabhan, M.; Zhang, P.Y.; Li, H.; Down, D.G.; Beck, J.C. Multi-stage resource-aware
scheduling for data centers with heterogeneous servers. J. Sched. 2015, 21, 251–267. [CrossRef]

10. Hu, Y.; Wong, J.; Iszlai, G.; Litoiu, M. Resource provisioning for cloud computing. In Proceedings of the
2009 Conference of the Center for Advanced Studies on Collaborative Research, Toronto, ON, Canada,
2–5 November 2009; pp. 101–111.

11. Khanna, A. RAS: A novel approach for dynamic resource allocation. In Proceedings of the 1st International
Conference on Next Generation Computing Technologies (NGCT-2015), Dehradun, India, 4–5 September
2015; pp. 25–29.

12. Saraswathia, A.T.; Kalaashrib, Y.R.A.; Padmavathi, S. Dynamic resource allocation scheme in cloud
computing. Procedia Comput. Sci. 2015, 47, 30–36. [CrossRef]

13. Xiao, Z.; Song, W.; Chen, Q. Dynamic resource allocation using virtual machines for cloud computing
environment. IEEE Trans. Parallel Distrib. Syst. 2013, 24, 1107–1117. [CrossRef]

14. Mansouri, N.; Ghafari, R.; Zade, B.M.H. Mohammad Hasani Zade: Cloud computing simulators:
A comprehensive review. Simul. Model. Pract. Theory 2020. [CrossRef]

15. Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.; Buyya, R. CloudSim: A toolkit for modeling
and simulation of cloud computing environments and evaluation of resource provisioning algorithm.
Softw. Pract. Exp. 2011, 41, 23–50. [CrossRef]

16. Garg, S.K.; Buyya, R. Networkcloudsim: Modelling parallel applications in cloud simulations. In Proceedings
of the 4th IEEE International Conference on Utility and Cloud Computing, Victoria, NSW, Australia,
5–8 December 2011; pp. 105–113.

17. Wickremasinghe, B.; Calheiros, R.N.; Buyya, R. CloudAnalyst: A CloudSim-based visual modeller for
analysing cloud computing environments and applications. In Proceedings of the 24th IEEE International
Conference on Advanced Information Networking, Perth, WA, Australia, 20–23 April 2010; pp. 446–452.

18. Calheiros, R.N.; Netto, M.A.; De Rose, C.A.; Buyya, R. EMUSIM: An integrated emulation and simulation
environment for modeling, evaluation, and validation of performance of cloud computing applications.
Softw. Pract. Exp. 2013, 43, 595–612. [CrossRef]

19. Fittkau, F.; Frey, S.; Hasselbring, W. CDOSim: Simulating cloud deployment options for software
migration support. In Proceedings of the IEEE 6th International Workshop on the Maintenance and Evolution
of Service-Oriented and Cloud-Based Systems, Trnto, Italy, 24 September 2012; pp. 37–46.

20. Li, X.; Jiang, X.; Huang, P.; Ye, K. DartCSim: An enhanced user-friendly cloud simulation system based
on CloudSim with better performance. In Proceedings of the IEEE 2nd International Conference on Cloud
Computing and Intelligence Systems, Hangzhou, China, 30 October–1 November 2012; pp. 392–396.

21. Sqalli, M.H.; Al-Saeedi, M.; Binbeshr, F.; Siddiqui, M. UCloud: A simulated Hybrid Cloud for a
university environment. In Proceedings of the IEEE 1st International Conference on Cloud Networking,
Paris, France, 28–30 November 2012; pp. 170–172.

22. Kecskemeti, G. DISSECT-CF: A simulator to foster energy-aware scheduling in infrastructure clouds.
Simul. Model. Pract. Theory 2015, 58, 188–218. [CrossRef]

23. Tian, W.; Zhao, Y.; Xu, M.; Zhong, Y.; Sun, X. A toolkit for modeling and simulation of real-time virtual
machine allocation in a cloud data center. IEEE Trans. Autom. Sci. Eng. 2015, 12, 153–161. [CrossRef]

24. Fernández-Cerero, D.; Fernández-Montes, A.; Jakobik, A.; Kołodziej, J.; Toro, M. FSCORE: Simulator for
cloud optimization of resources and energy consumption. Simul. Model. Pract. Theory 2018, 82, 160–173.
[CrossRef]

25. Gupta, S.K.; Gilbert, R.R.; Banerjee, A.; Abbasi, Z.; Mukherjee, T.; Varsamopoulos, G. GDCSim: A tool for
analyzing green data center design and resource management techniques. In Proceedings of the International
Green Computing Conference and Workshops, Orlando, FL, USA, 25–28 July 2011; pp. 1–8.

http://dx.doi.org/10.1016/j.proeng.2011.11.2568
http://dx.doi.org/10.1007/s10951-017-0537-x
http://dx.doi.org/10.1016/j.procs.2015.03.180
http://dx.doi.org/10.1109/TPDS.2012.283
http://dx.doi.org/10.1016/j.simpat.2020.102144
http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1002/spe.2124
http://dx.doi.org/10.1016/j.simpat.2015.05.009
http://dx.doi.org/10.1109/TASE.2013.2266338
http://dx.doi.org/10.1016/j.simpat.2018.01.004

Appl. Sci. 2020, 10, 5644 23 of 23

26. Kristensen, L.M.; Jørgensen, J.B.; Jensen, K. Application of Coloured Petri Nets in System Development.
In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003; pp. 626–685.

27. Peterson, J.L. Petri nets. ACM Surv. 1997, 9, 223–252. [CrossRef]
28. Souravlas, S.I.; Roumeliotis, M. Petri Net Based Modeling and Simulation of Pipelined Block-Cyclic

Broadcasts. In Proceedings of the 15th IASTED International Conference on Applied Simulation and
Modelling-ASM, Rhodos, Greece, 26–28 June 2006; pp. 157–162.

29. Shojafar, M.; Pooranian, Z.; Abawajy, J.H.; Meybodi, M.R. Abawajy, and Mohammad Reza Meybodi:
An Efficient Scheduling Method for Grid Systems Based on a Hierarchical Stochastic Petri Net.
J. Comput. Sci. Eng. 2013, 7, 44–52. [CrossRef]

30. Shojafar, M.; Pooranian, Z.; Meybodi, M.R.; Singhal, M. ALATO: An Efficient Intelligent Algorithm for Time
Optimization in an Economic Grid Based on Adaptive Stochastic Petri Net. J. Intell. Manuf. 2013, 26, 641–658.
[CrossRef]

31. Barzegar, S.; Davoudpour, M.; Meybodi, M.R.; Sadeghian, A.; Tirandazian, M. Traffic Signal Control with
Adaptive Fuzzy Coloured Petri Net Based on Learning Automata. In Procedings of the 2010 Annual Meeting
of the North American Fuzzy Information Processing Society, Toronto, ON, Canada, 12–14 July 2010; pp. 1–8.

32. Ghodsi, A.; Zaharia, M.; Hindman, B.; Konwinski, A.; Shenker, S.; Stoica, I. Dominant resource fairness:
Fair allocation of multiple resource types. NSDI 2011, 11, 323–336.

33. Zhao, L.; Du, M.; Chen, L. A new multi-resource allocation mechanism: A tradeoff between fairness and
efficiency in cloud computing. China Commun. 2018, 24, 57–77. [CrossRef]

34. Souravlas, S. ProMo: A Probabilistic Model for Dynamic Load-Balanced Scheduling of Data Flows in
Cloud Systems. Electronics 2019, 8, 990. [CrossRef]

35. Souravlas, S.I.; Roumeliotis, M. Petri net modeling and simulation of pipelined redistributions for a
deadlock-free system. Cogent Eng. 2015, 2, 1057427. [CrossRef]

36. Little, J.D.C. A Proof for the Queuing Formula L = λW. Oper. Res. 1961, 9, 383–387. [CrossRef]
37. Souravlas, S.; Roumeliotis, M. A pipeline technique for dynamic data transfer on a multiprocessor grid.

Int. J. Parallel Programm. 2004, 32, 361–388. [CrossRef]
38. Souravlas, S.; Sifaleras, A.; Katsavounis, S. Hybrid CPU-GPU Community Detection in Weighted Networks.

IEEE Access 2020, 8, 57527–57551. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/356698.356702
http://dx.doi.org/10.5626/JCSE.2013.7.1.44
http://dx.doi.org/10.1007/s10845-013-0824-0
http://dx.doi.org/10.1109/CC.2018.8331991
http://dx.doi.org/10.3390/electronics8090990
http://dx.doi.org/10.1080/23311916.2015.1057427
http://dx.doi.org/10.1287/opre.9.3.383
http://dx.doi.org/10.1023/B:IJPP.0000038068.80639.52
http://dx.doi.org/10.1109/ACCESS.2020.2982227
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Resource Allocation Model
	The CPN Model
	The CPN Formalism
	Data Extensions
	Timing Extensions
	Guarding Expressions

	The CPN Model
	The Core of Queue Members of a Queue System
	Token Structure
	The Guard Expressions
	Transition Firing Time
	Deadlock Analysis

	 Complexity Analysis: Execution Timing of the CPN Model

	Simulation Results and Discussion
	CPNRA Simulator Execution
	Experiments with CPNRA
	Job Input Rate Control
	Resource Utilization
	 Average Response Time

	Conclusions and Future Work
	References

