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Abstract: In this paper, we propose a generalisation of the Method of Successive Averages (MSA) for
solving traffic assignment problems. The generalisation consists in proposing a different step sequence
within the general MSA framework to reduce computing times. The proposed step sequence is based
on the modification of the classic 1/k sequence for improving the convergence speed of the algorithm.
The reduction in computing times is useful if the assignment problems are subroutines of algorithms
for solving Network Design Problems—such algorithms require estimation of the equilibrium traffic
flows at each iteration, hence, many thousands of times for real-scale cases. The proposed algorithm
is tested with different parameter values and compared with the classic MSA algorithm on a small
and on two real-scale networks. A test inside a Network Design Problem is also reported. Numerical
results show that the proposed algorithm outperforms the classic MSA with reductions in computing
times, reaching up to 79%. Finally, the theoretical properties are studied for stating the convergence
of the proposed algorithm.

Keywords: traffic assignment; MSA algorithm; fixed-point problems; network design

1. Introduction

The equilibrium traffic assignment problem has been widely studied since the early 1950s [1],
both with respect to theoretical properties and proposing solution methods and algorithms. The Method
of Successive Averages (MSA) is one of the most commonly used algorithms for solving the problem;
it was proposed by References [2,3], and its convergence was stated by Reference [4]. The MSA
proposed by References [2,3] operates on link flows (MSA-FA). On the other hand, Reference [5]
proposed the MSA-CA which operates on link costs; while, Reference [6] devised the MSA-ACO based
on Ant Colony Optimisation. Solution algorithms in the case of elastic demand were proposed and
analysed by References [5,7,8].

The MSA algorithm at each iteration, k, averages the traffic flows calculated by stochastic
uncongested network loading, with weight 1/k, with the results of the previous iteration,
with weight (k–1)/k. Alternative step sequences (or weighting methods) were proposed, among others,
by References [9–11]. More recently, Reference [12] proposed three revised versions of the traditional
MSA method, namely: (i) Restarting MSA (RMSA), where the iteration counter is re-initialised after a
specific number of iterations; (ii) Double RMSA (R2MSA), where the iteration counter is re-initialised to
a variable value; (iii) Weighted MSA (WMSA), based on the self-regulated averaging method proposed
by Reference [13] for solving the stochastic user equilibrium problem. The above-mentioned MSA
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schemes have been adopted by Reference [14] for solving a stochastic frequency-based assignment
considering pre-trip/en-route path choice behaviour. Similarly, Reference [15], which extended the
approach proposed in Reference [16], compared different MSA-based resolution techniques in the
case of a stochastic assignment with multi-vehicle types (i.e., connected, automated, and autonomous
vehicles, as well as traditional ones).

A generalisation of the averaging procedure, not limited to the traffic assignment problem,
was provided by Reference [17]; while, Reference [18] proposed a refresh memory method for solving
the combined assignment-control problem.

With the computing capabilities of modern PCs, the solution time of the traffic assignment
problem is fairly short, also for large-size networks, if the problem has to be solved only once or a
few times. Network Design Problems (NDPs) are usually solved by adopting procedures that use
assignment algorithms as subroutines (bi-level approach); some reviews on NDPs can be found in
References [19–22]. Indeed, for evaluating the objective function corresponding to a solution to the NDP,
it is necessary to estimate traffic flows on the network. In this case, in most approaches, the assignment
problem has to be solved a number of times equal to the solutions examined by the NDP algorithm;
hence, several thousands of times in real-scale applications. Therefore, reducing the computing time of
assignment algorithms is an important target since it may lead to a significant reduction in computing
times for solving NDPs. In this context, Reference [23] proposed an MSA-based algorithm acting on
the traffic flows adopted in the initialisation phases for reducing calculation times of NDPs when the
topology of the network configuration remains unchanged.

With respect to the previous literature, in this paper we propose a new method that adopts a
variant to the MSA algorithm: It is based on a parameter that can be set for each network to minimise
the computing time. Moreover, in order to show its promising performance, it has been compared to
other methods proposed in the literature. Finally, after the setting phase, the algorithm can be included
within the NDP algorithm, minimising the whole computing time for solving the problem.

The remaining part of the paper is organised as follows: Section 2 introduces the model formulation;
the proposed algorithm is analysed in Section 3, and Section 4 summarises the numerical results;
Section 5 concludes the paper and outlines the research prospects. In Appendix A the convergence
of the proposed algorithm is stated, and Appendix B presents a comparison with some MSA-based
algorithms is provide. In Appendices C and D, the Network Design Problem and the algorithm used
for its solution in the numerical test are illustrated.

2. Model Formulation

The traffic assignment problem consists of estimating traffic flows on a transportation network.
In order to solve this problem, we need three elements: the travel demand (summarised in an
Origin-Destination matrix), the transportation supply (modelled with a supply model) and the user
path choice behaviour (modelled with a path choice model). Several models can be used for solving
the problem depending on the transportation system (road network, mass-transit network, multimodal
transportation network, etc.), the assumptions on the travel demand (fixed or variable), the approach
to studying the interactions between demand and supply (user equilibrium or dynamic approach),
the dependence or otherwise of link costs on flows (uncongested or congested), the assumption on the
route choice model (deterministic or stochastic), and so forth. An in-depth analysis of traffic assignment
models can be found elsewhere (see, for instance, Reference [24]). Even if the proposed algorithm
can also be used to solve other assignment problems, in this paper, we consider the congested road
network, fixed demand, user equilibrium approach and stochastic route choice model.

On a road network, the link flow vector, f , once the transport demand has been fixed, depends on
link costs, and hence, on the link cost vector, c:

f =ϕ(c) (1)
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with:
ϕ(c) = A P(ATc) d

where A is the link-path incidence matrix, whose components, alp, are equal to 1 if link l belongs to
path p and 0 otherwise; P is the path choice probability matrix, with a column for each od pair and a
row for each path p; the generic element, Pp,od, of this matrix represents the probability that a user will
use path p from origin o to destination d (if path p does not connect the od pair, Pp,od is equal to 0); d is
the demand vector, whose components are the demand values dod for each od pair.

The generic cost, cl, of link l can be assumed dependent only on the flow on the same link, fl.
Formally, we can write:

c = χ(f ) (2)

Substituting (2) in (1), we obtain the following:

f =ϕ(χ(f )) (3)

which relates flows, f , and costs, c. Equation (3) is a fixed-point problem; the solution is represented by
the equilibrium traffic flows, f*, which is congruent with the corresponding link costs, c = χ(f*).

Formally, we can write:

f* =ϕ(χ(f*)) or f* = A P(AT χ(f*)) d (4)

In this case, it may be stated, under some assumptions, that the solution to the fixed-point
problem (4) exists and is unique [5] and that the MSA algorithm converges to it [4].

3. Solution Algorithm

In order to solve the fixed-point problems (4) we propose an algorithm based on the MSA
general framework. The first formulation of MSA [2] generates a succession of feasible link flow
vectors, f k, starting from an initial solution (usually f 0 = 0). At each iteration k, the solution f k is
generated by combining traffic flows obtained by a Stochastic Uncongested Network (SUN) assignment,
f SUN

k =ϕSUN(ck), with the previous solution, f k−1

At each iteration k, in order to generate the solution f k, the results of the SUN assignment, f SUN
k,

are averaged, with weight 1/k, with the results of the previous iteration, f k−1, with weight (k − 1)/k:

f k = ((k − 1)/k) · f k−1 + (1/k) · f SUN
k (5)

that is:
f k = f k−1 + 1/k (f SUN

k
− f k−1) (6)

Since the algorithm works directly on flows, it is also known as MSA-FA (Flow Averaging).
Algorithm 1 reports the code of the traditional MSA-FA algorithm, where ε represents the stop threshold.

It is worth noting that the averages applied to the flows belonging to successive iterations have
to be considered an algorithmic trick and should not be confused with the weights that simulate the
learning process in the dynamic assignment models. Indeed, the MSA algorithms apply to stationary
models, while the simulation of learning processes (comparison between expected and experienced
performances) are typical of day-to-day dynamics models [24,25].

Since, as shown in Appendix B, most of the MSA-based algorithms proposed in the literature
for solving the traffic assignment problem are based on a modification of the weight formulation (i.e.,
term 1/k in the traditional MSA algorithm), our proposal consists in providing a further variant of the
MSA-FA algorithm substituting the term k in Equation (5) or (6) with the following function:

ξ(k) = 1 + (k-1) · η (7)
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where η is a parameter between 0 and 1; for η = 1 we obtain the classic MSA algorithm, and for η = 0
we obtain that f k = f SUN

k (in this case the algorithm does not consider at each iteration the results of
the previous ones). This method tends to muffle the weight given to f k−1 (with η < 1) with respect to
the corresponding weight given with the classic MSA algorithm. The weights of f k−1, w−1, and f SUN

k,
wSUN, at each iteration k become:

w−1 = ((k-1) · η)/(1 + (k-1) · η) (8)

wSUN = 1/(1 + (k-1) · η) (9)

Algorithm 1 Traditional MSA-FA algorithm

1: k = 0

2: f0 = 0

3: do while |f SUN
k
− f k−1|/f k−1

≥ ε

4: k = k + 1
5: ck = χ(f k−1)
6: f SUN

k =ϕSUN(ck)
7: f k = f k−1 + 1/k · (f SUN

k
− f k−1)

8: loop

9: f * = f k

10: end

In Algorithm 2 the code of the generalised MSA-FA algorithm (i.e., GMSA-FA) is reported. Figure 1
reports the values at each iteration k of wSUN (equal to 1 − w−1) for values of ηbetween 1 (classic MSA)
and 0 and for the first 100 iterations.

Algorithm 2 Generalised MSA-FA algorithm

1: k = 0

2: f0 = 0

3: do while |f SUN
k
− f k−1|/f k−1

≥ ε

4: k = k + 1
5: ck = χ(f k−1)
6: f SUN

k =ϕSUN(ck)
7: f k = f k−1 + 1/ξ(k) · (f SUN

k
− f k−1)

8: loop

9: f * = f k

10: end

It can be noted that the weight of f SUN
k decreases less rapidly for lower values of parameter η.

Convergence of the proposed algorithm is stated in Appendix A, where the algorithm is shown to
converge for each value of η > 0.



Appl. Sci. 2020, 10, 5698 5 of 23

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 21 

learning process in the dynamic assignment models. Indeed, the MSA algorithms apply to stationary 
models, while the simulation of learning processes (comparison between expected and experienced 
performances) are typical of day-to-day dynamics models [24,25]. 

Since, as shown in Appendix B, most of the MSA-based algorithms proposed in the literature for 
solving the traffic assignment problem are based on a modification of the weight formulation (i.e., 
term 1/k in the traditional MSA algorithm), our proposal consists in providing a further variant of the 
MSA-FA algorithm substituting the term k in Equation (5) or (6) with the following function: 𝜉(k) = 1 + (k–1) · η (7)

where η is a parameter between 0 and 1; for η = 1 we obtain the classic MSA algorithm, and for η = 0 
we obtain that f k = fSUNk (in this case the algorithm does not consider at each iteration the results of 
the previous ones). This method tends to muffle the weight given to f k−1 (with η < 1) with respect to 
the corresponding weight given with the classic MSA algorithm. The weights of f k−1, w−1, and fSUNk, 
wSUN, at each iteration k become: 

w−1 = ((k–1) · η)/(1 + (k–1) · η) (8)

wSUN = 1/(1 + (k–1) · η) (9)

In Algorithm 2 the code of the generalised MSA-FA algorithm (i.e., GMSA-FA) is reported. 
Figure 1 reports the values at each iteration k of wSUN (equal to 1 − w−1) for values of η between 1 
(classic MSA) and 0 and for the first 100 iterations. 

Algorithm 2 Generalised MSA-FA algorithm 
1: k = 0 
2: f0 = 0 
3: do while |fSUNk − f k−1|/f k−1 ≥ ε 
4: k = k +1 
5: ck = χ(f k−1) 
6: fSUNk = φSUN(ck) 
7: f k = f k−1 + 1/𝜉(k) · (fSUNk − f k−1) 
8: loop 
9: f * = f k 
10: end 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 10 20 30 40 50 60 70 80 90 100

Weight WSUN

Iterations

η = 1

η = 0.9

η = 0.8

η = 0.7

η = 0.6

η = 0.5

η = 0.4

η = 0.3

η = 0.2

η = 0.1

η = 0.05

η = 0.01

η = 0.005

η = 0.001

η = 0

η = 0

η = 1 (classic MSA)

variation in η parameter

Figure 1. Values of weights wSUN.

4. Numerical Results

Numerical tests were conducted on a small test network and on two real-scale networks (an
urban and a rural network). Each network, by means of the graph theory, was represented as a set of
links and nodes. The links represent the phases of the trips (as for instance, the roads) and the nodes
represent the transitions between two consecutive links. Among the nodes, it is possible to identify the
centroid nodes that represent the origin and destination of each trip.

4.1. Small Network

The small network consisted of 16 oriented links (see Figure 2), whose link performances (i.e.,
the link travel times) were expressed by means of a BPR function [26], that is:

tl = (Ll/v0,l) · (1 + α · (fl/Capl)β) (10)

where tl is the travel time associated to link l; Ll is the length of link l; vo,l is the free-flow speed
associated to link l; fl is the link flow associated to link l; Capl is the capacity of link l; α and β are
function parameters. The main features of the considered network are summarised in Table 1.
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Table 1. Features of the small network.

Link Length (km) Capacity (veh/h) Free-Flow Speed (km/h) BPR Param. α BPR Param. β

1–5 2 1800 60 2.0 4.0
5–1 2 1800 60 2.0 4.0
1–3 2 1800 50 2.0 4.0
3–1 2 1800 50 2.0 4.0
3–6 3 3600 90 0.2 4.0
6–3 3 3600 90 0.2 4.0
5–6 2 3600 80 0.2 4.0
6–5 2 3600 80 0.2 4.0
5–2 4 1800 50 2.0 4.0
2–5 4 1800 50 2.0 4.0
6–2 5 1800 70 2.0 4.0
2–6 5 1800 70 2.0 4.0
6–4 5 3600 90 0.2 4.0
4–6 5 3600 90 0.2 4.0
4–2 3 1800 60 2.0 4.0
2–4 3 1800 60 2.0 4.0

Bold links have higher capacity and free-flow speed with respect to the others. We assume that
nodes 1, 2, 3 and 4 are also the origins and destinations of the trips, according to the OD vector, d,
reported in Table 2. In the tests, we adopted Multinomial Logit as the stochastic path choice model and
assumed that the cost of each link was equal to the running time expressed in minutes with parameter
θ equal to 0.5 (coefficient of variation about 0.2). We implemented the proposed algorithm in Visual
Basic. We tested the proposed algorithm with the following values of parameter η: 1 (classic MSA),
0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01, 0. For each value, we tested the OD vector reported
in Table 2 multiplied by the following coefficients: 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0. The use of
different OD vectors, as well as different multipliers, is to analyse the algorithm’s performance for
different congestion levels. Indeed, the vectors thus obtained produce average saturation degrees
(flow/capacity ratio) on the network between 0.249 and 0.838, as reported in Table 3. The convergence
threshold was assumed to be equal to 1% for all tests.

Table 2. Origin-destination vector of the small network.

Origin Destination OD Flow (veh/h)

1 2 1700
2 1 600
1 3 500
3 1 700
1 4 650
4 1 100
2 3 800
3 2 450
2 4 750
4 2 450
3 4 1250
4 3 200

Table 3. Average saturation degrees on the small network.

Matrix 0.6 d 0.8 d 1.0 d 1.2 d 1.4 d 1.6 d 1.8 d 2.0 d

Av. Sat.
Degree 0.249 0.332 0.415 0.499 0.583 0.668 0.753 0.838
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In all cases, the proposed algorithm was able to reduce the iterations for the convergence with
some values of η lower than 1 (MSA). It can be noted that, upon reducing the value of η, the number of
iterations starts to decrease until a minimum value is reached. The number of iterations then begins
to increase until the case of η = 0 when, according to also to the theoretical properties examined in
Appendix A, the algorithm may not converge.

In Table 4, the number of iterations required for convergence for all cases is reported (the algorithm
was stopped in any event when the iterations reached 999); minimum values are written in bold. In the
same table, the percentage variations in terms of iteration number are reported. However, it is worth
noting that all variants of the algorithm provide the same results. The difference among them is only
the number of iterations necessary to achieve the convergence condition. In Figure 3, the results of
Table 4 are summarised.
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Table 4. Results on the small network.

Iterations Needed for Convergence

Matrix 0.6 d 0.8 d 1.0 d 1.2 d 1.4 d 1.6 d 1.8 d 2.0 d

η = 1(MSA) 7 8 45 96 168 287 422 582
η = 0.9 6 7 40 80 147 239 350 478
η = 0.8 6 8 34 71 126 201 291 397
η = 0.7 5 11 30 63 107 170 247 329
η = 0.6 5 14 29 54 92 143 209 279
η = 0.5 4 15 27 48 81 125 183 243
η= 0.4 4 13 23 43 73 112 163 237
η = 0.3 5 11 24 46 81 133 208 310
η = 0.2 6 15 34 66 117 194 305 457
η = 0.1 8 26 61 123 222 374 591 892
η = 0.05 12 45 112 233 429 727 >999 >999
η = 0.01 31 182 504 >999 >999 >999 >999 >999
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Table 4. Cont.

Percentage Variations with Respect to MSA

Matrix 0.6 d 0.8 d 1.0 d 1.2 d 1.4 d 1.6 d 1.8 d 2.0 d

η = 1(MSA) - - - - - - - -
η = 0.9 −14% −13% −11% −17% −13% −17% −17% −18%
η = 0.8 −14% 0% −24% −26% −25% −30% −31% −32%
η = 0.7 −29% 38% −33% −34% −36% −41% −41% −43%
η = 0.6 −29% 75% −36% −44% −45% −50% −50% −52%
η = 0.5 −43% 88% −40% −50% −52% −56% −57% −58%
η = 0.4 −43% 63% −49% −55% −57% −61% −61% −59%
η = 0.3 −29% 38% −47% −52% −52% −54% −51% −47%
η = 0.2 −14% 88% −24% −31% −30% −32% −28% −21%
η = 0.1 14% 225% 36% 28% 32% 30% 40% 53%
η = 0.05 71% 463% 149% 143% 155% 153% - -
η = 0.01 343% 2175% 1020% - - - - -

In bold are reported the best results.

Note that the reduction in the number of iterations, and hence, in computing time, provided by
the proposed algorithm can be very significant for medium-high congested networks, i.e., up to −61%
compared with the traditional version of the MSA algorithm.

4.2. Real-Scale Urban Network

The real-scale urban test network is the network of Benevento, a town in the south of Italy with
about 61,000 inhabitants. The network, as represented in Figure 4, has 1577 oriented links, comprising
about 216 km of roads, 678 nodes and 80 centroids (66 internal and 14 external). The peak-hour OD
matrix was made available by studies carried out while drawing up the Urban Traffic Plan. The route
choice model is Multinomial Logit with an implicit enumeration of paths according to the algorithm
proposed in Reference [27].

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Urban real-scale network.
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In order to test the proposed algorithms under several network congestion levels, over the
available OD matrix, seven other matrices were generated, multiplying all cells of the OD matrix by
the following factors: 0.6, 0.8, 1.2, 1.4, 1.6, 1.8, and 2.0. The corresponding average saturation degrees
are summarised in Table 5.

Table 5. Average saturation degrees on the urban real-scale network.

Matrix 0.6 d 0.8 d 1.0 d 1.2 d 1.4 d 1.6 d 1.8 d 2.0 d

Av. Sat. Degree 0.246 0.324 0.400 0.472 0.545 0.618 0.691 0.764

On this network, we tested the proposed algorithm with the same values of parameter η as those
adopted for the small test network; we tested the algorithm with two different values of the coefficient
of variation (standard deviation to mean ratio), Cv, equal to 0.10 and 0.05. Moreover, in these cases,
the proposed algorithm was able to reduce the iterations for convergence with some values of η lower
than 1 (MSA). In this case, the best performances were obtained with values between 0.4 and 0.6 (see
Table 6) for Cv = 0.10 and between 0.3 and 0.6 (see Table 7) for Cv = 0.05; the reductions in the number
of iterations reached −76% (Cv = 0.10) and −79% (Cv = 0.05) with respect to the traditional version of
the MSA algorithm. In Figures 5 and 6, the results of Tables 6 and 7 are illustrated. Moreover, in this
case, the utility of the proposed algorithm is more significant for medium-high demand levels.

Table 6. Results on the urban real-scale network (Cv = 0.10).

Iterations Needed for Convergence

Matrix 0.6 d 0.8 d 1.0 d 1.2 d 1.4 d 1.6 d 1.8 d 2.0 d

η = 1(MSA) 5 8 17 32 50 52 55 61
η = 0.9 5 8 14 25 36 38 39 43
η = 0.8 5 8 12 19 27 28 28 32
η = 0.7 5 8 10 15 20 20 21 29
η = 0.6 5 7 9 12 15 15 20 26
η = 0.5 4 7 9 11 12 15 21 25
η = 0.4 4 7 10 11 12 18 24 27
η = 0.3 4 8 11 13 15 21 30 33
η = 0.2 4 10 14 17 20 28 41 45
η = 0.1 4 14 22 28 33 49 74 79
η = 0.05 4 22 37 48 58 88 136 146
η = 0.01 4 77 147 196 244 385 619 664

Percentage Variations with Respect to MSA

Matrix 0.6 d 0.8 d 1.0 d 1.2 d 1.4 d 1.6 d 1.8 d 2.0 d

η = 1(MSA) - - - - - - - -
η = 0.9 0% 0% −18% −22% −28% −27% −29% −30%
η = 0.8 0% 0% −29% −41% −46% −46% −49% −48%
η = 0.7 0% 0% −41% −53% −60% −62% −62% −52%
η = 0.6 0% −13% −47% −63% −70% −71% −64% −57%
η = 0.5 −20% −13% −47% −66% −76% −71% −62% −59%
η = 0.4 −20% −13% −41% −66% −76% −65% −56% −56%
η = 0.3 −20% 0% −35% −59% −70% −60% −45% −46%
η = 0.2 −20% 25% −18% −47% −60% −46% −25% −26%
η = 0.1 −20% 75% 29% −13% −34% −6% 35% 30%
η = 0.05 −20% 175% 118% 50% 16% 69% 147% 139%
η = 0.01 0% 0% −18% −22% −28% −27% −29% −30%

In bold are reported the best results.
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Table 7. Results on the urban real-scale network (Cv = 0.05).

Iterations Needed for Convergence

Matrix 0.6 d 0.8 d 1.0 d 1.2 d 1.4 d 1.6 d 1.8 d 2.0 d

η = 1(MSA) 5 8 20 47 49 49 53 59
η = 0.9 5 7 16 34 36 36 38 42
η = 0.8 4 7 13 25 26 26 34 38
η = 0.7 4 6 10 18 19 21 35 39
η = 0.6 4 6 9 14 14 20 31 34
η = 0.5 3 6 8 10 14 24 34 36
η = 0.4 3 5 9 10 16 27 40 43
η = 0.3 3 6 11 10 20 34 50 54
η = 0.2 3 8 14 12 27 46 71 76
η = 0.1 3 11 23 26 49 84 132 141
η = 0.05 4 17 39 45 90 158 251 269
η = 0.01 4 54 160 186 402 724 >999 >999

Percentage Variations with Respect to MSA

Matrix 0.6 d 0.8 d 1.0 d 1.2 d 1.4 d 1.6 d 1.8 d 2.0 d

η = 1(MSA) - - - - - - - -
η = 0.9 0% −13% −20% −28% −27% −27% −28% −29%
η = 0.8 −20% −13% −35% −47% −47% −47% −36% −36%
η = 0.7 −20% −25% −50% −62% −61% −57% −34% −34%
η = 0.6 −20% −25% −55% −70% −71% −59% −42% −42%
η = 0.5 −40% −25% −60% −79% −71% −51% −36% −39%
η = 0.4 −40% −38% −55% −79% −67% −45% −25% −27%
η = 0.3 −40% −25% −45% −79% −59% −31% −6% −8%
η = 0.2 −40% 0% −30% −74% −45% −6% 34% 29%
η = 0.1 −40% 38% 15% −45% 0% 71% 149% 139%
η = 0.05 −20% 113% 95% −4% 84% 222% 374% 356%
η = 0.01 −20% 575% 700% 296% 720% 1378% - -

In bold are reported the best results.
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Figure 5. Results on the urban real-scale network (Cv = 0.10).
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4.3. Real-Scale Rural Network

The real-scale rural test network is the regional road network of Campania, an Italian Region
with more than 5.8 million inhabitants. The network, as represented in Figure 7, has 764 road links,
representing about 8700 km of roads, 262 road nodes and 91 centroids.

We tested the proposed approach considering the OD matrix in the morning peak-hour, where
the total trips are 165,328 veh/h; we also tested values of demand between 0.6 and 2.0 times the actual
value, producing an average saturation degree between 0.4 and 1.25 (see Table 8). Moreover, in this
case, we use the Multinomial Logit route choice model with the implicit enumeration of paths [27].

Table 8. Average saturation degrees on the rural real-scale network.

Matrix 0.6 d 0.8 d 1.0 d 1.2 d 1.4 d 1.6 d 1.8 d 2.0 d

Av. Sat. Degree 0.40 0.53 0.65 0.77 0.90 1.01 1.13 1.25

On this network, we tested the proposed algorithm with the same values of parameter η previously
adopted, assuming a coefficient of variation equal to 0.3. Moreover, in these cases, the proposed
algorithm was able to reduce the iterations for convergence with some values of η lower than 1 (MSA).
The best performances were obtained with values between 0.3 and 0.6 (see Table 9); the reductions in
the number of iterations reached −69% with respect to the traditional version of the MSA algorithm.
In Figure 8, the results of Table 9 are illustrated.

Table 9. Results on the rural real-scale network.

Iterations Needed for Convergence

Matrix 0.6 d 0.8 d 1.0 d 1.2 d 1.4 d 1.6 d 1.8 d 2.0 d

η = 1(MSA) 19 26 26 29 36 54 63 70
η = 0.9 16 32 20 22 27 38 46 51
η = 0.8 14 24 18 17 21 28 33 39
η = 0.7 12 19 13 14 17 23 26 30
η = 0.6 10 15 11 11 14 18 21 26
η = 0.5 9 12 10 11 14 17 22 26
η = 0.4 8 11 11 13 16 21 27 35
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Table 9. Cont.

Iterations Needed for Convergence

Matrix 0.6 d 0.8 d 1.0 d 1.2 d 1.4 d 1.6 d 1.8 d 2.0 d

η = 0.3 7 10 12 15 19 26 34 44
η = 0.2 9 12 16 21 27 36 48 62
η = 0.1 13 19 26 35 47 63 87 115
η = 0.05 19 31 45 61 84 117 163 218
η = 0.01 60 114 >999 258 366 525 747 >999

Percentage Variations with Respect to MSA

Matrix 0.6 d 0.8 d 1.0 d 1.2 d 1.4 d 1.6 d 1.8 d 2.0 d

η = 1(MSA) - - - - - - - -
η = 0.9 −16% 23% −23% −24% −25% −30% −27% −27%
η = 0.8 −26% −8% −31% −41% −42% −48% −48% −44%
η = 0.7 −37% −27% −50% −52% −53% −57% −59% −57%
η = 0.6 −47% −42% −58% −62% −61% −67% −67% −63%
η = 0.5 −53% −54% −62% −62% −61% −69% −65% −63%
η = 0.4 −58% −58% −58% −55% −56% −61% −57% −50%
η = 0.3 −63% −62% −54% −48% −47% −52% −46% −37%
η = 0.2 −53% −54% −38% −28% −25% −33% −24% −11%
η = 0.1 −32% −27% 0% 21% 31% 17% 38% 64%
η = 0.05 0% 19% 73% 110% 133% 117% 159% 211%
η = 0.01 216% 338% - 790% 917% 872% 1086% -

In bold are reported the best results.

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Rural real-scale network.
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4.4. Application to a Network Design Problem

The proposed algorithm was tested inside a procedure for solving Network Design Problem
(NDP) on the rural real-scale network described in Section 4.3. In particular, we considered a network
capacity expansion problem [28] where there were limited resources for improving the performances
of a rural road network. In this problem, the current configuration of the road network is known,
and no other roads can be added to it; instead, each existing road can be improved, increasing its
capacity and free-flow speed. The decision variables of this problem are binary, yi = 0/1, where yi = 1
indicates that road i is improved in the solution, while yi = 0 indicates that road i remains in the starting
configuration. The details of NDP and of its model formulation are reported in Appendix C.

In order to compare the results obtained with the proposed muffled algorithm and the classic
MSA, we tested the Neighbourhood Search Algorithm (NSA) with steepest descent method; it was
used, for instance, in References [28,29]. A brief description of the algorithm is reported in Appendix D.

The tests were conducted under the actual demand (1.0 d), and therefore, assuming the parameter
η = 0.5 in the muffled proposed algorithm, since it is the best value for this demand level (see Table 9).
The results of the comparison between MSA and muffled algorithm are summarised in Table 10;
note that the computing time saved is about 44% (over 2.5 h). The different numbers of examined
neighbourhoods and objective function values are only due to the convergence test; indeed, even if the
convergence test is the same, the flows generated at each iteration of the algorithms can be slightly
different and may influence the final solution. In Figure 9, the comparison among MSA and muffled
algorithm is reported in terms of computing times and objective function values. These results
underline the utility of the proposed algorithm inside Network Design Problem solution procedures;
indeed, we have to consider also that several meta-heuristic algorithms use NSAs as subroutines
(Scatter Search, Tabu Search, etc.), and then, the computing time saved should be multiplied by the
number of NSAs performed for reaching the final solution.
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Table 10. Comparison between algorithms.

MSA (η = 1.0) Muffled (η = 0.5) % Difference

Examined solutions 6019 6223 3.39%
Examined neighbourhoods 59 61 3.39%

SNLs 72,893 39,103 −46.36%
Computing time [h] 5.83 3.25 −44.18%

Starting objective function value [€] 38,010,674,174 37,971,126,906
Final objective function value [€] 29,363,169,248 29,305,075,507

% variation of objective function value −22.75% −22.82%
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Figure 9. Comparison between algorithms in terms of computing times vs. objective function values.

5. Conclusions and Research Prospects

The results obtained on the small and on the real-scale networks show that the proposed algorithm
is able to reduce the number of iterations for convergence, and hence, computing times compared with
the classic MSA approach; in particular, the reductions arrive in percentage up to –79% with respect to
the classic MSA for the best value of the parameter. On all networks the results are similar, showing
that the benefits of the proposed algorithm are significant for medium-high congested demand levels
(average saturation degrees over about 0.4); less significant, but not negligible, are the benefits for
lower demand levels.

In all tests, the best values of parameter η lie between 0.3 and 0.6. An important characteristic of
the proposed algorithm is that there is a parameter that can be opportunely chosen, so to optimise
the performances before starting with network design procedure; moreover, examining Figures 3, 5,
6 and 8 it is evident that, especially for medium-high levels of demand, a minimum can be found.
In our test, we adopt a 0.1 step, but the parameter η can assume any value between 1 (MSA) and 0
(0 excluded), and therefore, other values can be tested in order to find the one that minimises the
computing times.

The reduction in computing times can be not important if the assignment procedure is performed
only once or a few times: with current computing capabilities, the savings are lower than a minute on
the real-scale network. By contrast, if the assignment is a subroutine of the Network Design Problem,
that requires the calculation of the equilibrium traffic flows many thousands of times, the reduction in
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computing time of an assignment is transferred to the computing time of the network design algorithm,
allowing as much as several days to be saved in the calculation. In our test on the rural road network,
the proposed algorithm is able to save about 44% of computing time, equivalent to about 2.5 h for a
single NSA procedure.

Future research will focus on testing other real-scale networks, testing the algorithm on multimodal
networks and under the assumption of elastic demand and proposing a similar algorithm for solving
the combined assignment-control problem. Moreover, testing the proposed algorithm within other
real-scale network design procedures will be the subject of future studies.
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Appendix A. Theoretical Properties

There are three theoretical properties of a mathematical problem and its solution algorithm:
existence, uniqueness and convergence. The first two properties are related to the mathematical
problem and consist in proving that there is at least one solution (existence), and there is at most
one solution (uniqueness). The combination of these two properties implies that the solution to the
problem exists and is unique.

Once the existence and uniqueness of the problem are stated, it is necessary to adopt or develop
suitable solution algorithms that are able to provide the numerical solution to the problem. Hence,
it is necessary to state theoretically the convergence (i.e., the ability to provide the solution in a finite
number of iterations) of the proposed algorithms.

The conditions ensuring the existence and the uniqueness of traffic assignment problem can
be found in Reference [5]. As for convergence, the same paper proposed an extension of Blum’s
theorem [30] where it was shown that a convergent solution algorithm for solving the fixed-point
problem of a function y = λ(x) which satisfies some suitable conditions could be formulated by the
following recursive equation:

xk+1 = xk + µk
(
λ
(
xk

)
− xk

)
with xk

∈ Sx (A1)

If the sequence
{
µk

}
k>0 satisfies the following conditions:∑

k>0

µk = +∞ (A2)

∑
k>0

(µk)
2 = M < +∞ (A3)

In particular, the above-mentioned suitable conditions are:

1. x ∈ Sx and y ∈ Sx where Sx is a non-empty, compact and convex set;

2. a unique solution to the fixed-point problem x* = λ
(
x*

)
;

3. a function ϕ(x) ≥ 0 ∀x ∈ Sx where ϕ(x) is continuous with first ∇ϕ(x) and second ∇2ϕ(x)
derivative continuous;
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4. ∇
2ϕ(x)T[λ(x) − x] < 0 ∀x ∈ Sx , x < S~

x and ∇2ϕ
(~
x
)T[
λ
(~
x
)
−

~
x
]
= 0 ∀

~
x ∈ S~

x where S~
x ⊆ Sx and

x*
∈ S~

x;

5.
∣∣∣∣ϕ(x) −ϕ(

x*
)∣∣∣∣ > 0 ∀x ∈ Sx , x < S~

x and
∣∣∣∣ϕ(~

x
)
−ϕ

(
x*

)∣∣∣∣ = 0 ∀
~
x ∈ S~

x;

6. xT
∇

2ϕ(x′)x = M < +∞ ∀x , x′ ∈ Sx.

In Reference [5], it is showed that if the sequence
{
µk

}
k>0 satisfies the condition:

µk ∈ [0 , 1] (A4)

then the elements of the sequence described by Equation (A1) belong to set Sx, which is convex.
Moreover, by fixing ∇ϕ(x) = c(x) − c∗, with x = f and c∗ = c

(
f*
)
, all Conditions (1)–(6) are satisfied.

Hence, the convergence proof is only related to checking Conditions (A2)–(A4).
Finally, Reference [5] showed that the traditional approach of MSA, i.e., ξ(k) = k, satisfies

(A2)–(A4) conditions, since: ∑
k>0

1
ξ(k)

=
∑
k>0

1
k
= +∞ (A5)

∑
k>0

(
1
ξ(k)

)2

=
∑
k>0

1
k2 =

π
6
< +∞ (A6)

In the case of the proposed generalised function, i.e., ξ(k) = 1 + ((k − 1) · η), condition (A4) is
satisfied, and since for k→ +∞ we obtain ξ(k) ∼ η · k, it is possible to show that:∑

k>0

1
ξ(k)

∼

∑
k>0

1
η · k

=
1
η
·

∑
k>0

1
k
= +∞ (A7)

∑
k>0

(
1
ξ(k)

)2

∼

∑
k>0

1

(η · k)2 =
1
η2 ·

∑
k>0

1
k2 =

1
η2 ·

π
6
< +∞ (A8)

i.e., all convergence conditions are satisfied for the proposed algorithm for each value of η > 0.

Appendix B. Algorithm Performance Comparison

Most of the MSA-based algorithms proposed in the literature for solving the traffic assignment
problem are based on a modification of the weight formulation (i.e., term 1/k in the traditional MSA
algorithm) by adopting a 1/ξ(k) function, that is:

f k = f k−1 + 1/ξ(k) (f SUN
k
− f k−1) (A9)

The differences in formulation among these algorithms are related to the adopted ξ(k) function.
Indeed, the traditional MSA algorithm [2,3] assumes:

ξ(k) = k (A10)

Likewise, our proposal described in Section 3 adopts:

ξ(k) = 1 + (k-1) · η (A11)

Obviously, in the case of η = 1, our proposal provides the traditional MSA formulation, that is
(A11) degenerates into (A10).

In order to provide some comparisons in terms of convergence speed of the proposed algorithm
with some other MSA-based algorithms, we have considered:
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• the Refresh Memory method (RM), also indicated as Restarting MSA method (RMSA), proposed by
Reference [18] and applied by Reference [12], whose ξ(k) function may be formulated as follows:

ξ(k) = 1, 2, . . . , ζ, 2, 3, . . . , 2 ζ, 4, 5, . . . , 4 ζ, . . . , x, x+1, . . . , x ζ, . . . (A12)

with:
x integer x = 1, 2, 4, 8, . . . (A13)

where we have assumed ζ = 10 (method acronym ‘RM 10′) as proposed by Reference [18];
• the Polyak method (POL) [9], whose ξ(k) function is formulated as follows:

ξ(k) = k2/3 (A14)

• the Nagurney and Zhang method (NAZ) [10], whose ξ(k) function is formulated as follows:

ξ(k) = 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, . . . , x, x, . . . , x (x times), . . . (A15)

• the Bar-Gera and Boyce method (BGB) [11], whose ξ(k) function is formulated as follows:

ξ(k) = ζ (A16)

where we have assumed ζ equal to 5 (method acronym ‘BGB 5’) and equal to 10 (method acronym
‘BGB 10’)

Our proposal has been classified as muffled method by adopting the acronym ‘M η’, so that ‘M 1’
represents the traditional MSA formulation.

The comparison among algorithm formulations has been implemented in the case of the urban
network of Benevento (described in Section 4.2) by adopting a Cv value equal to 0.05. Numerical
results are shown in Table A1 and Figure A1.

Numerical results have shown that the proposed approach (i.e., the muffled method), at least
in the case under consideration (the urban network of Benevento with a Cv coefficient equal to
0.05) almost always provides the best results, i.e., it requires the minimum number of iterations to
reach convergence.
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It is worth noting that, although the convergence can be demonstrated theoretically (as already
shown in Appendix A), a theoretical proof cannot be performed in the case of the convergence
speed property which represents an empirical element to be verified by means of numerous and
appropriate tests.

However, although it is not possible to generalise the optimal performance of the proposed
methodology in an absolute way, the results obtained give hope that at least the proposed method
can be included among the ones providing optimal performances. Obviously, the confirmation of
this statement can only be obtained through a large number of tests in the case of different networks
both in terms of context (urban vs. rural), network dimension (urban, provincial or regional network),
demand and/or congestion levels.

Table A1. Comparison among MSA-based algorithms.

Iterations Needed for Convergence

Matrix 0.6 d 0.8 d 1.0 d 1.2 d 1.4 d 1.6 d 1.8 d 2.0 d

M 1 (MSA) 5 8 20 47 49 49 53 59
M 0.9 5 7 16 34 36 36 38 42
M 0.8 4 7 13 25 26 26 34 38
M 0.7 4 6 10 18 19 21 35 39
M 0.6 4 6 9 14 14 20 31 34
M 0.5 3 6 8 10 14 24 34 36
M 0.4 3 5 9 10 16 27 40 43
M 0.3 3 6 11 10 20 34 50 54
M 0.2 3 8 14 12 27 46 71 76
M 0.1 3 11 23 26 49 84 132 141
M 0.05 4 17 39 45 90 158 251 269
M 0.01 4 54 160 186 402 724 >999 >999
RM 10 5 8 12 15 15 25 45 46
POL 4 6 8 11 15 32 57 62
NAZ 4 5 9 12 19 45 96 108
BGB 5 9 11 15 20 20 >999 >999 >999

BGB 10 15 21 30 39 39 39 >999 >999

Percentage Variations with Respect to MSA

Matrix 0.6 d 0.8 d 1.0 d 1.2 d 1.4 d 1.6 d 1.8 d 2.0 d

M 1 (MSA) - - - - - - - -
M 0.9 0% −13% −20% −28% −27% −27% −28% −29%
M 0.8 −20% −13% −35% −47% −47% −47% −36% −36%
M 0.7 −20% −25% −50% −62% −61% −57% −34% −34%
M 0.6 −20% −25% −55% −70% −71% −59% −42% −42%
M 0.5 −40% −25% −60% −79% −71% −51% −36% −39%
M 0.4 −40% −38% −55% −79% −67% −45% −25% −27%
M 0.3 −40% −25% −45% −79% −59% −31% −6% −8%
M 0.2 −40% 0% −30% −74% −45% −6% 34% 29%
M 0.1 −40% 38% 15% −45% 0% 71% 149% 139%

M 0.05 −20% 113% 95% −4% 84% 222% 374% 356%
M 0.01 −20% 575% 700% 296% 720% 1378% - -
RM 10 0% 0% −40% −68% −69% −49% −15% −22%
POL −20% −25% −60% −77% −69% −35% 8% 5%
NAZ −20% −38% −55% −74% −61% −8% 81% 83%
BGB 5 80% 38% −25% −57% −59% - - -
BGB 10 200% 163% 50% −17% −20% −20% - -

In bold are reported the best results.
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Appendix C. Network Design Problem (NDP)

The NDP tackled in the test reported in Section 4.4 is a network capacity expansion problem where
there are limited resources for improving the performances of a rural road network. The problem is
the same tackled in Reference [28], slightly simplified, considering only the demand in the morning
peak-hour. The problem is formulated as follows:

yopt = Arg y min (β1 · (Σl cl(y, fl*(y)) · fl*(y)) + β2 · (Σi yi cri) + β3 · (Σl (Reckm · Σl fl*(y) · Ll))) (A17)

subject to:
yi = 0/1 ∀ i ∈ I (A18)

Σi yi cri ≤ B (A19)

f*(y) = A P(ATχ(f*, y)) d (A20)

where yi is the decision variable related to road i; y is the decision variable vector; β1, β2 and β3 are the
weights of the objective function terms; cl(.) is the cost function on road link l; fl* is the equilibrium flow
on road link l; f * is the equilibrium flow vector; cri represents the cost of the improving intervention on
road i (on an hourly basis, assuming a useful life of the intervention of 20 years); Reckm is the average
environmental cost produced by a car travelling 1 km (€/km); Ll is the length of road link l; B is the
total available budget (on an hourly basis); A is the link-path incidence matrix; P is the path choice
probability matrix; χ( ) is the cost function vector; d is the demand vector.

The objective function to be minimised, shown in (A17), is given by the sum of user costs,
improvement costs and environmental costs in terms of air pollution produced by cars. Other objective
function formulation could also have been used (for instance, which would have considered the impact
of the design solutions on road accident phenomena or on the severity of accidents) which would
obviously have produced different optimal solutions. But the purpose of this application is to show the
benefits of adopting the proposed assignment algorithm in providing the same solution as traditional
algorithms, but in significantly shorter calculation times, rather than providing an analysis of the best
objective function to be used in network design problems.

However, the decision variable yi is equal to 1 if the road i is improved, 0 otherwise. Equation (A18)
identifies the constraint on the binary nature of decision variables, Equation (A19) is the budget
constraint and Equation (A20) represents the equilibrium assignment constraint.

In order to apply the proposed model to test network described in Section 4.3, we have to
identify the roads, i, that can be improved, and for each of them, the corresponding improvement
costs. Each road, i, is composed by several road links, l. In this test network, we identify 102 roads,
and therefore, 102 decision variables, yi. In Figure A2, the 102 roads are reported. In Table A2 the
possible interventions are summarised, in terms of performance improvements and costs.
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Table A2. Intervention table.

Road

Current
Configuration Improved Configuration

Road

Current
Configuration Improved Configuration

v0 Cap v0 Cap cri (€/h) v0 Cap v0 Cap cri (€/h)

1 70 4000 110 4500 27.12 52 50 2000 70 4000 7.10
2 70 4000 110 4500 30.14 53 50 2000 70 4000 4.66
3 70 4000 110 4500 36.40 54 50 2000 70 4000 3.62
4 70 4000 110 4500 12.29 55 50 2000 70 4000 9.51
5 70 4000 110 4500 31.54 56 50 2000 70 4000 4.53
6 70 4000 110 4500 30.63 57 50 2000 70 4000 3.35
7 70 4000 110 4500 68.12 58 50 2000 70 4000 11.13
8 70 4000 110 4500 51.39 59 50 2000 70 4000 6.52
9 70 4000 110 4500 28.21 60 50 2000 70 4000 11.95
10 70 4000 110 4500 37.67 61 50 2000 70 4000 8.32
11 70 4000 110 4500 35.93 62 50 2000 70 4000 3.58
12 70 4000 110 4500 21.26 63 50 2000 70 4000 4.94
13 70 4000 110 4500 19.99 64 50 2000 70 4000 0.28
14 70 4000 110 4500 13.14 65 50 2000 70 4000 2.85
15 70 4000 110 4500 20.73 66 50 2000 70 4000 4.59
16 70 4000 110 4500 16.52 67 50 2000 70 4000 11.33
17 70 4000 110 4500 4.73 68 50 2000 70 4000 7.47
18 70 4000 110 4500 12.07 69 50 2000 70 4000 3.09
19 70 4000 110 4500 27.58 70 50 2000 70 4000 1.40
20 70 4000 110 4500 14.78 71 50 2000 70 4000 5.40
21 50 2000 70 4000 10.48 72 50 2000 70 4000 5.67
22 50 2000 70 4000 5.75 73 50 2000 70 4000 2.65
23 50 2000 70 4000 11.24 74 50 2000 70 4000 0.42
24 50 2000 70 4000 15.75 75 50 2000 70 4000 2.50
25 50 2000 70 4000 14.69 76 50 2000 70 4000 0.73
26 50 2000 70 4000 1.14 77 50 2000 70 4000 6.04
27 40 1500 50 2000 5.79 78 50 2000 70 4000 0.80
28 40 1500 50 2000 6.23 79 50 2000 70 4000 2.82
29 50 2000 70 4000 10.15 80 50 2000 70 4000 3.12
30 50 2000 70 4000 4.53 81 50 2000 70 4000 2.60
31 50 2000 70 4000 16.17 82 50 2000 70 4000 5.69
32 50 2000 70 4000 4.03 83 50 2000 70 4000 11.31
33 40 1500 50 2000 4.16 84 50 2000 70 4000 11.98
34 40 1500 50 2000 3.39 85 50 2000 70 4000 2.03
35 40 1500 50 2000 8.49 86 50 2000 70 4000 3.24
36 40 1500 50 2000 2.22 87 50 2000 70 4000 1.33
37 40 1500 50 2000 4.15 88 50 2000 70 4000 6.07
38 50 2000 70 4000 7.59 89 50 2000 70 4000 2.72
39 50 2000 70 4000 7.86 90 50 2000 70 4000 4.18
40 50 2000 70 4000 9.18 91 50 2000 70 4000 4.51
41 50 2000 70 4000 3.91 92 50 2000 70 4000 2.33
42 50 2000 70 4000 10.89 93 50 2000 70 4000 8.02
43 50 2000 70 4000 3.93 94 50 2000 70 4000 7.16
44 50 2000 70 4000 6.18 95 50 2000 70 4000 7.07
45 50 2000 70 4000 9.17 96 50 2000 70 4000 1.29
46 50 2000 70 4000 1.23 97 50 2000 70 4000 1.25
47 50 2000 70 4000 7.69 98 50 2000 70 4000 10.69
48 50 2000 70 4000 8.38 99 50 2000 70 4000 1.66
49 50 2000 70 4000 6.12 100 50 2000 70 4000 10.51
50 50 2000 70 4000 5.33 101 50 2000 70 4000 9.63
51 50 2000 70 4000 8.13 102 50 2000 70 4000 2.63
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Figure A2. Identification of decision variables.

Appendix D. Network Design Solution Algorithms

In order to solve the NDP described in Appendix C, we have used a steepest descent
Neighbourhood Search Algorithm (NSA); this algorithm was previously used for solving NDPs
as a subroutine of meta-heuristic algorithms, among others, by References [28,29].

Given a solution, y, the set of solutions that can be obtained from solution y changing only one
value of a variable yi, from 0 to 1 or vice versa, is called neighbourhood of y, N(y); note that other
kinds of neighbourhoods can be defined, depending on the kind of problem and on the dimension of
neighbourhood (for instance, changing more than one variable per time). The NSA, starting from a
solution, yk, generates the following solution, yk+1, so that:

yk+1
∈ N(yk) (A21)

and, with the steepest descent approach,

z(yk+1) = Min {z(y); ∀ y ∈ N(yk)} (A22)

where z(y) formally represents the objective function. The procedure then generates, at each iteration,
a solution better than the previous one, choosing, among all solutions belonging to the neighbourhood,
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the one with the best objective function value. The procedure ends when solution yk is a local optimum,
that is when:

z(yk) ≤ z(y) ∀ y∈ N(yk) (A23)

This algorithm is able to find a local optimum, and therefore, is often used inside meta-heuristic
algorithms that need local search subroutines. In the test reported in this paper, we use the NSA only
one time, starting from the current solution: y0 = 0.
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