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Abstract: The quantum proxy signature is one of the most significant formalisms in quantum signatures.
We put forward a quantum proxy signature scheme using quantum walk-based teleportation and
quantum one-time pad CNOT (QOTP-CNOT) operation, which includes four phases, i.e., initializing
phase, authorizing phase, signing phase and verifying phase. The QOTP-CNOT is achieved by attaching
the CNOT operation upon the QOTP and it is applied to produce the proxy signature state. The quantum
walk-based teleportation is employed to transfer the encrypted message copy derived from the binary
random sequence from the proxy signer to the verifier, in which the required entangled states do not need
to be prepared ahead and they can be automatically generated during quantum walks. Security analysis
demonstrates that the presented proxy signature scheme has impossibility of denial from the proxy and
original signers, impossibility of forgery from the original signatory and the verifier, and impossibility of
repudiation from the verifier. Notably, the discussion shows the complexity of the presented algorithm
and that the scheme can be applied in many real scenarios, such as electronic payment and electronic
commerce.

Keywords: quantum communication; quantum proxy signature; quantum walks; quantum one-time
pad CNOT operation

1. Introduction

Digital signature has been prevalent in past decades and applied in lots of scenes, such as electronic
payment, electronic commerce and electronic government affairs, with strict demands for security.
To satisfy the special requirements for diverse application scenarios, many ramifications of classical
signature have occurred. The most concerning issue is the security of the classical signature scheme,
which depends on computational complexity of some intractable problems involving the factorization
of large numbers and the discrete logarithm. However, these problems can be efficiently solved by
quantum algorithms with the development of quantum computation. For example, the former can be
solved in polynomial time by Shor’s quantum prime factorization algorithm [1]. Grover’s algorithm [2]
poses a great threat to symmetric cryptography by designing a more optimized brute force attack.
Consequently, the classical signature schemes based on computational complexity are seriously struck
and become insecure.

Motivated by the merits of quantum technology, many scholars converted their attention from
classical signature into quantum signature, the security of which is guaranteed by quantum non-cloning
theorem [3] and Heisenberg’s uncertainty principle [4]. The development of quantum signature mainly
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relies on two essential techniques involving quantum teleportation and quantum encryption algorithm.
Recently, quantum walks have been developed as an approach to realize quantum teleportation
protocols [5,6], which can improve the efficiency of quantum teleportation in terms of entanglement
generation and measurements. Afterwards, Shang and Li [7] showed the experimental realization
of state transfer based on quantum walks with two coins. Chatterjee et al. [8] investigated the
experimental implementation of quantum teleportation using coined quantum walks. Li et al. [9]
also proposed a quantum teleportation scheme for transmitting an arbitrary multi-qubit state via
multi-walker quantum walks. In addition, in 2017, Vlachou et al. [10] introduced the idea of developing
quantum key distribution protocol using quantum walks. Inspired by the above-mentioned work,
enthusiastic scholars have presented several achievements in quantum signature. For example, in 2019
Shi et al. [11] presented a quantum blind signature scheme based on quantum walk-based cryptosystem.
In the same year, Feng et al. put forward an arbitrated quantum signature protocol with quantum
walks on complete graphs [12] and on a closed cycle [13], in which the necessary entangled states do
not need to be prepared in advance and they can be created naturally via quantum walks. Furthermore,
when transmitting a d-dimensional quantum state, two projective measurements with d elements
instead of one joint measurement with 4 elements are required. The projective measurements are
much easier to implement than the joint measurement in real experiments [5,6]. In 2020, Feng et al. [14]
suggested another arbitrated quantum signature protocol, where quantum walk-based teleportation is
applied to transfer the encrypted message copy and boson sampling-based random unitary encryption
is used to generate the signature. Quite recently, Li et al. [15] applied quantum walks into quantum
blind signature and presented the corresponding quantum blind signature scheme. Furthermore,
quantum walks have been demonstrated to be realizable in different physical systems [16-18] and real
experiments [19-21]. This stimulates us to explore more possibility of quantum walks into other types
of quantum signature.

Quantum proxy signature is an important type or branch of quantum signature and its concept
was first proposed by Mambo et al. [22] in 1996. In 2001, Gottesman and Chuang [23] introduced
quantum mechanics into digital signature and proposed a quantum digital signature scheme based on
one-way function. Soon later, Zeng and Keitel [24] proposed an arbitrated quantum signature scheme
based on three-qubit Green-Horne-Zeilinger (GHZ) states, which provides an elegant framework for
designing quantum signature schemes with the participation of a trusted arbitrator. Notably, quantum
proxy signature is a special class in arbitrated quantum signature with distinct original signatory
and proxy signatory. In 2010, Chang et al. [25] presented a proxy signature scheme by employing
Einstein-Podolsky-Rosen (EPR) states as the quantum channel for teleportation. In 2011, Zhou et al. [26]
proposed a quantum proxy signature scheme based on public verifiability, in which EPR states are
combined with the unitary transformation to generate proxy signature. In 2014, Cao et al. [27] raised
a quantum weak blind signature scheme with a genuinely entangled six-qubit state. Subsequently,
Zhang and Jia [28] analyzed the cryptanalysis of Cao et al.’s work [27] and pointed out that the
verifier can forge the signature by modifying the received message without being caught. Next year,
Cao et al. [29] put forward a proxy weak blind signature using the controlled teleportation scheme
with five-qubit entangled states as quantum channels. Based on the above-described research, it is
known that entangled states take up a significant position in designing quantum signature schemes.
Yet, the challenge is that the generation of the ideal entanglement resource is difficult in experiments.
To this end, many scholars began to seek for other methods to evade this challenge. For example,
in 2015, Xu et al. [30] brought forward a quantum proxy signature scheme in line with single-particle
states instead of entangled states. In the next year, Guo et al. [31] suggested a strong blind quantum
signature scheme with multi-proxy by executing appropriate unitary operators. In 2018, Qin et al. [32]
brought forward a batch quantum multi-proxy signature, in which quantum controlled-not (CNOT)
gates are employed to encode the information to be signed. Recently, Niu et al. [33] developed a
quantum proxy blind signature based on superdense coding, where various unitary operators are used
to blind two-bit classical information.
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Compared to quantum proxy signature schemes without entanglement, it can be seen that the
entanglement-based quantum proxy signature schemes have more ability to resist risks or attacks
due to the disturbance detection owing to the existence of entanglement. In addition, we mentioned
that the most challenge is the difficult generation of entanglement resource with the state-of-the-art
technology, fortunately, which can be efficiently addressed using the models of quantum walks. On the
other hand, in the existing quantum proxy signature schemes, the involved encryption algorithm
is quantum one-time pad (QOTP), which may lead to different aspects of disavowal and forgery
attacks [34,35]. To solve this issue, we improve the QOTP by introducing the CNOT operation.
Therefore, motivated by quantum walk-based teleportation, we present a proxy signature scheme
using quantum walks and QOTP-CNOT operation. The presented quantum proxy signature scheme
makes the following contributions.

e  Before generating the proxy signature, the random binary sequence is circularly used to encrypt
the original message. Then the QOTP-CNOT operation is used to generate the proxy signature
state with the length of the secret keys being the same as that of the message to be encrypted,
which reduces the length of the required keys by three times in terms of efficiency and improves
the security of the presented scheme. The introduction of CNOT operation into the QOTP makes
the encrypted qubit related to not only the qubit and the key of the current position but also other
qubits and keys of other positions, which can resist against the proxy signatory’s disavowal attack
and the receiver’s forgery attack on the proxy signature by modifying the qubits of particular
positions in it.

e  Quantum walks on circles are used to transfer the random sequence to verify the validity of the
proxy warranty and the corresponding quantum teleportation protocol is performed to transmit
the message copy of ciphertext from the proxy signatory to the verifier, which assists the verifier
to complete the verification of the validity of the proxy signature, in which it is unnecessary to
generate entangled states in advance as quantum channels and the essential entangled states can
be created by quantum walks. We note that this model differs from the formalisms of quantum
walks employed in [12,14] and that it is firstly employed in quantum proxy signature.

o The proposed scheme may be easy to implement owing to the experimental realizations of
quantum walks [7,8] and the designed QOTP-CNOT encryption. Furthermore, it may be applied
into electronic payment or electronic commerce.

The paper is organized as follows. In Section 2, we present the methods involving the employed
models, i.e., quantum walks on circles and the corresponding quantum teleportation, and the designed
quantum proxy signature scheme consisting of initializing phase, authorizing phase, signing phase
and verifying phase. In Section 3, we elaborate on the results referring to the security of the scheme.
In Section 4, we discuss the complexity and the applications of the presented scheme. In Section 5,
a conclusion is shown.

2. Methods

Quantum walk is the quantum counterpart of classical random walk such as Brownian motion.
In 1993, Aharonov et al. [36] first proposed the formalism of quantum walk. Then in 2001 Ambainis et al.
and Aharonov et al. presented the formalisms of quantum walks on the line [37] and on the general
graphs [38]. According to the time evolution, quantum walk is distinguished into discrete time
quantum walk [39] and continuous time quantum walk [40]. In the following, we first focus on the
discrete time quantum walk models we use in the subsequent process. Then we describe the proposed
quantum proxy signature scheme.

2.1. Quantum Walks on Circles

In discrete time setting, the properties of quantum walk depend on quantum coins and shift
operators. In this model, we assume that the walker hops along discrete positions on a circle graph.
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The corresponding Hilbert space H is the tensor product of the position Hilbert space H, and the coin
Hilbert space H,, i.e.,
H=H,®H,, 1)

where H), is spanned by the vertices on the circle with H, = {|x)|x € {0,1,...,P —1}} and P is the
number of vertices, and H, is spanned by the two possible coin states {|R), |L) } corresponding to the
head and tail of a quantum coin [10]. The evolution for one step of the quantum walk is given by the
unitary operator with

U =0- (I, ®R.), @

where I, is the identity operator acting on Hy, R, is a rotation gate acting on H, that is expressed as in

cosf)  sinf
R. =
¢ < —sinf cosf > g ©)

where 6 € [0,27] refers to the rotation angle, and O is a conditional shift operator with the form of

terms of matrix

pP-1
O:;)H(x—irl) mod P)(x| ® |[R)(R| + |(x —1) mod P)(x| ® |L)(L|], 4)

which simulates the movement of walker on the circle [41], as shown in Figure 1. In the following,
we use this model to transmit the involved random sequence from the proxy signatory to the arbitrator
to complete the validity of the proxy warranty.

Figure 1. Shift rules of quantum walks on a circle with P vertices.

2.2. Teleportation with Quantum Walks on Circles

In view of the model of quantum walks on circles above, we describe the teleportation based
on quantum walks on circles with two coins and P = 4 vertices. We postulate that Alice and Bob
are the sender and the receiver, respectively, who participate in the communication, in which Alice
wants to transfer an unknown qubit |¢;) = «;|0) + B;|1) to Bob. Alice holds two particles a1 and a2,
which separately carry the state of the first coin and the state of the position. While the state of the
second coin is encoded onto particle b, which is possessed by Bob. The initial states of a1, 42 and b are
denoted as |¢;), |0) and |+). Thus, the whole initial state of the quantum walk system is

$)° = 10) ® (a;]0) + Bi[1)) @ |+), ©)
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with the particle order a2, al, b and |+) = ‘0>\J}2|1> .

We formulate the first step of the quantum walk as

Uy =W (I, ®Ci ® Ip), (6)

where W; = Q® [0)1(0| @ b + Q' ® [1)1(1] ® I, = O’ ® I, C; is the coin operator employed on the
first coin state, Q = Y, |x + 1) (x| is the shift operator employed on the position space and Q' is the
Hermitian operator of Q. According to Equation (4), for convenience of calculation, we equate |R) to
|0) and |L) to |1) and then we can express the notation O’ with P = 4 as

2 3
0 = §|x+1><x|® |0)(0] + ;Ix—1><XI ® 1) (1] +0)(3[ @ |0)(0] + [3)(0[ @ [1)(1[. ()

If C; = I, the initial system state |¢)" transforms into

y)' = \1@(061'|1>|0>|0> +Bil3)[1)[1)), ®)

which produces the entanglement between position space and coin space referring to Alice and Bob.
We describe the second step of the quantum walk as

U =Wo- (I, ® 1 ® Cyp), )

where
Wy = Qe ®[0)2(0+Q @ h®|1)x(1| =0 ® L (10)

and C; is the coin operator employed on the second coin state. If C; = I, the state of the system
evolves into

_ 10) @ (;]01) + Bi[10)) n 2) ® (i|00) + Bi[11))
V2 V2 '

Subsequently, Alice first measures particle a2 using basis {|0), [1), |2), |3) } corresponding to the classical

p)? (11)

results {0,1,2,3}. Then Alice measures particle a1 using basis {|+),|—)} corresponding to the classical
results {1, —1}. In the light of the measurement results of 42 and a1, Bob implements corresponding unitary
operations to recover the qubit to be teleported, which is listed in Table 1. In the following, this teleportation
scheme is employed to transfer the encrypted qubit message copy from the signatory to the verifier,
which helps to complete the validity verification of the completed proxy signature.

Table 1. The relationship of the measurement results of 42 and a1 from Alice and Bob’s local unitary operations.

a2 al Unitary Operation

2 1 I
2 -1 Z
0 1 X
0o -1 zZX

2.3. Quantum Proxy Signature Scheme

The designed scheme involves four participants, i.e., the arbitrator Trent, the original signer
Charlie, the proxy signer Alice and the verifier Bob, who cooperatively perform four desired phases,
including the initializing phase, the authorizing phase, the signing phase and the verifying phase.
The schematic of the scheme is depicted in Figure 2 and the details are elaborated in the respective
four phases in the following. Remarkably, we suppose that the interactive communications among
participants are executed via authenticated classical and quantum channels, which can be realized by
means of current error correction and privacy amplification technologies [42] in secure communication
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protocols [43,44]. Thus, we mainly concentrate on the denial and the forgery attacks from the
internal participants.

Charlie ) Bobh —
’(P>M/
A
o) e l¢T) P5)
A,
Alice Trent <«—

Figure 2. Schematic of the designed quantum proxy signature scheme. Charlie, Alice, Bob, and Trent
are the original signer, the proxy signer, the verifier and the arbitrator, respectively. Notably, blue dashed
box represents the initializing phase and authorizing phase, and green represents the signing phase
and orange represents the verifying phase.

2.3.1. Initializing Phase

In initializing phase, Charlie is required to prepare the quantum carriers of the original message
and all the secret keys for encryption and decryption processes are produced.

Step1 Charlie holds a classical binary string M with n1 bits, which is the original message to be
signed and can be expressed as

M={M;,My,...,M;,..., M1}, (12)

where M; € {0,1},i =1,...,nl. Then he or she encodes M into the corresponding qubit sequence
|@) pr with n1 qubits in the form of

lo)m = {lenm [o2)m, - @i Mo -/ l@n1) M}, (13)

where |@;)py = \%(|0> + m|1)), in which m = 1 or m = —1 corresponds to M; = 0 or M; = 1.

Step 2 Alice shares secret keys {Kar, Koc} with Trent and Charlie, respectively. Similarly,
Trent shares secret keys {Kpr, Kcr} with Bob and Charlie. This procedure can be completed through
QKD system [10,45,46].

2.3.2. Authorizing Phase

In authorizing phase, Charlie generates the warranty allowing Alice to execute the proxy
signature.

Step1 Charlie produces a quantum state |¢) with n2 qubits, which contains the information
of Charlie’s and Alice’s identification and the warranty of proxy signature. In addition, @) is
described as

lo)w = {levw, le2)w, - ledw, -, |en2)w}, (14)

where |@;)w = \%(|0> +m|l)) withm =1or —1,i =1,...,n2. Then he combines |¢)y with |¢)w to
acquire a new quantum state | @),y with

[@)mr = (l@)m. l@)w) = {lev) - [ @idars - [on)wr }, (15)
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which contains n = nl + n2 qubits. We assume the dimension n of |¢),y to be large enough,
which enables small enough error probability of two rounds of comparisons for any two unknown
qubit states and failure probability of the validity verification for the completed signature in the
verifying phase.

Step 2 Charlie separately encrypts two copies of the new quantum state |¢) ,y with K4c and
Kcr and gets [@) ), = Ex,(|9)mr) and |@)2, = Ex.; (|@)ar). Next he sends | )1, to Alice and |@)3,,
to Trent.

Step 3 After receiving |@)},,, Alice obtains |@) y by decrypting it and thus she has the authority
to help Charlie and Bob complete the signature as a proxy signer.

2.3.3. Signing Phase

In signing phase, Alice generates the proxy signature based on chosen signing algorithm, which is
expected to ensure Alice’s undeniability, the integrity and authenticity of the message to be signed.
Step1 Alice randomly chooses from {0, 1} to generate an n-bit classical sequence

S={S1,S,...,5i,....Sn}. (16)

Step 2 Alice encrypts | @)y through appropriate encryption algorithm based on S and obtains
‘§0> M with

|@)mr = Es([@)mr)- (17)

For an arbitrary qubit |¢;) yy in |@) pp, it can be expressed as follows,

@iy = Es(l@i) ) = @iy @ (I)*7°i1 @ (Ux)?ils ® (0y)%7 511 @ (07) 57541, (18)

wherei+1 = (i+1) mod n. Concretely, according to (S;, S;11) in S, Alice performs the corresponding
unitary operator on the qubit |¢;)r [33], which is listed in Table 2. The relationship of @)y, S and
|@) pr is shown in Figure 3, in which it can be seen that the operation on the last qubit |¢,,) py of |@)
is controlled by (S;, S1), which shows the random sequence is used circularly. Then Alice needs to
broadcast the value of n. It should be noted that, in our scheme, three copies of |¢) y» are required.
One of them is employed to create proxy signature state, the other is delivered to Bob along with
the proxy signature state at the last step in the signing phase and the third one is transmitted by
teleportation based on quantum walks on circles with two coins described in Section 2.2.

Ve oM | l92)mr | [@3) | @n)mr
Y Y \ 4 Y \ 4
Random sequence S S1iSy| SpiS3|S53iS4|...0i...5:,—1 Su
A 4 A4 Y Y \ 4
Unitary operation U U U, Uz .. u,
A 4 A4 \ 4 A4 \ 4
@) mr oV | l@2)mr | l@3)mr | - | | @n)mr

Figure 3. Alice packages |¢) ) with unitary operation U governed by the random sequence S to
obtain |@) .
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Table 2. The relationship of (S;, S;11) in the sequence S and the corresponding unitary operation.

(Si,Si+1) Unitary Operator Matrix Representation

1 0
00 I ( 01 )
01 Oy ( (1) (1) )

0 —i
10 oy ( i )

1 0
11 o ( 0 -1 )

Step 3 Alice generates proxy signature state |S4) by encrypting |¢) v with K, i.e.,

1S4) = Ex (@) M), (19)

where E%AT refers to the improved QOTP algorithm with assistant CNOT gates in terms of K47.
Before elaborating on the QOTP-CNOT operation, we first describe the QOTP algorithm in the
following, where 2n random classical bits are required for the encryption of an unknown n-qubit
quantum state with the guarantee of informational security [47,48]. Denote |¢) as the n-qubit message
expected to be encrypted with |¢;) = «;]0) + B;|1) and K, as the 2n-bit key. The encryption process is
formulated as

9)c = Ex,(19)) = & (0) ()" |g), 0)

1=

where Kg is the pth bit of K,;. The corresponding decryption process is

9) = Di,(19)c) = & ()5 (0)*T . @)

Then the motivation of the QOTP-CNOT operation includes the following two aspects. The first
aspect is from some classical coding schemes, such as the differential encoding, where the encrypted
bits correlate with the other bits in order to improve its capacity of resisting disturbance. The second
motivation originates from the existing quantum signature schemes, such as chain-based CNOT [49],
key-controlled chained CNOT [50], which make the encrypted qubit related to not only the qubit and
the key of the current position but also other qubits and keys of other positions. We thus design the
improved QOTP encryption algorithm by introducing assistant CNOT gates. In addition, considering
the storage space and usage efficiency of the secret key, we circularly use the key to accomplish
the encryption task, the length of which is reduced into one third of the key required in the QOTP
algorithm. Therefore, in terms of both security and efficiency, we put forward the QOTP-CNOT
encryption algorithm, in which we write the required K47 as

Kar = {KY, K4p, .o Ky, .o Kl ) (22)

The length of K47 is assumed to be the same with the length of |¢) s, i.e., n. Alice executes the

corresponding operation on the qubit |;) in |@) 3 according to the values of (Kiyp, KiH!, Ki2),

where K/, decides whether 0y is operated on the corresponding qubit with (0 )Kar and KZFTl controls

the operation of ¢, with (cTZ)I<i‘1+T1 and K% determines whether the CNOT operation is applied on

|@i) v with |S4);—1 acting as the control qubit. The encryption process can be expressed as follows,

|q),'>M// X ((Tx)KilT ® (o’Z)KiTT] ® (UX)K?TZ'|SA>1'—1 i 75 1,n—1,n
i i+1 i+2 .
1Sa)i = { lgidar @ (02) a7 @ (02) 47 @ ()"t fn)aar i=1 (23)
(i+1) mod n (i+2) mod n
[pi)aar © (02)Kor @ (o )Kar ™" @ (o) lSak1Kar i=n—1n.
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Here let us consider an instance to expound on it. Given n = 8, |¢)» = [01011101) and
Kar = 01011001, in line with Equation (23), the encryption result of |¢) s should be |00000100),
where the implementation of |¢;) 7 = |1) can be demonstrated as follows. According to the associated
key (K37, K37, K47) = (1,0,1), we can obtain the qubit |S 1), with the form of

1Sa)2 = |92)wr © (02)KAT @ (02)K0r @ (o) KAr 15401 = |y pr @ 0 @ (00)5401 = [0),  (24)

which coincides with the presented encryption and decryption processes of |¢) y;» shown in Figures 4
and 5.

Step 4 To verify the validity of the proxy warranty, we apply the model of quantum walks
on circles described in Section 2.1 to transmit the random sequence S from the proxy signer Alice
to the arbitrator Trent. Assume that the number of the walking steps is t and P = 2", we denote
II) € {|0),...,|P —1)} as one vertex state, |d) € {|R), |L)} as the coin state. Using these parameters,
a quantum state can be randomly generated

[p)u = Ul)ld) = [0 (I, @ Re)]'|1) |d), (25)

which is then distributed to Alice and Trent.
Step 5 Alice transforms the random sequence S as a decimal number s (this can be easily done)
and obtains the following shift operator

P-1
To= )Y |(i+s) mod P)il, (26)
i=0

which is used to produce
l9(s)) = (Ts @ L) |@)u, (27)

where I is the identity operator acting on the coin state and which is transmited to Trent.
Step 6 Trent applies U, ' to |¢(s)) and gains

lo)s = (Ts @ I.)|1)|d), (28)

on which he performs the position measurement

P—1
K=Y [ oL 29)
i=0

Denoting the measurement result as i, i.e., is = (I +s) mod P, we can obtain
s=(is—1) mod P. (30)

That is, Trent can easily recover S and obtain |¢) y from |¢) s according to the recovered S.
Step 7 After completing the verification of the proxy warranty, Alice produces a quantum state
|pa) = (ISa), |®)amr) and sends it to Bob.
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Figure 4. The encryption process of |¢)pr based on Ku7. (a) Quantum circuit for the encryption
process of |¢) pr with n = 8 including X, Z and CNOT gates governed by K41 and ID refers to the
identity gate; (b) The probability producing the encrypted quantum state |S4).
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Figure 5. The decryption process for recreating |¢)pp based on Ku7. (a) Quantum circuit for the

encryption and decryption processes for obtaining |¢) yy». It can be seen that the gates for encryption
and decryption processes are symmetric; (b) The probability recovering the quantum state |¢@) .
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2.3.4. Verifying Phase

In verifying phase, Bob is required to verify the validity of the completed proxy signature and the
integrality and authenticity of the conveyed messages based on chosen verifying algorithm with the
assistance of Trent, who plays the role of the trusted third party to facilitate the interaction of Alice
and Bob.

Step1 After receiving |¢4), Bob encrypts [S4) and |¢) p» using Kpr and gets |¢p), i.e.,

|¢B) = Ex,, (1Sa), @) mr), (31)

which is then transmitted to Trent.

Step 2 Trent decodes |¢p) to get |Sa) and |¢) . To begin with, with the acquired random
sequence S by Steps 4-6 in the signing phase, Trent can perform the same unitary operators on
|@) mr and obtains |@)$}f. He compares it with the obtained |¢),y from Charlie to verify whether
the warranty delegated by Charlie to Alice is valid. If the warranty is consilient, Trent implements
the associated unitary operations based on S on |@)yy or [¢)35' to regain @)y and achieves |St)
with K47. Afterwards, he compares |St) with |S4) by using swap test technique [51], where the
independent comparisons of |St); and |S4); for n times are required. Thus, if the value of 7 is proper,
for any e > 0, the error probability can be reduced to [3(1 + 62)]" < e. It acts the same when Bob
implements the comparison of the quantum states |@) p» and [¢)$4} to verify the completed signature
in the later step. If the result T is negative, the communication is terminated. Otherwise, Trent firstly

decrypts |St) to gain |¢) i and then encrypts |S4), |@) yr and |T) to generate |¢7), i.e.,

|#7) = Exyy (ISa), [@) s 1T)), (32)

which is delivered to Bob.

Step 3 Bob decrypts the received |¢7) and achieves |S4), |¢)yr and |T). If T = 0, it shows
that |S4) is disavowed or forged by some manner. That is, |S4) is invalid and the protocol will be
abandoned. Otherwise, Bob compares |@) i and |@)$4, which is obtained from Alice via teleportation
protocol based on quantum walks on circles with two coins described in Section 2.2. If [¢) S35 # [¢) pmr,
the communication fails. If |@)}y = @) v, Bob makes a request for announcing the random sequence
S from Alice.

Step 4 Alice publishes S on the public channel.

Step5 After receiving S, Bob decodes ) or |@) p» and obtains the whole original message
|@) pr, in which the ith qubit |¢;) )y with m; = 1 reveals M; = 0 and |¢;) v with m; = —1 reveals

M; = 1. At this time, Bob can recognize (|S4), S) as Alice’s completed proxy signature.

3. Results

In terms of secure criterions in quantum signature protocols, the designed signature scheme
should satisfy the properties of non-deniability, non-forgeability, and non-repudiation. Based on these
criterions, we analyze the security of our presented proxy signature scheme. Then we discuss the
potentially practical application of our scheme.

3.1. Impossibility of Denials

In proxy signature scheme, the impossibility of denial refers to that the proxy signer Alice cannot
deny her completed signature and that the original signer Charlie cannot deny his delegation.

For one thing, Alice cannot deny her completed signature. In the signing phase, Alice packages
or encrypts quantum state |¢) )y obtained from Charlie using the random sequence S and gets
|@) pmr. Then Alice creates the proxy signature state |S4) by encrypting |¢) with the key Kar,
i.e., |SA> = E%AT
system with perfect security. If Alice disavows the completed signature, the state |S4) should be

(|@) pmr), in which K 47 is essential for the creation of |S4) and it is generated by QKD
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forwarded to Trent and then he judges whether K 47 is contained in |S4). If the feedback is positive,
then |S 4) must be produced by Alice. If Alice successfully disavows |S4) resulting in [S4) # |ST) and
the occurrence of disputes, fortunately, this attack can be found by Trent at Step 2 of verifying phase.
Therefore, Trent is able to detect Alice’s possible disavowals.

For another thing, Charlie cannot deny his delegation. In the authorizing phase, Charlie achieves
a quantum state |¢)y, which contains the information of his identification and proxy delegation.
Then Charlie encrypts | @)\ with Kcr to acquire [@)3,, ie., [¢)3, = Kcr(|@)ar), which is transferred
to Trent and in which K¢t is also generated via QKD system. Moreover, in the signing phase,
Trent receives S from Alice via the model of quantum walks on circles and in the verifying phase Trent
obtains |¢)y» from Bob included in quantum state |¢p). Next Trent can get |¢) )y on account of S
and the corresponding operations listed in Table 2, which proves that Charlie does authorize Alice to
perform the signature behaviour. If Charlie refuses to admit his delegation in the way of delivering

fake messages \go>§3[1§e # |@) pr to Trent before the verifying process, it can be found at Step 2 in the

verifying phase. Specifically, Trent compares |@){tke with [¢)Suf derived from S and |¢) v, and reaches

|p)take £ |@)Sut. If Charlie desires to replace |@)S3f to disturb Trent’s verification, he must get hold
of both U~ !'and Kpr to accomplish the modifications of S and |@) without being caught, which is

obviously impossible. Consequently, Charlie cannot disavow his delegation successfully.

3.2. Impossibility of Forgeries

In proxy signature scheme, the impossibility of forgery involves that the original signer Charlie
and the verifier Bob cannot forge the proxy signer Alice’s signature.

In case Charlie is dishonest and he expects to counterfeit Alice’s signature based on the original
messages | @) held in his hand, he needs to obtain the random sequence S to accomplish the package
and the key K 47 to carry out the signature, where S is randomly chosen by Alice and K 47 is produced
via QKD system with perfect security. Thus, Charlie has no ability to forge the signature successfully in
the manner of obtaining the keys including S. Take a step back, if Charlie produces a random sequence
S" with the same n-length of S, the successful possibility is only zin because the probability for each
bit is 3, which can be easily simulated via Matlab and shown in Figure 6, where P, represents the
successful probability for creating the same sequence as S. It can be seen that P, shows an exponential
decline and approaches to zero rapidly as n increases. Furthermore, even if Charlie happens to get the
correct sequence S (as we know it has very low probability), K47 is still unknown for Charlie, which is
the crucial element for the creation of the signature |S 4). Hence Charlie cannot execute a successful
forgery of Alice’s signature.

Forgery-simulation

ot o R S

0 10 20 30 40 50 60 70
n

Figure 6. Successful probability P, for forging the random binary sequence S as a function of the length
n of the sequence S.
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In case Bob is dishonest and he attempts to counterfeit the signature |S4) = E%AT (|@) pr), for this
purpose, Bob needs to obtain Alice’s secret key K47 produced by QKD system. According to the public
quantum states including |S4) and |¢r) separately received from Alice and Trent, he cannot acquire
any information about K7. Consequently, Bob cannot forge Alice’s signature |S4) by the method
of obtaining K 41. In the QOTP-based quantum signature schemes [35,52], there exists one method
for Bob to implement the forgery by the following manner. As the communication receiver, Bob is
assumed to hold a valid message-signature pair (|¢), |S)). Then Bob can perform the same unitary
operators U; on each qubit in |¢’) and the corresponding qubits in |S’) owing to the encryption manner
of qubit by qubit in QOTP algorithm, and he may achieve a new valid message-signature pair without
the need for K47. Based on this, Bob can select his favorable message to perform the forgery attack
and claim that it is completed by Alice. In this scenario, when Bob deliberately declares a dispute and
lets Trent judge, Trent will stand on the side of Bob. As for this attack strategy, two aspects should be
stated. On one hand, Bob cannot choose the preferred message for his own in that the original message
|@) pmv exists in the form of ciphertext |¢) s via random sequence S. On the other hand, we employ an
improved QOTP by introducing assistant CNOT operations to generate the signature, which makes it
difficult to find the correct qubit position and modify it due to the correlations among qubits in the
signature. In the worse case, we assume that Bob obtains the correct sequence S by some method.
If Bob attempts to modify the qubit [¢;)r at some certain position in |@),y to forge a valid proxy
signature, he can recover | @)y based on S and determine the position of |¢;) 5y7- Next Bob implements
Upeb on |@;)yr and packages the altered |@)p with S to get a new |¢’) v, in which |(p;> M can be
expressed as

|9 mr = [9j)mr © Uj @ Upob- (33)

Subsequently Bob implements the same operation Ug,}, at the corresponding position in |S )
and acquires

i i+1 +2
1504); = 1S4); ® Usap = @) pr @ (030) K41 @ (02)Kar @ (o) KT 1S)j-1, (34)

At this moment, a new pair of message-signature (|¢’) yir, |S'4)) is achieved. Meanwhile, the qubit
|8'4)j+1 is modified unexpectedly as follows,

+1 +2 43 jar
1)1 = |ir1) @ (0%) AT @ (02)Kar @ (0 )Kar 19, (35)

Normally |S',); ;1 should be consistent with [S4) 41,

j+3

Kj+ AT"SA>J" (36)

j+1 2

1Sa)j+1 = |j+1)mr ® (0)54T @ (02)"47 @ (o))"

The difference between [S4);1 and |S'); 1 is attributed to |S'; ) ;, which is associated with the

next qubit in |S4) due to the introduction of CNOT gate. Therefore, Bob cannot perform a valid or
successful forgery for Alice’s signature.

3.3. Impossibility of Repudiations

From a practical point of view, the verifier Bob cannot repudiate his received signature |S4) from
the proxy signer Alice, which can be proved in our presented proxy signature scheme. Normally,
in the verifying phase, Bob encodes both |S4) and |¢)y» acquired from Alice with Kg7 to obtain
|¢8) = Eg,, (1Sa), [@)mr) and delivers it to Trent, where Kpr is guaranteed to be unconditionally
safe via QKD protocol and cannot be accessed by others except for Bob and Trent. Then Trent can
testify that |¢p) contains Kp and get |S4) and |¢) # to perform the comparison, which implies Bob
has obtained |S 4). Actually, the random sequence S is a part of Alice’s signature and is announced
by public channel which is not obstructed and it is resistant to the modification of messages. As a
result, Bob may disavow the integrality of the received signature (|S4), S). For example, Bob may
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claim |@)pr # @)y under the fact of [@) yr = ) $45 maliciously and consequently refuses to accept

it. Nevertheless, as the communication receiver, Bob’s intention is to decode the original message
M. If Bob declares |¢) pr # |@)$ys under the condition of [¢) pr = |@)945, he cannot get the random
sequence S to yield |¢) 5p, from which the final original message M can be decoded. So this repudiation
attack is impossible. In short, Bob cannot disavow the reception and the integrality of Alice’s proxy

signature (|S4),S).
4. Discussions

4.1. Discussion of Complexity

In the above-described quantum proxy signature scheme, the complexity of the scheme attributes
to the employed signing and verifying algorithms, which involve two encryption processes including
the random sequence-based encryption algorithm and the QOTP-CNOT algorithm. In the former,
a randomly produced binary sequence S with n bits is applied to encode the original message |¢) y
with the same length into |¢) ys». Its execution requires n unitary operations U; (i.e., Pauli operator, I,
0Ox, 0y, 0z), which can be seen from Figure 3 and Table 2. In terms of key consumption, for encrypting
an n-qubit message sequence, an n-length random binary sequence is enough due to the circular use,
which differs from the QOTP encryption algorithm with 2n bits required [48]. Therefore, our scheme
saves the length of the keys and the corresponding storage space. In the language of mathematics and
computer, the time complexity and the space complexity of the random sequence-based encryption
algorithm both are proportional to n. In the latter, i.e., the QOTP-CNOT algorithm, the secret key
K a1 with n qubits produced by QKD system is needed and the encryption operations (i.e., oy, 0
and CNOT) are controlled by the key bits in K47, i.e., (Kqu, Kf;}l, K’XTZ) (i=1,2,...,n),as shown in
Equation (23). This algorithm is used to encrypt |¢) p;» derived from the original message | @)\ with
the random sequence S and then generate the quantum proxy signature state |S4). For encrypting
an n-qubit message sequence |¢) s, the maximum number of the involved unitary operations is 3n
with the case of full 1 in K41 according to the encryption rules in the QOTP-CNOT operation, which is
linear with n. Similarly, the secret key K 47 is also used circularly and hence the key length is reduced
by three times, which improves the utility efficiency of the key when compared with the QOTP-based
signature schemes [31,33]. As a consequence, the time complexity and the space complexity of the
proposed scheme are linear with n.

4.2. Discussion of Applications

At present, many researchers have developed various quantum signature protocols designed
for special application scenarios, such as electronic payment, electronic voting, electronic commerce,
electronic government, and so on [53-57]. Here, we discuss about the possible application of our
presented proxy signature scheme in electronic payment as follows. Assume that Charlie is a customer
who prefers shopping on the Internet, that Bob is the owner of an online shop, that Alice corresponds to
electronic commerce platform and that Trent denotes bank. (i) If Charlie wants to purchase something,
which is listed in Bob’s store, he will add the merchandise into his fictitious shopping trolley and then
submit the order form on the platform (Alice). (ii) Alice will pay for the bill using the credit card which
Charlie binds with his account in advance. (iii) Alice handles with the information about Charlie’s
identification and his order form, and with that she sends the processed Charlie’s identification
information and the order form to Bob. During the three steps above, the bank Trent plays the role
of supervisor, who publishes the credit card used for Charlie’s consumption and guarantees the
authorities and benefits of every participant. This trade process can be illustrated in Figure 7. Please
note that we should consider more potential risks such as untrusted nodes and bounded [58] or more
generally noisy-storage model [59] when the involved situations in the cryptography protocols are
generalized to realize the network [60] in the future study .
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Figure 7. Application scene of our presented proxy signature scheme in electronic payment.

5. Conclusions

We presented a quantum proxy signature scheme with QOTP-CNOT operation and quantum
walk-based teleportation by making full use of quantum walks on circles. Teleportation based on
quantum walks on circles with 4 vertices is employed for the transmission of the encrypted message
copy |¢) pw from Alice to Bob, which helps Bob to verify the consistency of |¢) . This teleportation
can avoid the preparation of the required entanglement resource ahead, which can be produced via
quantum walks. Quantum walks on circles are applied to transmit the random sequence S to verify
the validity of the proxy warranty. The QOTP-CNOT operation is used to generate the proxy signature
and it is designed by introducing the CNOT operation into the QOTP and the CNOT operation
breaks the encryption manner of qubit by qubit, which makes multiple qubits interrelated. Security
analysis indicates that our proposed scheme has the properties of impossibility of denial, impossibility
of forgery and impossibility of repudiation attributing to the deployments of quantum walks on
circles, QOTP-CNOT operation, random sequence along with public channel and QKD technologies.
Discussion shows that the complexity of the algorithm is linear with the number n of qubits to be
encrypted and the possible applications in electronic payment or electronic commerce. In the future,
we can explore more applications of realizable quantum computing models such as quantum walks
into quantum communication.
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