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Abstract: The safety of high-alert medication treatment is still a challenge all over the world.
Approximately one-half of adverse drug events (ADEs) are related to high-alert medications,
which motivates us to improve the predicament faced in clinical practice. The purpose of this study
is to use machine-learning techniques to predict the risk of high-alert medication treatment.
Taking the cardiovascular drug digoxin as an example, we collected the records of 513 patients
who received the pertinent therapy during hospitalization at a tertiary medical center in Taiwan.
Considering serum digoxin concentration (SDC) is the primary indicator for assessing the risk of
digoxin therapy, patients with SDC being controlled at the recommended range before their discharge
were defined as a low-risk population; otherwise, patients were defined as the high-risk population.
Weka 3.9.4—an open source machine learning software—was adopted to develop binary classification
models to predict the risk of digoxin therapy by a number of machine-learning techniques, including
k-nearest neighbors (kNN), decision tree (C4.5), support vector machine (SVM), random forest (RF),
artificial neural network (ANN) and logistic regression (LGR). The results showed that the performance
of RF was the best, followed by C4.5 and ANN; the remaining classifiers performed poorly. This study
confirmed that machine-learning techniques can yield favorable prediction effectiveness for high-alert
medication treatment, thereby decreasing the risk of ADEs and improving medication safety.

Keywords: machine learning; high-alert medication; cardiovascular drug; adverse drug events;
decision tree

1. Introduction

Since To Err is Human published by the Institute of Medicine (IOM) in 1999, patient safety has
become a global concern [1]. Although governments, nonprofit organizations and medical institutions
have proposed various measures and invested much resources to improve patient safety in the past
20 years, incidents of patients being injured due to improper medical care continue to occur every day
around the world [2]. Therefore, the avoidance of medical injuries to maintain patient safety is still a
difficult problem to solve [3].

The World Health Organization (WHO) and the World Alliance for Patient Safety have jointly
proposed two Global Patient Safety Challenges, which provide improvement measures and methods
for patient safety issues to reduce the possible harm to patients during medical care. In 2017, the WHO
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released the third global patient safety challenge which indicates that if medication errors occur in
the medical system, it may cause serious harm to patients [4].

In the United States, medication errors cause at least one death each day and injure nearly
1.3 million people each year [4]. It is estimated that the additional medical costs worldwide caused
by medication errors amount to US $42 billion per year, accounting for 0.7% of global healthcare
expenditure [5].

Compared with ordinary drugs, high-alert medications carry greater risks of adverse drug events
(ADEs) and have received widespread attention [6]. The definition of high-alert medications is drugs
that bear a heightened risk of causing significant patient harm when they are used in error [7]. Therefore,
although high-alert medications account for only a small portion of all therapeutic drugs, they are
the main cause of adverse drug events (ADEs). Recent studies have shown that up to 50% of ADEs are
related to high-alert medications [8].

Medication errors will not only lead to an increase in medical costs, but also cause varying degrees
of harm to patients, especially high-alert medications. To date, clinical decision support systems
(CDSS) have been widely and maturely applied to most drugs. However, the current application
of CDSS in high-alert medications is mainly based on the recommendations of the Clinical Practice
Guideline (CPG) to establish prompts in the system, rather than generating predictions of treatment
results. Therefore, some scholars have begun to use machine-learning techniques to conduct research
on specific high-alert medications [9,10]. The purpose is to provide better clinical decision support to
enhance the safety of high-alert medication treatment.

Cardiovascular disease (CVD) is currently the main cause of death in the world [11]. According
to WHO statistics, approximately 17.65 million people worldwide died of CVD in 2016, accounting
for 31% of all deaths, indicating that approximately one in three people died of CVD. The number of
people who have died of CVD is not only twice as high as that of cancer, but more than the sum of all
deaths from infectious diseases [12]. Similarly, CVD is also the most common cause of death in Europe.
Although the mortality rate of CVD has gradually decreased, more than four million Europeans die
each year.

Because of the high mortality rate of CVD, the treatment of this disease has received considerable
attention. In terms of medication therapy, cardiovascular drugs can effectively control the symptoms of
CVD, but such drugs are also prone to severe ADEs. Levy et al. pointed out that nearly half of ADEs
are related to the use of cardiovascular drugs [13].

Among all cardiovascular drugs, digoxin is classified as a high-alert medication. Because of
the complex pharmacological properties, the use of digoxin is more likely to cause serious injury to
patients. In the treatment process of CVD with digoxin, inappropriate decisions may affect treatment
outcome, cause drug toxic reactions and severely lead to death. When physicians decide to prescribe
high-alert medications, more careful decision-making is needed. However, physicians need to interpret
a large amount of information within a limited time, including the patient’s physiology, disease status
and laboratory data to determine the treatment regimen. The risk of medication therapy needs to
be assessed during decision-making process to reduce the incidence of ADEs. For a busy medical
environment, these goals are not easy to achieve.

In the past, the applications of machine-learning techniques in medical domain covered a
wide range of ordinary drugs and only a few studies focused on the high-alert medications [14–28].
On the other hand, those related studies used relatively few variables or adopted techniques lacking
interpretability. We intend to apply machine-learning techniques, including k-nearest neighbors (kNN),
decision tree (C4.5), support vector machine (SVM), random forest (RF), artificial neural network
(ANN) and logistic regression (LGR), to build binary classification models and enhance the safety of
high-alert medication treatment.

In order to improve the predicament faced in practice, this study attempts to focus on high-alert
medication treatment and investigate cardiovascular drugs that have attracted much attention
worldwide. We will take digoxin as an example, retrieve the data needed for research from the medical
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record database of a tertiary medical center in Taiwan and then adopt the method of machine learning
to construct a risk prediction model. It is hoped that the results will help physicians to make better
clinical decisions and thus improve patient medication safety.

2. Materials and Methods

2.1. Data Source

The source of research data were received from a patient records database of a tertiary medical
center in Taiwan. Patients who had accepted digoxin therapy during hospitalization between January
2004 and December 2013 were included in this study. Exclusion criteria were that the patient had taken
digoxin within 3 months before hospitalization. Because the half-life of the drug is 36 to 48 h with
normal renal function, a 3 month clearance period was applied to ensure the accuracy of the prediction
models [29].

The experimental data for this study were collected from 513 clinical cases. According to
the variables mentioned in the previous literature, each clinical record included initial dose of
digoxin, demographic data and laboratory data related to liver function, renal function and serum K+.
In addition, a specific disease congestive heart failure (CHF) was also included.

Finally, we considered another important variable known as drug-to-drug interaction (DDI).
The variable cannot only affect treatment outcome, but also increase the incidence of ADEs.
For this reason, we included DDI in our experiment before constructing the prediction models.
According to Thomson Micromedex Database [30], the clinical significance of DDI can be divided into
three degrees (major, moderate and minor), the major degree being the most severe DDI. In addition to
drug interaction facts, we compared DDI information published by the Ministry of Health and Welfare
in Taiwan with the drugs used at the case hospital. Table S1 shows the drugs that induce the major
degree DDI when combined with digoxin. During the treatment of digoxin, patients who used any of
the drugs listed in Table S1 will be considered to be at risk of DDI.

2.2. Variable

The dependent variable (DV) of this study was the risk of digoxin treatment, which can be
determined by serum digoxin concentration (SDC). In clinical practice, physicians judge the therapeutic
effect of digoxin mainly based on SDC. To eliminate the ADEs rates of digoxin, SDC value is
recommended at the range of 0.5–0.9 ng/mL [28,31]. Therefore, patients with SDC being controlled at
recommended range before their discharge were defined as a low-risk population; otherwise, patients
were defined as the high-risk population. Moreover, a total of 12 independent variables (IVs) were
considered in our study (Table 1).

Table 1. Definition of variables.

Category Name Definition Type

IV

Demographic
Gender Male/female Categorical
Age Actual age on the day of hospitalization Numeric
Weight Body weight measured on the day of hospitalization Numeric

Laboratory

ALT * The record measured before digoxin therapy Numeric
AST * The record measured before digoxin therapy Numeric
SCr * The record measured before digoxin therapy Numeric
BUN * The record measured before digoxin therapy Numeric
ALB * The record measured before digoxin therapy Numeric
K+ * The record measured before digoxin therapy Numeric

History CHF The diagnostic records of CHF noted in the past year Categorical

Medication
Dose Initial dose of digoxin during hospitalization Numeric

DDI Patients who used any of the drugs listed in Table S1
during hospitalization. Categorical

DV Treatment
outcome Risk 0.5
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0.9 ng/mL: low risk
SDC < 0.5 or SDC > 0.9 ng/mL: high risk

Categorical

* ALB—albumin; ALT/AST—alanine aminotransferase/aspartate aminotransferase; BUN—blood urea nitrogen;
K+—serum potassium; SCr—serum creatinine.
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2.3. Investigated Classification Techniques

Six well-known classification techniques were considered, including kNN, C4.5, SVM, RF,
ANN and LGR. Table 2 lists the primary applications of these techniques in previous studies in
medical domain [14–28].

Table 2. Applications of classification techniques in medical domain.

Techniques Applications

kNN
Modeling liver-related adverse effects of drugs [14].
Predicting drug side effects [15].
Personalized drug concentration predictions [16].

C4.5
Detecting adverse drug events [17].
The analysis of adverse drug reactions [18].
Expert system for adverse drug reaction detection [19].

SVM
Antidiabetic drug failure prediction [20].
Prediction models for drug-induced hepatotoxicity [21].
Prediction of drug-induced eosinophilia adverse effect [22].

RF
Prediction of cardiovascular outcomes [23].
Adverse drug reaction detection [19].
Prediction of drug-induced nephrotoxicity [24].

ANN Predicting the serum digoxin concentrations of infants [25].
Prediction of the serious adverse drug reactions [26].

LGR
Clinical decision support system to toxicity in patients
treated with digoxin [27].
Analysis of patients with digoxin serum concentration [28].

k-nearest neighbors (kNN) is a well-known case learning method that classifies new cases based
on distance functions. For a test case, kNN first finds its top k-nearest neighbors in the vector space;
the class label of the test case is assigned to the majority class among its neighbors [32]. The Euclidean
distance and the Hamming distance are usually used for numeric and categorical variables, respectively.

Decision tree (C4.5) is a commonly used classification technique. The growth of the decision
tree is a recursive process. First, an attribute with the best gain ratio is selected as the split node
of the tree, and the corresponding branches are generated according to its attribute values. Then,
the dataset can be partitioned into subsets, and each subsets can be used for next round of tree partition.
The decision tree grows until the termination condition is met. The rules generated by the decision tree
are easy to understand and can be applied in practice [33]. Because gain ratio is proposed to measure
the improvement of data purity in C4.5, it is also used to measure the importance of IVs [34].

Support vector machine (SVM) is a supervised learning method that maps IVs and a DV to a
high-dimensional vector space by using structural risk minimization. Then, it attempts to find a
hyperplane to separate the data into two categories. Therefore, a new test case can be mapped into one
subspace based on the determined hyperplane [35].

Random forest (RF) is a tree-based ensemble learning algorithm, which adopts bagging and random
feature selection techniques [36]. Each decision tree is constructed from bootstrap samples of training
data, and the final predicted result is determined by a majority vote. When building multiple trees,
a random sample with replacement and the random selection of feature of the training set are used,
which reduce the possibility of overfitting in tree growing process.

Artificial neural network (ANN) consists of an input- and an output- layer with a number of
hidden layers. Artificial neurons between two adjacent layers are connected; the neurons receive
the inputs from the outputs of the front adjacent neurons and convert them into an output value
through the transfer functions. The key component in the learning procedure is the connection weights
between two neurons. In training phase, it iteratively tunes the connection weights between neurons
for minimizing the difference between the estimated output value and the actual output. The learning
process repeatedly executes the feedforward and backward phases until any stop criteria is reached [37].
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Logistic regression (LGR) is a statistical learning method that uses the dataset to develop a
mathematical model for predicting the DV. LGR is a nonlinear regression model that can be applied
when the DV is binomial category data; it can find the relationships between the binomial DV and a
group of IVs [38]. Specifically, it puts the values of IVs into the logistic function to get a probability value.

2.4. Experimental Setup and Performance Measure

To construct the risk prediction models for digoxin treatment, this study adopted Weka 3.9.4 (www.
cs.waikato.ac.nz/mL/weka), an open source machine learning software to investigate the performance
of the selected techniques, including IBk (kNN in Weka), J48 (C4.5 in Weka), SMO (SVM in Weka),
random forest (RF in Weka), multilayer perceptron (ANN in Weka), simple logistic (LGR in Weka).
To optimize the prediction performance of the models, we used the CV parameter selection meta-learner
module implemented in Weka to search the best parameter settings. Table 3 lists the tests of parameter
tuning for each classification technique and the final best parameter settings found in this study.

Table 3. Parameter settings in Weka.

Technique WEKA Module Parameters Test Range Best Parameter Setting

kNN IBk Number of neighbors 1–10 1
C4.5 J48 Confidence factor

Minimum number of instances per leaf
0.1–0.3
2–10

0.3
2

SVM SMO Kernel Polykernel,
RBF Kernel

Polykernel

RF Random forest Number of trees
Number of attributes to be used in random selection

10–100
2–10

60
10

ANN Multilayer perceptron

Number of hidden nodes 3–10 9
Learning rate 0.1–0.5 0.3
Momentum factor 0–0.5 0
Maximum number of epochs 300–1000 1000

LGR Simple logistic None N/A

The classification performance of the prediction models was compared to find out the optimal
classifier. We split the data into training and testing datasets in a proportion of 70:30 and applied 10-fold
cross-validation method in the training dataset to search the best parameter settings. In addition,
previous research indicated that the class imbalance problem can significantly affect learning
performance [39]. To improve the classification performance, the resample module (spread subsample
module in Weka) is used in this study to modify the distribution of instances of two classes in
the training set. Finally, we used the best parameter setting to construct the binary classification models
and reported the classification results of testing set.

By using a confusion matrix (Table 4), the precision, recall and F-measure were adopted to
analysis the performance of each prediction models. These three metrics were defined by the following
Formulas:

Precision = TP/(TP + FP), (1)

Recall = TP/(TP + FN), (2)

F-measure = 2. Precision. Recall/(precision + recall) (3)

Table 4. Confusion matrix.

Classes
Predicted Class

High Risk Low Risk

Actual Class
High risk TP FN
Low risk FP TN

Precision is the ratio of correctly predicted high risk patients to the total predicted high risk
patients. Recall is the ratio of correctly predicted high risk patients to all of the high risk patients

www.cs.waikato.ac.nz/mL/weka
www.cs.waikato.ac.nz/mL/weka
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in the dataset. F-measure is the harmonic mean of precision and recall. In addition, our study also
included the area under the curve (AUC) as a performance indicator. To evaluate the performance of
the models, we referred to the guidelines proposed by Hosmer and Lemeshow [38]. The performance is
defined as “outstanding” if AUC ≥ 0.9, “excellent” if 0.9 > AUC ≥ 0.8, “acceptable” if 0.8 > AUC ≥ 0.7,
“fair to poor” if 0.7 > AUC ≥ 0.5.

3. Results

3.1. Descriptive Statistics

According to the aforementioned definitions of variables, our research collected and preprocessed
the medical records of all patients. Finally, 513 cases were enrolled in this study and the statistical
information is shown in Table 5.

Table 5. Statistical information for the collected cases.

Category Name Range Unit Summary Statistics

IV

Demographic
Gender Male/female - Male: 278 (54.19%)

Female: 235 (45.81%)
Age 19 to 101 years µ = 74.03, σ = 12.08

Weight 32 to 105 kg µ = 56.26, σ = 12.01

Laboratory

ALT 5 to 1754 U/L µ = 78.33, σ = 161.58
AST 11 to 2615 U/L µ = 88.25, σ = 215.26
SCr 0.27 to 12.1 mg/dL µ = 1.466, σ = 1.387

BUN 2 to 237 mg/dL µ = 34.33, σ = 28.53
ALB 1 to 4.3 g/dL µ = 2.625, σ = 0.639
K+ 1.9 to 6.7 meq/L µ = 3.987, σ = 0.726

History CHF Yes/no - Yes: 278 (54.19%)
No: 235 (45.81%)

Medication
Dose 0.125 to 2 mg µ = 0.504, σ = 0.232

DDI Yes/no - Yes: 364 (70.96%)
No: 149 (29.04%)

DV Treatment outcome Risk Low/high - Low: 169 (32.94%)
High: 344 (67.06%)

3.2. Experimental Results

In experimental evaluations, six binary classification models were developed to identify high risk
patients. The experimental results are reported in Table 6. AUC, F-measure, precision, and recall were
used to assess the performance of the prediction models.

Table 6. Results of classification performance.

Classifier AUC Precision Recall F-Measure

kNN 0.569 0.722 0.691 0.706
C4.5 0.719 0.803 0.734 0.767
SVM 0.554 0.698 0.536 0.607
RF 0.836 0.852 0.742 0.794

ANN 0.688 0.795 0.682 0.734
LGR 0.551 0.689 0.532 0.600

Regarding the AUC values ranged from 0.551–0.836. The results showed that the performance of
RF classifier was the best (0.836; excellent discrimination), followed by C4.5 (0.719) and ANN (0.688);
the remaining classifiers performed poorly. Figure 1 illustrates the receiver operating characteristic
(ROC) curve of RF classifier. In addition, F-measure is the harmonic mean of precision and recall, so it is
commonly adopted to compare the whole performance. Regarding the F-measure of the prediction
models, the RF result was still the best (0.794), followed by C4.5 (0.767) and ANN (0.734); the other
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classifiers performed poorly. Overall, the decision tree-based methods including RF and C4.5 exhibited
markedly superior prediction performance in our study.
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To understand the performance of the model in more specific realistic scenarios, we further
adopted the best classifier RF to investigate the changes when controlling for specific variables,
including gender, CHF and DDI. The experimental results are shown in Table 7. The highest AUC
value was 0.848 in the female and patients with DDI datasets; the model for patients without DDI was
the only one that yielded the result below 0.8.

Table 7. Results of classification performance in specific scenarios.

Dataset AUC Precision Recall F-measure

Male 0.834 0.875 0.824 0.848
Female 0.848 0.901 0.753 0.820

With CHF * 0.804 0.845 0.803 0.824
Without CHF * 0.809 0.866 0.640 0.736

With DDI * 0.848 0.840 0.794 0.816
Without DDI * 0.750 0.793 0.676 0.730

* CHF—congestive heart failure; DDI—drug-to-drug interaction.

4. Discussion

In recent years, the patient safety of high-alert medication treatment is an urgent issue, especially
cardiovascular drugs [1,3]. Previous studies have employed various methods, such as statistical
models and pharmacokinetics, to enhance the safety of using high-alert medications. In addition,
machine-learning techniques (e.g., ANN) have lately been used to enhance the predictive power
of models. However, because the decision-making process of ANN cannot be known and lack of
explanatory power, its use in clinical applications is still limited.

Our study investigated various well-known machine-learning techniques. The results indicated
that, compared with other techniques (kNN, LGR and SVM), the average performance of decision
tree-based methods was superior to that of other techniques. In addition, decision tree-based methods
yielded the information of decision rules that can support physicians in making treatment decision of
high-alert medications.
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In addition to comparing the prediction capabilities of different classification techniques, we further
analyzed the influence of each variable on the occurrence of ADEs to provide a reference for clinicians.
By computing gain ratios, we disclosed that the most important variables affecting the outcome
of the treatment are shown in Table 8. After discussion with the medical specialists, including 2
cardiologists, 1 clinical nurse specialists and 3 clinical pharmacists, the validity of the results is discussed
as follows:

Table 8. Ranking of the selected variables.

Rank Variables Gain Ratios

1 BUN * 0.0182
2 SCr * 0.0151
3 DDI * 0.0103
4 Dose 0.0085

* BUN—blood urea nitrogen; SCr—serum creatinine; DDI—drug-to-drug interaction.

First, BUN and SCr are commonly used indicators of kidney function. A raised BUN/SCr ratio will
increase the hospitalization risk and mortality of CHF patients [40]. Doherty et al. found that the higher
the BUN value, the more digoxin is accumulated in the body. Because digoxin is primarily excreted by
kidneys, low kidney function may cause the rise of SDC and lead to ADEs such as digoxin toxicity [41].
Our study confirmed that kidney function is highly correlated with the risk of ADEs. This finding is
similar with the outcomes of previous studies about digoxin treatment [42,43]. Therefore, physicians
need to adjust the dose when decided to prescribe digoxin to patients with renal insufficiency.

Furthermore, we also found that DDI is a significant factor of treatment outcome in high-alert
medications. DDI has long received considerable attention in the field of medicine, especially involving
high-alert medications, which has a complex pharmacological mechanism [16,17,44–49]. The digoxin
related DDIs can easily cause toxicity reaction and ADEs [50]. Although our study only considered
drugs that will produce major degree DDI with digoxin, these results are still adequate to confirm
the significance of DDI.

Finally, the adequacy of the initial dose is important in high-alert medication therapy. Inappropriate
doses resulting in high plasma drug concentrations can lead to severe ADEs that influence the treatment
outcome, particularly digoxin [51]. Therefore, previous studies have focused on novel approaches to
predict the adequate dose of digoxin [44–49,51]. In practice, the initial dose is considerably different
from the maintenance dose, which may increase the risk of ADEs before reaching a stable maintenance
dose. In this study, we investigated the initial dose instead of the maintenance dose and demonstrated
the influence of initial dose on the treatment outcome.

To further clarify the dependencies between the top four important IVs and the predicted binary
outcome, four feature sets were formulated in this study: BUN only, BUN + SCr, BUN + SCr + DDI,
BUN + SCr + DDI + Dose. The classification performance results for each feature set are shown in
Table 9. Among the four feature sets, the highest AUC value was 0.796 in BUN + SCr + DDI + Dose.
The experiment results reveal that the combination of two or more IVs would make better predictions
than just one IV alone.

Table 9. Classification performance results for each feature set.

Selected IVs AUC Precision Recall F-measure

BUN 0.702 0.789 0.579 0.668
BUN, SCr 0.766 0.825 0.708 0.762

BUN, SCr, DDI 0.788 0.833 0.747 0.787
BUN, SCr, DDI, Dose 0.796 0.851 0.708 0.773
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5. Conclusions

The issue of medication safety has received considerable attention and discussion over the past
few decades [1]. It is especially critical for high-alert medications that have complex pharmacological
properties and easily cause ADEs. Digoxin is not only a high-alert medication, but also a widely used
cardiovascular drug in clinical practice. When making an inappropriate treatment decision may lead
to severe ADEs and even death. Therefore, the safety of high-alert medications is still a challenge all
over the world.

The objective of this study was to predict the high risk patients of high-alert medication treatment.
Six machine-learning techniques, including kNN, C4.5, SVM, RF, ANN and LGR, were adopted to
construct the prediction models. In this study, the medical records of 513 inpatients were employed to
obtain the experimental results and confirm the prediction efficiency of all adopted techniques. Finally,
among all classification techniques, the RF exhibited the best performance. Overall, the decision
tree-based methods exhibited an average performance superior to that of other techniques and can
support clinicians as aids for making treatment decisions.

Although high-alert medications have a narrow therapeutic range and complex drug properties,
this research verified that the properly use of medical records and consideration of drug-related variables
can achieve better prediction outcomes. In conjunction with clinical experience, the prediction models
can facilitate improving medication safety for patients, decreasing the risk of ADEs and economizing
the use of medical resources.

Several limitations of this study should be addressed for further research. First, the data used in
this study were collected from a tertiary medical center only. Further evaluation of clinical cases in
other medical institutions is essential to confirm the validity of the model. Second, we only considered
the concomitant medications with major degree DDIs. To construct a more powerful predictive model,
including all drugs having DDI when used in combination with high-alert drugs is indispensable.
Finally, the main limitation of the machine learning methods is lack of interpretability. How to build
trust between physicians and the prediction models is another critical issue.

Improper use of high-alert medication would increase ADEs and may induce serious morbidity
and mortality. This study confirmed that machine-learning techniques can yield favorable prediction
effectiveness for high-alert medication treatment, thereby decreasing the risk of ADEs and improving
medication safety. Future applications in the research of other medications are expected to enhance
the patient safety.
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