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Abstract: The nonlinearity of a mechanical oscillator may lead to the generation of the macroscopic
quantum states, which are useful for precision measurement. Measuring the nonlinearity of
a mechanical oscillator becomes important in order to effectively assess its performance. In this paper,
we study the electromagnetically induced transparency (EIT) in an optomechanical system with
a cubic nonlinear movable mirror. In the presence of the nonlinearity of the movable mirror, we show
that the intensity of the output probe field exhibits an asymmetric shape with the transparency peak
shifted to a frequency lower than the cavity resonance frequency. This shift can be used to measure
the nonlinearity strength of the movable mirror. We also show that the mechanical nonlinearity gives
rise to the enhancement of the intensity of the second-order upper sideband generation.

Keywords: an optomechanical system; a cubic nonlinear movable mirror; electromagnetically
induced transparency; the second-order upper sideband generation

1. Introduction

In recent years, cavity optomechanics, exploring the interaction between optical and mechanical
modes via radiation pressure [1], has received considerable attention owing to its possible applications
in ultrasensitive force measurement [2] and quantum information processing [3]. It is an outstanding
challenge in cooling a macroscopic mechanical oscillator of an optomechanical system to its quantum
ground state. With the rapid development of the experimental technologies, it is now possible to reduce
the average phonon occupancy number of the macroscopic mechanical oscillator to below unity [4,5].
This enables us to observe numerous quantum optical phenomena in the optomechanical system, such as
the mechanical squeezed state below zeropoint fluctuations [6–8], entanglement between optical and
mechanical resonators [9,10], non-classical correlations between single photons and phonons [11],
normal mode splitting [12,13], and electromagnetically induced transparency (EIT) [14–17]. The EIT
has been theoretically studied in the Fabry–Perot-type optomechanical system [14], and has been
displayed experimentally in different optomechanical systems, including a toroid microresonator [15],
an optomechanical crystal nanocavities [16], and a silica microsphere [17]. The EIT plays an important
role in realizing slow light and fast light [18], storage and retrieval of an optical pulse [19], and light
switching [20]. The review of the EIT in the optomechanical systems can be seen in [21,22]. Up to date,
almost all of the EIT studies in the optomechanical systems have been done with linear mechanical
oscillators since the intrinsic nonlinearity of a mechanical oscillator is generally weak, and it can be
ignored. However, the recent works have shown that the strong nonlinearity of the mechanical
oscillator can be achieved by geometrical and material effects of the mechanical oscillators [23],
electrostatic coupling mechanism [23], strong driving [24], and coupling a linear mechanical oscillator
to an auxiliary system [25]. Hence, a nonlinear mechanical oscillator has been recently introduced into
the optomechanical system. It has been analyzed that a quartic nonlinear mechanical oscillator which
includes a quartic term in its potential energy in the optomechnical system can be prepared in a Fock
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state [26] and a squeezed state [27]. Moreover, a cubic nonlinear mechanical oscillator which includes
a cubic term in its potential energy in the optomechnical system can also be prepared in a squeezed
state, which is shown in Appendix B in Ref. [27].

On the other hand, when an intense coherent coupling field with frequency ωc and a weak
coherent probe field with frequency ωp are combined in an optomechanical system, many sidebands
at frequencies ωc ± nδ (n is an integer representing the sideband order and δ = ωp − ωc) are
created in the output field due to the nonlinear optomechanical coupling. It has been shown that
the second-order upper sideband generation in the output field is much weaker than the input
probe field [28]. The enhancement of the second-order upper sideband generation has potential
applications in precise measurements of electrical charges [29] and the effective mass of the mechanical
resonator [30]. It has been shown that the enhancement of the second-order upper sideband generation
in the optomechanical system can be achieved by using Coulomb-interaction [29], a degenerate
parametric amplifier [30], a nonlinear Kerr medium [31], and two-level atoms [32].

As mentioned above, the nonlinearity of a mechanical oscillator can be used to prepare
nonclassical mechanical states [26,27]. In order to better assess its performance, different methods
have been proposed to measure the nonlinearity strength of the mechanical oscillator [33,34]. It has
been proposed that the nonlinearity strength of a mechanical oscillator in an optomechanical system
can be estimated by measuring the phase shift of a cavity field after interacting with a nonlinear
mechanical oscillator based on a pulsed scheme [34]. In this work, we study the optical response of the
optomechanical system with a cubic anharmonic oscillator to a weak coherent probe field. We find
that the nonlinearity of the mechanical oscillator gives rise to the asymmetric line shape in the output
field at the probe frequency, and the transparency peak is shifted. The shift of the transparency peak
can be employed to measure the mechanical nonlinearity strength. We also find that the second-order
upper sideband generation is enhanced by the mechanical nonlinearity.

The paper is divided as follows. In Section 2, we present the model, give the equations of the
expectation values for the system operators, and obtain the expressions for the output probe field and
the second-order upper sideband generation. In Section 3, we discuss the effect of the nonlinearity
strength of the mechanical oscillator on the intensity of the output probe field. In Section 4, we analyze
how the mechanical nonlinearity modifies the intensity of the second-order upper sideband generation.
We briefly summarize the results in Section 5.

2. Model

We consider a Fabry–Perot optical cavity with a moving-end mirror, as depicted in Figure 1.
The movable mirror is a cubic anharmonic oscillator. An intense coupling field with frequency ωc and
a weak probe field with frequency ωp are sent into the optical cavity through the left fixed mirror.

,  
,  
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Figure 1. Schematic diagram of the studied system. A coupling field with frequency ωc and a probe
field with frequency ωp enter the cavity through the left fixed mirror. The right movable mirror is
a cubic anharmonic oscillator.

We assume that a single-mode cavity field having a resonant frequency of ω0 is generated
inside the optical cavity. The moving mirror with effective mass m and resonance frequency ωm

makes one-dimensional motion along the cavity axis due to the radiation pressure force exerted by the
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photons within the cavity. By moving to a rotating frame at the coupling frequency ωc, the Hamiltonian
of the system reads

H = h̄(ω0 −ωc)c†c + h̄gc†cq + Hm + ih̄
√

ηκεc(c† − c) + ih̄
√

ηκ(εpc†e−iδt − ε∗pceiδt),

Hm = 1
2

(
p2

m + mω2
mq2
)
+ 1

3 αq3,
(1)

where c and c† denote the annihilation and creation operators of the cavity mode, satisfying the
commutation relation [c, c†] = 1, g is the optomechanical coupling constant, q and p are the
displacement and momentum operators of the movable mirror, obeying the relation [q, p] = ih̄.
The δ = ωp −ωc is the probe tuning from the coupling field. The amplitudes εc and εp of the coupling
and probe fields are determined by their respective powers ℘c and ℘p by εc =

√
℘c/(h̄ωc) and

εp =
√
℘p/(h̄ωp). The η is the cavity coupling parameter defined by η = κe/(κ0 + κe) = κe/κ,

where κ is the total cavity decay rate, κ0 and κe are the photon loss rates due to the intrinsic dissipation
of the cavity and the transmission of the left fixed mirror, respectively. In Equation (1), the first term
gives the energy of the cavity field, the second term describes the coupling between the optical cavity
field and the movable mirror, the third term is the energy of the movable mirror which is modeled
as a cubic anharmonic oscillator, the four terms give the interaction between the coupling field and
the cavity field, the last term describes the interaction between the probe field and the cavity field.
The Hm has two terms, the first term corresponds to the energy of the simple harmonic oscillator,
the second term proportional to the third order of the mechanical displacement q is the potential energy
generated by the mechanical nonlinearity, and the parameter α represents the nonlinearity strength of
the mechanical oscillator. The cubic potential 1

3 αq3 is assumed to be much smaller than the quadratic
potential 1

2 mω2
mq2, thus the cubic potential 1

3 αq3 is a small perturbation.
A cubic anharmonic oscillator is a typical example of the simplest perturbation to the harmonic

oscillator in quantum mechanics [35]. Different aspects of a cubic anharmonic oscillator have
been investigated, including the behavior of the resonance eigenvalues of a cubic anharmonic
oscillator with a real nonlinearity strength α [36], the periodic motion of a cubic anharmonic oscillator
with a real parameter α [37], the real spectrum of a cubic anharmonic oscillator with a complex
nonlinearity strength α [38], the ground-state energy of a cubic anharmonic oscillator with a complex
parameter α [39,40], the eigenenergies and eigenfunctions of a cubic anharmonic oscillator with a real
parameter α or a complex parameter α [41], and the Stark effect in a cubic anharmonic oscillator with
a real parameter α or a complex parameter α [42]. For simplicity, here we consider the case that the
parameter α is real and positive.

The equations for the time evolutions of the expectation values of the system operators can be
found from the Heisenberg equations of motion, which are given by

d
dt 〈q〉 = 〈p〉

m ,
d
dt 〈p〉 = −mω2

m〈q〉 − α〈q〉〈q〉 − h̄g〈c†〉〈c〉 − γm〈p〉,
d
dt 〈c〉 = −[κ + i(ω0 −ωc + g〈q〉)]〈c〉+√ηκεc +

√
ηκεpe−iδt,

(2)

where we have included the optical and mechanical dissipations, we have used the factorization
assumption 〈ab〉 = 〈a〉〈b〉, and γm is the mechanical damping rate. It is worth mentioning that this
factorization assumption is not valid when both the coupling and probe fields are weak [43–45].

When the power of the probe field is much smaller than that of the coupling field, in the limit
where t→ ∞, the steady state solution of Equation (2) can be truncated to second order in εp

〈s〉 = s0 + s1+e−iδt + s1−eiδt + s2+e−2iδt + s2−e2iδt, (3)
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where s = q, p, c, sn+ and sn− (n = 1, 2) indicate the nth-order upper and lower sidebands, respectively.
In addition, cn+ and cn− (n = 1, 2) correspond to the nth-order anti-Stokes and Stokes fields,
respectively. The solution has five components oscillating at the frequencies ωc, ωp, 2ωc−ωp, 2ωp−ωc,
3ωc− 2ωp, respectively. Combining Equation (3) with Equation (2), and equating coefficients belonging
to the same frequency, we find the amplitudes of the components oscillating at the frequency ωc of the
coupling field

p0 = 0,

q0 = − h̄g|c0|2
mω2

m + αq0
,

c0 =

√
ηκεc

κ
2 + i∆

,

(4)

the amplitudes of the first-order sideband generations

c1+ =

√
ηκεp

d(δ)

{[κ

2
− i(∆ + δ)

]
f (δ) + ih̄g2|c0|2

}
,

c1− =
ih̄g2c2

0
√

ηκε∗p
d∗(δ)

,

q1+ = −
h̄g(c∗0c1+ + c0c∗1−)

f (δ)
,

(5)

and the amplitude of the second-order anti-Stokes field

c2+ =
−ig

d(2δ)

{
q1+c1+

{[κ

2
− i(∆ + 2δ)

]
f (2δ) + ih̄g2|c0|2

}
− αc0q2

1+

[κ

2
− i(∆ + 2δ)

]
−h̄gc0

{
igc0q1+ + c1+

[κ

2
− i(∆ + 2δ)

]}
c∗1−
}

,
(6)

where ∆ = ω0 −ωc + gq0 is the displacement-dependent effective cavity detuning, d(δ) = [ κ
2 + i(∆−

δ)][ κ
2 − i(∆ + δ)] f (δ)− 2∆h̄g2|c0|2, f (δ) = mω2

m + 2αq0 − imδ(γm − iδ). The q0 and p0 represent the
steady-state values of the displacement and momentum of the movable mirror, respectively. It is
seen that the steady-state displacement q0 of the mechanical oscillator is related to the mechanical
nonlinearity α. Moreover, we note that the amplitudes c1+ and c2+ of the first-order and second-order
anti-Stokes fields depend on the mechanical nonlinearity strength α and the steady-state displacement
q0 of the movable mirror. In addition, the amplitude c2+ of the second-order anti-Stokes field is
dependent on the amplitudes c1+ and c1− of the first-order anti-Stokes and Stokes fields and the
amplitude q1+ of the mechanical excitation.

Furthermore, the output field is connected with the cavity field and the two input fields via the
standard input–output relation [15,46], which yields

εout(t) = εc + εpe−iδt −√ηκ〈c〉. (7)

The output field εout(t) consists of five components

εout(t) = εout0 + εout1+e−iδt + εout1−eiδt + εout2+e−2iδt + εout2−e2iδt, (8)

where εout0, εout1+, εout1−, εout2+, εout2− are the amplitudes of the five components of the output
field, respectively, and their frequencies are ωc, ωp, and 2ωc −ωp, 2ωp −ωc, 3ωc − 2ωp, respectively.
From Equations (7) and (8), we obtain

εout1+ = εp −
√

ηκc1+,

εout2+ = −√ηκc2+.
(9)
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Next, the output probe field at frequency ωp is rescaled by εp, which gives

tp =
εout1+

εp
= 1−

√
ηκc1+

εp
. (10)

Without the coupling field (℘c = 0), tp is given by

tp = 1− ηκ
κ
2 + i(∆− δ)

, (11)

which is independent of the oscillation of the movable mirror. Moreover, the outgoing field from the
cavity at the second-order upper sideband is renormalized as

u =
εout2+

εp
. (12)

Without the coupling field (℘c = 0), u = 0, no second-order upper sideband is generated.

3. The Effect of the Mechanical Nonlinearity on the EIT

In this section, we discuss the influence of the nonlinearity strength α of the movable mirror on
the intensity |tp|2 of the output probe field at frequency ωp.

The parameters we use are from the experimental work focusing on slowing, advancing,
and switching of the weak probe field [18]. The frequency of the coupling field is ωc = 2π× 6.07 GHz.
The cavity decay rate is κ = 2π × 742 kHz. The effective mass of the movable mirror is m = 7 pg,
the mechanical frequency ωm = 2π × 1.45 MHz, and the mechanical damping rate is γm = 2π × 9 Hz.

The optomechanical coupling strength is g = 2π × 1.26/
√

h̄
2mωm

Hz/m. The cavity field is driven by
a red-sideband coupling field with ∆ = ωm. We consider the critically coupled cavity with η = 0.5.
The power of the coupling field is ℘c = 3 µW. For the nonlinearity strength α = 10× 107 N/m2,
the cubic potential energy 1

3 αq3
0 is much smaller than the quadratic potential energy 1

2 mω2
mq2

0 since
| 13 αq3

0/( 1
2 mω2

mq2
0)| ≈ 0.14� 1.

The intensity |tp|2 of the output probe field is plotted against the normalized probe detuning
δ/ωm for different values of the nonlinearity strength α in Figure 2. In the absence of the coupling
field (℘c = 0), it is seen that the intensity curve exhibits an inverted Lorentzian shape, and the value of
|tp|2 near δ = ωm is close to zero, thus the input weak probe field is almost completely absorbed by
the optomechanical system. In the presence of the coupling field (℘c 6= 0), for the linear mechanical
oscillator (α = 0), the intensity curve is symmetric, it has an EIT peak near δ = ωm, and the value of
|tp|2 near δ = ωm is close to unity, thus the weak probe field is almost totally reflected to the left-hand
output port. This is the result of the destructive interference between the input probe field and the
first-order anti-Stokes field produced by the interaction of the strong coupling field with the linear
mechanical oscillator. For the nonlinear mechanical oscillator (α 6= 0), the intensity curve becomes
asymmetric, and the transparency peak is shifted to the left, i.e., the output probe frequency ωp is
lower than the cavity resonance frequency ω0. Increasing the nonlinearity strength α will increase the
shift of the transparency peak. The dependence of the transparency peak position of the output probe
field on the mechanical nonlinearity strength α is shown in Figure 3. From Figure 3, it is seen that the
mechanical nonlinearity strength α can be easily probed via measuring the transparency peak position
of the output probe field. Moreover, in Figure 2, it is seen that the mechanical nonlinearity strength α

can broaden the full width at half maximum (FWHM) of the transparency peak. In the absence of the
mechanical nonlinearity (α = 0), the FWHM of the transparency peak is about 0.1 ωm. In the presence
of the mechanical nonlinearity with α = 10× 107 N/m2, the FWHM of the transparency peak is about
0.1761 ωm, which is less than the shift of about 0.257 ωm of the transparency peak position. Therefore,
when the linewidth of the transparency peak is considered, it is still possible to estimate the mechanical
nonlinearity strength α by detecting the transparency peak position of the output probe field.
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Figure 2. The intensity |tp|2 of the output probe field versus the normalized probe detuning δ/ωm

for different values of the nonlinearity strength α = 0, 5× 107, 10× 107 N/m2. The black dotted,
blue dashed, and red solid lines correspond to α = 0, 5× 107 N/m2, 10× 107 N/m2, respectively.
The dot-dashed green line is the intensity |tp|2 without the coupling laser.

Figure 3. The transparency peak position of the output probe field as a function of the nonlinearity
strength α.

It is worth noting that the optomechanical response of a cubic nonlinear mechanical oscillator
is different from that of a quartic nonlinear mechanical oscillator whose potential energy includes
a term βq4 with β = 1.2× 1012 N/m3 in the experimental paper [18]. It has been shown that a quartic
nonlinear mechanical oscillator could also lead to the shift of the transparency peak of a weak probe
field, but the transmission of the probe field exhibits the bistable behavior, which indicates that there
are two values of the intensity |tp|2 of the output probe field for a given probe detuning δ [18].

4. The Enhancement of the Second-Order Upper Sideband Generation by the Mechanical
Nonlinearity

In this section, we discuss the influence of the mechanical nonlinearity α on the second-order
upper sideband generation at frequency 2ωp −ωc generated by the four wave-mixing process. In the
four wave-mixing process, two photons at frequency ωp are absorbed and one photon at frequency ωc

is emitted.
The intensity |u|2 of the second-order upper sideband generation in the output field is plotted

against the normalized probe detuning δ/ωm for different values of the nonlinearity strength α when
the power of the probe field is ℘p = 0.01℘c in Figure 4. Without the mechanical nonlinearity (α = 0),
a dip is observed near δ = ωm in the intensity |u|2 of the second-order upper sideband generation.
The value of |u|2 at the dip near δ = ωm is about zero. For α = 0, we have mentioned above that
the value of |tp|2 at the transparency peak near δ = ωm in the first-order upper sideband generation
in Figure 2 is about unity. Hence, when the input probe field is completely reflected to the left-hand
output port, the second-order anti-Stokes field vanishes. This is consistent with the result in [28].
Moreover, as the nonlinearity strength α is increased, the maximum intensity |u|2 of the second-order
upper sideband generation is increased. When α = 0, 10× 107 N/m2, the maximum values of |u|2
are about 0.0063, 0.1003, respectively. Thus, the intensity |u|2 of the second-order upper sideband
generation with the mechanical nonlinearity α = 10× 107 N/m2 is enhanced by a factor of about 15.9



Appl. Sci. 2020, 10, 5719 7 of 10

compared to that without the mechanical nonlinearity α = 0. In addition, the intensity |u|2 of the
second-order upper sideband generation can be largely enhanced by further increasing the mechanical
nonlinearity strength α. For example, for α = 11× 107 N/m2, the cubic potential energy 1

3 αq3
0 is still

much smaller than the quadratic potential energy 1
2 mω2

mq2
0 due to | 13 αq3

0/( 1
2 mω2

mq2
0)| ≈ 0.16 � 1,

the maximum value of |u|2 is about 0.4886. Hence, the intensity |u|2 of the second-order upper
sideband generation with the mechanical nonlinearity α = 11× 107 N/m2 is enhanced by a factor of
about 77.5 compared to that without the mechanical nonlinearity α = 0. Therefore, the mechanical
nonlinearity can enhance the intensity |u|2 of the second-order upper sideband generation. This is
because the mechanical nonlinearity enhances the four-wave mixing process in the optical cavity.

Figure 4. The intensity |u|2 of the second-order upper sideband generation in the output field versus the
normalized probe detuning δ/ωm for different values of the nonlinearity strength α = 0, 5× 107, 10×
107 N/m2 when ℘p = 0.01℘c. The other parameters are the same as those in Figure 2. The black dotted,
blue dashed, and red solid lines correspond to α = 0, 5× 107 N/m2, 10× 107 N/m2, respectively. Here,
the red solid line for α = 10× 107 N/m2 has been divided by 10.

5. Conclusions

We have investigated that the propagation of a weak probe field in an optomechanical system with
a cubic anharmonic oscillator. When the optomechanical cavity is pumped by a strong red-sideband
laser, the nonlinearity of the movable mirror causes an asymmetric line shape to appear in the intensity
of the output probe field. We show that the nonlinearity strength of the movable mirror can be detected
by measuring the shift of the transparency peak of the output probe field. We also show that the
mechanical nonlinearity results in the enhancement of the intensity of the second-order upper sideband
generation. Thus, compared to the optomechanical system with a mechanical harmonic oscillator,
the optomechanical system with a cubic anharmonic oscillator offers more efficient conversion from the
incident lights (the coupling light and the probe light) to the second-order upper sideband generation;
this is useful in frequency conversion in all-optical communication networks. Future work will
extend these studies to the single-photon strong-coupling regime [47,48], where the nonlinear coupling
between the optical cavity field and the movable mirror could not be neglected.

Finally, we briefly discuss the possibility of the generation of a strong cubic mechanical
nonlinearity. It has been reported that a cubic anharmonic oscillator can be realized by coupling
a linear mechanical oscillator to a three-level auxiliary via the linear interaction µxV [25], where µ

is the interaction strength, x is the dimensionless displacement operator of the mechanical oscillator

and is related to the mechanical displacement operator q via q =
√

h̄
mωm

x, and V is the operator of

the three-level auxiliary. The auxiliary system has a diagonal Hamiltonian H̃0, whose three energy
levels are given by E(0)

j = j∆a, j = 0, 1, 2, and ∆a is the energy difference between adjacent energy
levels. By placing the auxiliary in the eigenstate corresponding to the energy level E1, choosing

the appropriate operator V, a cubic potential in the form of H(3)
m = 2h̄∆a

(
µ

∆a

)3
x3 could be created.

By choosing ∆a = 2π × 5 GHz, µ = 2π × 3.7 MHz, µ/∆a � 1, we have H(3)
m ≈ 2.685× 10−33x3.

By using H(3)
m = 1

3 αq3, we find that the cubic nonlinearity strength α is about 1.2× 108 N/m2, which is
close to the parameter we use in the numerical calculations.
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42. Mera, H.; Pedersen, T.G.; Nikolić, B.K. Nonperturbative quantum physics from low-order perturbation theory.

Phys. Rev. Lett. 2015, 115, 143001. [CrossRef] [PubMed]
43. Kronwald, A.; Marquardt, F. Optomechanically induced transparency in the nonlinear quantum regime.

Phys. Rev. Lett. 2013, 111, 133601. [CrossRef] [PubMed]
44. Lemonde, M.A.; Didier, N.; Clerk, A.A. Nonlinear interaction effects in a strongly driven optomechanical

Cavity. Phys. Rev. Lett. 2013, 111, 053602. [CrossRef] [PubMed]
45. Børkje, K.; Nunnenkamp, A.; Teufel, J.D.; Girvin, S.M. Signatures of nonlinear cavity optomechanics in the

weak coupling regime. Phys. Rev. Lett. 2013, 111, 053603. [CrossRef] [PubMed]
46. Walls, D.F.; Milburn, G.J. Cavity modes. In Quantum Optics; Springer: Berlin, Germany, 1998; pp. 121–124.

http://dx.doi.org/10.1103/PhysRevA.85.021801
http://dx.doi.org/10.1515/nanoph-2016-0168
http://dx.doi.org/10.1063/1.5027122
http://dx.doi.org/10.1109/JMEMS.2004.835771
http://dx.doi.org/10.1038/ncomms11517
http://www.ncbi.nlm.nih.gov/pubmed/27225287
http://dx.doi.org/10.1103/PhysRevLett.103.067201
http://dx.doi.org/10.1088/1367-2630/14/2/023042
http://dx.doi.org/10.1103/PhysRevA.91.013834
http://dx.doi.org/10.1103/PhysRevA.86.013815
http://dx.doi.org/10.1103/PhysRevA.95.033820
http://dx.doi.org/10.1103/PhysRevA.99.033822
http://dx.doi.org/10.1103/PhysRevA.93.063814
http://dx.doi.org/10.1103/PhysRevA.97.013801
http://dx.doi.org/10.1103/PhysRevA.90.012104
http://dx.doi.org/10.1103/PhysRevA.93.052306
http://dx.doi.org/10.1103/PhysRevA.37.4079
http://www.ncbi.nlm.nih.gov/pubmed/9899529
http://dx.doi.org/10.1007/s00707-016-1582-9
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1063/1.532991
http://dx.doi.org/10.1063/1.1362287
http://dx.doi.org/10.1088/1751-8113/47/41/415306
http://dx.doi.org/10.1103/PhysRevLett.115.143001
http://www.ncbi.nlm.nih.gov/pubmed/26551808
http://dx.doi.org/10.1103/PhysRevLett.111.133601
http://www.ncbi.nlm.nih.gov/pubmed/24116779
http://dx.doi.org/10.1103/PhysRevLett.111.053602
http://www.ncbi.nlm.nih.gov/pubmed/23952398
http://dx.doi.org/10.1103/PhysRevLett.111.053603
http://www.ncbi.nlm.nih.gov/pubmed/23952399


Appl. Sci. 2020, 10, 5719 10 of 10

47. Rabl, P. Photon blockade effect in optomechanical systems. Phys. Rev. Lett. 2011, 107, 063601. [CrossRef]
48. Nunnenkamp, A.; Børkje, K.; Girvin, S.M. Single-photon optomechanics. Phys. Rev. Lett. 2011, 107, 063602.

[CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevLett.107.063601
http://dx.doi.org/10.1103/PhysRevLett.107.063602
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Model
	The Effect of the Mechanical Nonlinearity on the EIT
	The Enhancement of the Second-Order Upper Sideband Generation by the Mechanical Nonlinearity
	Conclusions
	References

