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Abstract: To work in shared space with humans, autonomous systems must carry unknown loads
in predefined missions. With the conventional control scheme, the grounded robot would suffer
unstable motion and imprecise tracking performance. To overcome these challenges, in this paper, a
novel controller using an adaptive sliding mode for autonomous grounded robots (AGR) is proposed.
This control strategy takes into consideration uncertain characteristics, varying loads, and external
disturbances. To analyze the tracking performance precisely, the overall error of motion system is
decoupled into two subsystems where the second-order system is related to the angular tracking
error and the third-order system is associated with the linear one. Initially, the dynamics model of the
grounded robot is established containing different elements of nonlinear forces in order to address
the technical problems. Then, the system state equation of the autonomous system is mentioned to
indicate the theoretical characteristics. Based on the proposed controller, the stability of the system is
validated by the Lyapunov theorem. From the results of numerical tests, three practical situations
consisting of separately linear and circular trajectories with varying loads and an S-curve trajectory
of a working map are suggested. The tracking performance validates that the proposed control
scheme is, in various scenarios, robust, effective, and feasible. From these superior outcomes, it can
be determined obviously the property of our works in accommodating the variations of cargo from
applications in distribution centers, material transportation, or handling equipment.

Keywords: control system; sliding mode; Lyapunov; AGR; wheeled robot

1. Introduction

The autonomous grounded robot (AGR) is a kind of mobile robot that can be used in any
scenario with prominent applications such as assembly lines, storehouse management, production
transportation, or as a part of pick-and-place systems. It appears not only in industry but also in
logistics or international trade. The principal motivation of current research is to improve the low rate
of AGR applications in reality. This autonomous hardware is expected to be more flexible, modular, and
intelligent while it requires less cost for initial installation and uses resources to operate and develop.
To solve these drawbacks, numerous developers have studied in a large scale of industrial fields.
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In [1,2], a low-cost, efficient vehicle-guiding method using a consumer-grade camera and separated
markers was investigated to drive for indoor environments. The symbols of capital letters or triangles
which are easy to produce and maintain indicate the routing guide to the target location. In the same
directional research, authors [3] applied a multiple-input multiple-output antenna radar to achieve
high location precision. The results compared with the traditional global positioning system denoted
excellent outcomes for autonomous robots in the port. In the new trend of artificial intelligence, more
research related to fuzzy scheme or neural network control has been investigated. To recognize the
operating environment and avoid an obstacle intelligently, a fuzzy controller which is constructed by
rough sets and an adaptive neuro-fuzzy inference system was presented in [4]. Duration, maximum
tracking error, and mean tracking error are computed to clarify the performance. The achievements
in saving time and lessening maximum tracking error and mean tracking error have been proven as
superior results. In other contexts, due to the complexity of surrounding space and the uncertainty
of sensor data, a motion planning system based on hybrid deep learning was addressed [5]. Firstly,
the convolutional neural networks to construct an auto-encoder model and reduce the dimension of
the input image were initiated. Later, a path-tracking model based on recurrent neural networks was
utilized to build the working map. Consequently, a control model and an evaluation model were
set. In road environments, it promised highly robust visual navigation and an advanced ability of
self-learning for autonomous vehicles.

2. Literature Review

Dynamical reaching method is still the most favorite topic in different engineering applications.
They mostly mention the equations of the dynamic system under private form. In the identical format,
a kinematic model of a mobile robot can be obtained firstly by system state and input transformation [6].
The saturated state feedback control guaranteed that the special chained form system tended to zero
in a finite time. The asymptotic stability was proven by applying the Lyapunov theorem combined
with the finite-time control theory. The results have shown that the effectiveness and validity are not
only for the chained system, but also for traditional mobile vehicles. Based on the same switching
topologies, a multiagent system with second-order separated dynamics addressed the finite-time
consensus problem [7]. A distributed protocol was designed to guarantee a finite-time solution
for homogeneous agents without predetermined leaders in continuous time domain. The agents
asymptotically converged to an average consensus during finite time even though the communication
platform among them was varying. In [8,9], with switching topologies, the distributed fixed-time
tracking control for high-order uncertain nonlinear multiagent systems was investigated. Under
unknown parameters and mismatched disturbances, one follower was assumed to be in serious
feedback form. Because of backstepping method and dynamic surface control, this protocol and
appropriate adaptive laws were designed lacking information of upper bounds of disturbances.

The important note of the finite-time control technique is that the system state in dynamic features
converges to the equilibrium points in a finite time and they remain there. Some benefits of this
method are fast rise, short transient time, and high-accuracy performance. To extend their usages,
many developers combine the finite-time control with fuzzy control. In [10], the difficulties of adaptive
finite-time control for a class of single-input and single-output system were addressed when the
nonlinear functions were assumed to be unknown. To overcome these challenges, a backstepping-based
adaptive fuzzy finite-time control scheme was proposed. The fuzzy technique was employed to
recognize the nonlinear uncertainties. The stable system state was verified by Lyapunov stability
theory in finite time. Therefore, most of closed signals are semiglobally practical finite-time stable
whilst the tracking error tends to a small neighborhood of stable points. Inspired by prescribed
performance control, a novel performance function named finite-time performance function was
defined [11]. The integration of neural networks and backstepping technology ensured that tracking
error converged to an arbitrarily local region at any settling time. The signals in closed-loop systems
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are semiglobally practical finite-time stable. With nonstrict feedback structure, a class of nonlinear
systems was confirmed to show superior performance.

The autonomous grounded robot (AGR) is a type of electromechanical device which is favored
for operating in complex spaces. The AGR is equipped by automating operation, decision making,
and adapting capabilities. In order to upgrade the tracking control performance of the AGR, the
nonlinear dynamic techniques are adopted for linearization [12], sliding mode control [13], or smart
decision [14]. Recently, an improved linear extended state observer with error compensating term
has been mentioned [15]. In reality, the uncertain nonlinear kinematic model still exists. It is hard
to compute exactly the nonlinear components to enhance the tracking control. Hence, the total
uncertainties of the robot are estimated by switching gains to adapt to parameter variations and
external disturbances. The tracking errors converge to the desired values by reason of Lyapunov
stability theory. To avoid singularity and retain the benefits of sliding mode control, an adaptive
sliding control is done [16]. Dealing with external disturbances and inertia uncertainties, the system
state is maintained on sliding surfaces without any constraints. Using Lyapunov theorem, a novel fast
nonsingular sliding technique could be validated. In another target control, investigators in [17,18] have
implemented an adaptive sliding mode control for offshore container cranes that bring containers from
a massive ship to a smaller boat. After decoupling the actuated and unactuated joint variables, a sliding
surface that integrated with the decoupled dynamics was designed. The vibration suppression is
effective in the presence of ship motion, large swings, unknown parameters, and sudden disturbances.

3. Problem Definition

The scope of this research focuses on tracking control of AGRs that often work in warehouses or
distribution centers. The first work was to construct the hardware platform of an advanced AGR [19]
to overcome the limitations of present products in the market. The computer-aided design is shown
in Figure 1. Unlike the other towing cars, this robot is able to carry cargo by lifting the rack. This
useful design supports it in traveling, rapid execution of tasks, and flexible motion. Our research has
successfully developed a practical model of an AGR as shown in Figure 2. When it executes in the
working map, the technical problems produce low-quality control. In the effort to enhance the system
performance, developers in [20] recommended the Lyapunov control for both position and velocity
constraints. Unfortunately, the uncertainties did not take into account the dynamic model, hence, it
might cause some incorrect results when using real-world hardware. In [21], the vision approach was
considered as a control application in assisting the worker to carry heavy loads. The drawbacks of this
method are such that it is hard to evaluate the precision tracking mission and its performance mainly
depends on the working environment and focal length of the digital camera. The other method is to
employ the expert-based knowledge in velocity and positioning control [22]. The decision to drive two
wheels derives from heavy levels of cargo and how tracking errors occur. Several disadvantages of
the fuzzy logic control approach in AGRs are that it rests on the operator’s experiences too much and
the stable convergence is not verified yet. Besides, the nonlinear performance still happens because
of unknown parameter variations and disturbances. As a result, there is a need to design a novel
controller that is adapted to uncertainties. As well, the motion controller must guarantee the stable
system state whenever the AGR operates.
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4. Theoretical Works

The specified prototype of the wheeled vehicle is depicted in Figure 3. It belongs to the
Differential-Driving-Wheel (DDW) type which is actively driven by two side wheels and set free for
two front and back ones. Consider that 2b, 2r, θ, and θd are the length between two wheels, diameter
of wheel, differences between actual, desired heading angle and Ox, respectively. When the mobile
vehicle moves on planar ground, there is no variation in Oz. Perfectly, the distribution of the robot’s
weight is uniform and its central mass is located in the middle of the active driven wheels. We assume
that the vector of system state qT =

[
x y q

]
represents location and driving angle, ϑT =

[
v ω

]
defines the kinematic information.
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The relationship amongst linear velocity and angular velocity with full rank matrix S(q) is
expressed as

.
q = S(q)ϑ =


cosθ 0
sinθ 0

0 1


[

v
ω

]
(1)

A nonholonomic mobile vehicle system having an n-dimensional configuration space C with
generalized coordinates (q1, . . . , qn) can be described by:

M(q)
..
q + F

( .
q
)
+ τd = B(q)τ−AT(q)λ (2)

where
λ: Lagrange multiplier constraint
F(

.
q): friction factors

M(q): symmetric and positive-definite inertia matrix
A(q): matrix associated with the constraints
B(q): input transformation matrix
τd: disturbances torque
τ1, τ2: driving torques of two wheels, τT =

[
τ1 τ2

]
The Euler–Lagrange equations of motion are used to derive the dynamics of the mobile vehicle

systems. The dynamical equations of the mobile vehicle system can be expressed as:

M(q) =


m 0 0
0 m 0
0 0 J

, B(q) =
1
r


cosθ cosθ
sinθ sinθ

b −b

 AT(q) =


− sinθ
cosθ

0


where

J: inertia moment
m: total weight of system
Assumption 1: The vehicle system has three-dimensional configuration space with generalized

coordinate vector q, subject to nonslipping and pure rolling.

A(q)
.
q = 0 (3)

Assumption 2: S ∈ <2×3 is a full rank matrix satisfying

ST(q)AT(q) = 0 (4)

Assumption 3: It is assumed that the disturbance vector is unknown but bounded.

|τd| ≤ ∂ (5)

Remember that the constraint imposed on ∂ is to ensure that the level of uncertain factors is not so
large that the stable state of system can be reversed.

Taking derivative of Equation (1), we have

..
q = S(q)

.
ϑ+

.
S(q)ϑ (6)

Substituting Equation (6) into Equation (2)

M(q)
(
S(q)

.
ϑ+

.
S(q)ϑ

)
+ F

( .
q
)
+ τd = B(q)τ−AT(q)λ (7)
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Multiplied by ST(q) in both right and left side

ST(q)M(q)
(
S(q)

.
ϑ+

.
S(q)ϑ

)
+ ST(q)

(
F
( .
q
)
+ τd

)
= ST(q)B(q)τ− ST(q)AT(q)λ (8)

From Assumption 2, it can be

ST(q)AT(q) = 0, ST(q)M(q)
.
S(q) = 0 (9)

The dynamic of mobile system becomes

M
.
ϑ = Bτ+ d(t) (10)

with

M =

[
m 0
0 J

]
, B =

1
r

[
1 1
b −b

]
, d(t) = −ST(q)

(
F
( .
q
)
+ τd

)
As a result, the system state variables are rewritten as

.
q =


.
x
.
y
.
θ

 =


v cosθ
v sinθ
ω

 (11)

The relationship among interacting forces can be performed{
J

.
ω = u1 + d1(t)

m
.
v = u2 + d2(t)

(12)

where

u =

[
u1

u2

]
=

1
r

[
τ1 − τ2

τ1 + τ2

]
, d(t) =

[
d1(t)
d2(t)

]
For physical meaning, di(t) denotes external noises or uncertain factors. ui(t) implies the control

signal for two wheels.
To address the tracking control troubles, the reference signal is firstly determined so that system

errors converge to zero values in finite time.

.
qr =


.
xr
.
yr.
θr

 =


vr cosθr

vr sinθr

ωr

 (13)

[xr(t), yr(t),θr(t)]
T
∈ <

3, [vr(t),ωr(t)]
T
∈ <

2. Then, the tracking error vector is defined as

e =


ex

ey

eθ

 =


cosθ sinθ 0
− sinθ cosθ 0

0 0 1




x− xr

y− yr

θ− θr

 (14)

Hence,

.
e =


.
ex
.
ey
.
eθ

 =


v− vr cos eθ +ωey

vr sin eθ −ωex

ω−ωr

 (15)

In the real world, some constraints related to hardware platform or physical phenomenon still
exist inside the system. With no loss of generality, we give the following assumptions.
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Assumption 4: The existing positive gains which are tuned could be the upper bound and lower
bound of linear velocity and angular velocity.

ωlower
r ≤ |ωr| ≤ ω

upper
r (16)∣∣∣ .

ωr
∣∣∣ ≤ .

ω
upper
r (17)

|vr| ≤ vupper
r (18)∣∣∣ .

vr
∣∣∣ ≤ .

vupper
r (19)

Although the external disturbances or uncertainties are unknown, its positive upper limitation is
always remaining so that

∣∣∣di(t)
∣∣∣ ≤ dupper

Obviously, the entire design idea is to categorize into angular control problem and positioning
control problem as following. Even though the Multi-Input-Multi-Output (MIMO) controller design
can be employed in this situation, a separated solution for second-order subsystem and third-order
subsystem assists to lessen a burden computation.{ .

eθ = ω−ωr

J
.
ω = u1 + d1(t)

(20)


.
ex = v− vr cos eθ +ωey

.
ey = vr sin eθ −ωex

m
.
v = u2 + d2(t)

(21)

The establishment of second-order scheme is primarily proposed with some positive parameters
ε > 0, 0 < p < 1. (Appendix A).

s1 =
.
eθ + k1eθ + k2Γeθ (22)

where

Γeθ =

 eP
θ

if (s1 , 0∧ |eθ| ≥ ε)∨ s1 = 0

l1eθ + l2eθ2sign(eθ) if s1 , 0∧ |eθ| < ε
(23)

s1 =
.
eθ + k1eθ + k2eP

θ (24)

l1 = (2− p)εp−1 (25)

l2 = (p− 1)εp−2 (26)

Therefore,
J

.
s1 = f1 + u1 (27)

where
f1 = J

(
k1 + k2Ψeθ

) .
eθ − J

.
ωr + d1(t) (28)

Ψeθ =

 pep−1
θ

if (s1 , 0∧ |eθ| ≥ ε)∨ s1 = 0

l1 + 2l2eθsign(eθ) if s1 , 0∧ |eθ| < ε
(29)

The unknown factor f1 can be limited as∣∣∣ f1∣∣∣ ≤ J
∣∣∣k1 + k2Ψeθ

∣∣∣∣∣∣ .
eθ

∣∣∣+ J
∣∣∣ .
ωr

∣∣∣+ ∣∣∣d1(t)
∣∣∣ ≤ a1 + b1|z1| (30)
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a1, b1 are some positive values, |z1| =

√
.
θ

2
e + θ2

e . Consider that we can write a2
1 = φ1, b2

1 = χ1, and

φ̃, χ̃ are the estimators of φ,χ, correspondingly. We obtain the related quantity among estimators as

κ̃1 =
1

2ε2
1

φ̃1 +
1

2ε2
2

χ̃1z2
1 (31)

Thus, the controller for second-order structure is investigated as

u1 = −(β1 + κ̃1)s1 (32)

β1, ε1, ε2 are constants and non-negative. The adaptive laws should be selected as

.̃
φ1 = −ε1φ̃1 +

1
2ε2

1

s2
1 (33)

.̃
χ1 = −ε2χ̃1 +

z2
1

2ε2
2

s2
1 (34)

From here, it yields that
J

.
s1 = −β1s1 +˜
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Theorem 1. With the dynamic expression (35), s1, φ̃1 and χ̃1are uniformly and ultimately bounded with the
adaptive control law (33–34).

Proof: Select the Lyapunov candidate as

V1 =
1
2

(
Js2

1 + φ2
1 + χ2

1

)
(36)

where
^
φ1 = φ1 − φ̃1,

^
χ1 = χ1 − χ̃1

The first derivative of V1

.
V1 ≤ −β1s2

1 − κ̃1s2
1 + a1|s1|+ b1|z1||s1| −

^
φ1

.̃
φ−

^
χ1

.̃
χ1

≤ −β1s2
1 − κ̃1s2

1 +
φ1s2

1
2ε2

1
+

χ1s2
1z2

1
2ε2

2
−
(φ1−φ̃1)s2

1
2ε2

1
−

(χ1−χ̃1)s2
1z2

1
2ε2

2
+ ε1

^
φ1φ̃1 + ε2

^
χ1χ̃1 +

(ε2
1+ε

2
2)

2

≤ −β1s2
1 − ε1

^
φ1

(^
φ1 −φ1

)
− ε2

^
χ1

(^
χ1 − χ1

)
+

(ε2
1+ε

2
2)

2

≤ −β1s2
1 −

σ1
^
φ

2

1
2 −

σ2
^
χ

2
1

2 + ξ1

≤ −α1V1 + ξ1

(37)

where σ1 =
ε1(2l1−1)

l1
, σ2 =

ε2(2l2−1)
l2

, σ3 = l1ε1
2 , σ4 = l2ε2

2 , ξ1 =
(ε2

1+ε
2
2)

2 + σ3φ2
1 + σ4χ2

1, α1 ={
min

(
σ1, σ2, 2β1

J

)}
. Using theorem in [5], whole signals in mobile system (35) are uniformly and

ultimately bounded. Consequently, it is proven that ˜
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Remark 1. To attain the stable state when time reaches any finite instant, the control law should be modified as:

u1 = −(β1 + κ̃1)s1 −ϕ1sign(s1)|s1|
1
2 (38)
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with ϕ1 > 0. Substituting Equation (38) into Equation (35)

J
.
s1 = −β1s1 +˜
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1 −ϕ1sign(s1)|s1|
1
2 (39)

As the proposed control law (38) guarantees that the tracking angular error converges to the small
region in finite time, we could obtain sin(eθ)→ 0 and cos(eθ)→ 1 . Later, the subsystem (21) can be
simplified to 

.
xe = υ− υr +ωrye

.
ye = −ωrxe

m
.
υ = u2 + d2(t)

(40)

Now, we can elect the transitional variable as eω = xe − sign(ωr)ye and
.
eω = v− vr +ωrye+

∣∣∣ωr
∣∣∣xe .

Then, a sliding mode surface is constructed as

s2 =
.
eω + k1eω + k2Γeω (41)

Γeω =

{
ep
ω, if (s2 , 0∧ |eω| > ε) ∨ s2= 0

l1eω + l2sign(eω)eω2, if s2 , 0∧ eω < ε
(42)

s2 =
.
eω + k1eω + k2eωp (43)

Following, we consider the below subsystem with coordinate mapping.

m
.
s2 = f2 + u2 (44)

f2 = −m
.
vr + d2(t) −ωr

2xe + m(
∣∣∣ .
ωr

∣∣∣xe +
.
ωrye+

∣∣∣ωr
∣∣∣(v− vr +ωrye))

+mk1
.
eω + mk2

.
eωΨeω

(45)

with

Ψeω =

{
pep
ω, if ( s2 , 0∧ |eω| > ε )∨ s2= 0

l1 + 2l2sign(eω)eω, if s1 , 0∧ |eω| < ε
(46)

With the above assumptions, the nonlinear factor f2 in system (44) can be bounded by∣∣∣ f2∣∣∣ ≤ m
∣∣∣ .
υr

∣∣∣+∣∣∣d2(t)
∣∣∣+m

∣∣∣ωr
∣∣∣∣∣∣ .
ωe

∣∣∣+m
∣∣∣ .
ωr

∣∣∣∣∣∣ωe
∣∣∣+m

∣∣∣k1 + k2Hωe

∣∣∣∣∣∣ .
ωe

∣∣∣ ≤ a2 + b2|z2| (47)

where a2 and b2 are positive values,
∣∣∣∣∣z2

∣∣∣∣∣= √
.
e2
ω + e2

ω

Lastly, a sliding mode control law is suggested as

u2 = −(β2 + κ̂2)s2 (48)

where a2, b2 are positively tuning gains. Consider that a2
2 = φ2, b2

2 = χ2. φ̃, χ̃ are the estimators of φ,χ,
respectively, thus the relationship among estimators is

κ̂2 =
1

2ε2
3

φ̂2 +
1

2ε2
4

χ̂2z2
2 (49)

The adaptive laws are designed as follows.

.̃
φ2 = −ε3φ̃2 +

1
2ε2

3

s2
2 (50)

.̃
χ2 = −ε4χ̃2 +

z2
2

2ε2
4

s2
2 (51)
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ε3, ε4 are positive gains. Substituting the sliding mode control law (48) into system (44) yields

m
.
s2 = −β2s2 +˜
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where ( )1 1
1

1

2 1l
l

ε
σ

−
= , ( )2 2

2
2

2 1l
l

ε
σ

−
= , 1 1

3 2
l εσ = , 2 2

4 2
l εσ = , ( )2 2

1 2 2 2
1 3 1 4 12

ε ε
ξ σ φ σ χ

+
= + + , 

1
1 1 2

2min , ,
J
βα σ σ  =   

  
. Using theorem in [5], whole signals in mobile system (35) are uniformly and 

ultimately bounded. Consequently, it is proven that 1ϒ  is bounded, meaning 1 1
upperϒ ≤ ϒ , 

1 0upperϒ > . □ 

2 (52)

where ˜
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2 = f2 − κ̂2s2.

Theorem 2. Considering the system in (57), s2, φ̂2, χ̂2 are uniformly and ultimately bounded with the adaptive
control law (50–51).

Proof: Select the Lyapunov function as

V2 =
1
2
(ms2

2 + φ̃2
2 + χ̃2

2) (53)

where φ̃2 = φ2 − φ̂2 and χ̃2 = χ2 − χ̂2.
Computing the first derivative of V2, we obtain

.
V2 ≤ −(β2s2

2 + κ̂2s2
2) + a2|s2|+ b2|s2||z2| − φ̃2

.
φ̂2 − χ̃2

.
χ̂2 (54)

.
V2 ≤ −β2s2

2 − κ̂2s2
2 +

φ2

2ε2
3
s2

2 +
χ2
2ε2

4
z2

2s2
2 − (φ2 − φ̂2)

1
2ε2

3
s2

2

−(χ2 − χ̂2)
1

2ε2
4
z2

2s2
2 + ε3φ̃2φ̂2 + ε4χ̃2χ̂2 +

1
2 (ε2

3 + ε2
4)

≤ −β2s2
2 −

σ5
2 φ̃

2
2 −

σ6
2 χ̃

2
2 +ξ3

≤ −α3V3 + ξ3

(55)

where α3 = min
{
σ5, σ6, 2β2

m

}
, ξ3 = 1

2 (ε
2
1 + ε2

2) + σ7φ2
1 + σ8χ2

1, with σ5 =
ε3(2τ3−1)

τ3
, σ6 =

ε4(2τ4−1)
τ4

,
σ7 = ε3τ3

2 , σ8 = ε4τ4
2 , τi >

1
2 ,i = 3, 4. Using the theorem in [5], whole signals in mobile system (52) are

uniformly and ultimately bounded. Consequently, it is proven that̃ 2 is bounded, meaning |̃2| ≤
upper
2 ,

upper
2 > 0. �

Remark 2. The control law is written under compact expression

u2 = −(β2 + κ̂2)s2 −ϕ2sign(s2)
∣∣∣s2

∣∣∣ 1
2 (56)

with ϕ2 > 0. Substituting (55) into (52)

m
.
s2 = −β2s2 +̃ 2 −ϕ2sign(s2)

∣∣∣s2
∣∣∣ 1

2 (57)

As the proposed control law (55) guarantees that the tracking angular velocity error converges to the small
region in finite time, we could obtain sin(eω)→ 0 and cos(eω)→ 1 .

5. Results of Research

Generally, to certify the correctness and fitness of our approach, a series of numerical simulation
tests, such as tracking circular reference path, linear trajectory under varying loads, and S-curve shape
of working space, has been completed in this section. According to previous research, our model has
been built with physical parameters as in Table 1. In the computer’s environment, the design was
modified so that each computational time did not have much cost and step sizes were all set to 0,1. We
considered that the initial reference location of the AGR was (xr(0), yr(0),θr(0)) = (2, 1, 0.25π). In
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addition, the reference linear velocity and angular velocity were vr = 3 m/s,ωr = 1.5 rad/s. At the
beginning, the AGR stayed at (x(0), y(0),θ(0)) = (3, 0, 0.4).

Table 1. List of system parameters for AGR.

Parameter Value Unit

b 0.5 m
r 0.2 m
J 4 kg·m2

m 5 kg

d1
0.3

.
v + 0.2v +ω+

cos t.e−t

d2 0.28
.
ω+ v + 0.3ω+ sin t

To handle the numerical simulations, the parameters of the designed controllers were chosen
as in Table 2. The adaptive laws were expected to drive the system state to counteract the nonlinear
actions. Also, the conditions of asymptotic stability could be achieved when these parameters were
respected to guarantee. To visualize the adaptation, two circumstances were suggested such that the
mass of the vehicle was 23 kg with respect to a nonloading case and the total mass of the vehicle was
73 kg corresponding to a full-load case. The tracking performance of circular trajectory and velocities
are shown in Figures 4 and 5, respectively. The circular reference path was assumed for the AGR to
follow and there was no extreme variation in system state when loads changed. Although the speeds
differed basically in the initial stage, it tended to the desired value in a short time. Figure 6 indicates
the following errors in (x, y) and θ for tracking circular path. Regarding the effect of the proposed
controller, it is clear that the tracking errors including ex, ey, eθ converged to a small region nearly equal
to zero in finite time. In this case, convergence time was 1.5 s, which depended on the initial position
and orientation of the mobile robot and the parameters.
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Table 2. List of tuning parameters for AGR controller.

Parameter Value Parameter Value

β1 = β2 70 k1 15
ε1 = ε3 5 k2 3
ε2 = ε4 3 ε 0.005
σ1 = σ2 15 φ̃1(0) 0.1

p 5
7 χ̃1(0) 0.2

φ̃2(0) 0.3 χ̃2(0) 0.15

In the effort to reveal the advantages of our approach, the tracking performance in a linear
reference path under load variations is shown in Figure 7. Additionally, the test information including
linear velocity and circular velocity is noticed in Figure 8. In a straight line trajectory, the autonomous
robot seemed, with no trouble, to track the desired velocity in any situation. The output tracking
resulted in errors under various loads as depicted in Figure 9. In a short time, the adaptation of the
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proposed scheme impacted on system state to drive to reduce the differences in the two axes (x, y) and
θ. It is admitted that the output results were reasonable while the convergence time was still ensured.
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More specifically, the real S-curve of the working map as in Figure 10a is suggested for the AGR
to confirm the robustness and correctness of the proposed algorithm. For continuous trajectories as in
Figure 10b, the robot must follow the alterations of the reference path and decide to drive the whole
system immediately. In this test, the tracking performance in the circle path was not as good as the
one in the line path. It can be explained that the AGR changed both linear and angular velocity as in
Figure 11 to adapt with the unexpected fluctuations in trajectory when it entered a corner.
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In detail, the tracking errors in linear direction and angular movement for the S-curve reference
path are demonstrated in Figure 12. The errors still existed in tracking the desired map when the robot
executed its task in the warehouse. Under the effective driving of the proposed controller, the existing
errors tended to zero in finite time.
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Competitive performance of tracking trajectory for the autonomous robot should be required.
Typical robust nonlinear control (TRNC) [23] was chosen since it is popular and proper for industrial
applications. In the same context, both robust nonlinear controller and proposed controller must drive
the robot model to trace the desired path as in Figure 13. It can be seen clearly that the robust nonlinear
scheme early tracked the reference line by tuning the appropriate gains. Our controller needed a
finite moment to follow for the reason of the complicated process of the mathematical algorithm.
Reversely, the proposed scheme reveals the strong effect to stabilize the autonomous system and
reduce the tracking error significantly. With robust nonlinear control, larger uncertainties and small
velocity/acceleration could cause the unstable system state. As a result, the tracking errors in this case
were still enormous.
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Figure 13. Tracking performance of circular trajectory by Typical robust nonlinear control (TRNC) (a)
and proposed controller (b).
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Thereafter, the comparative parameters between TRNC and proposed control are linear velocity
and angular velocity individually as in Figure 14. During the whole process, the variations in
load affected the velocity performance of TRNC. Although it suffered the unknown uncertainties,
the proposed control strategy for grounded robot carried out the driving command perfectly. In a
short period, the velocity performance of our controller did not possess the changes suddenly and
continuously. It is also important to note that the terms of tracking errors are always the crucial factors
in order to discover the superior response. Obviously, in Figure 15, the considerable oscillations in
both linear and angular velocity are reminders that there exist several disadvantages of TRNC. The
adaptive rule might enhance our controller to overcome the varying loads.
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Figure 14. Performance of linear velocity by TRNC (a) and proposed controller (b); angular velocity by
TRNC (c) and proposed controller (d).
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Table 3 describes the different results of the proposed scheme and TRNC in tracking errors. To
provide all views of system performance, three kinds of values (maximum, minimum, and root mean
square) are listed. From these results, it could be concluded that TRNC could not reach the stability
along the overall trajectory while our approach did well.

Table 3. Comparative results between two controllers (max, min, and root mean square (RMS) value of
tracking errors).

Tracking Error Max Min RMS

Proposed Controller
ex (m) 0.106 −0.017 0.068

ey (m) 0.035 −0.1 0.016

eθ (rad) 0.134 −0.053 0.078

TRNC
ex (m) 0.17 −0.049 0.082

ey (m) 0.106 −0.012 0.035

eθ (m) 0.18 −0.054 0.103

6. Conclusions

In this paper, a novel adaptive sliding mode controller for AGRs in the field of logistics has been
mentioned. In the presence of external disturbance and uncertain inertia, the whole control system is
bound to fluctuate. From the analysis of modeling, the dynamic characteristics of the AGR have been
classified into subsystems. To reveal the efficacy, two subcontrollers have been introduced to adopt
the system variations. Both of them were proven to achieve the asymptotic stability via Lyapunov
theorem. Then, a systematic verification including various test cases ensured the proposed design met
our requirements. In initial validation, the tracking performance was suggested in linear trajectory
and curvable path separately. Later, a complex map mixing linear and circular line was employed
to obtain the system response. From the superior simulation results, it was obviously seen that our
approach is effective, feasible, and applicable for numerous industrial applications.

The contribution of this article is outlined below. Firstly, the practical problem in lifting-type
autonomous robots has been addressed. We were responsible for dominating the characterized platform
of mobile robots in order to integrate the theoretical algorithm actively. Secondly, a vehicle-like model
was established in the computer environment with the same system configuration. Thirdly, an adaptive
sliding mode controller was investigated to drive the autonomous grounded robot under varying
loads. It was proven that system stability could be achieved in finite time and tracking performance
is greater.
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Appendix A

Regarding ε > 0 and 0 < p < 1, l1, l2 are defined in (25) and (26), correspondingly. With β1 > 0, in
order to ensure α1 > 0, σ1 and σ2 must be positive.
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Proof: For the case of σ1, we can obtain:

σ1 =
ε1(2l1 − 1)

l1
> 0 (A1)

⇔
(2l1 − 1)

l1
> 0 (A2)

⇔


{

2l1 − 1 > 0
l1 > 0{

2l1 − 1 < 0
l1 < 0

, l1 , 0 (A3)

⇔

[
l1 > 1

2
l1 < 0

(A4)

From (25), we have

(2− p)εp−1 >
1
2

(A5)

(2− p)εp−1 < 0 (A6)

It can be seen that (A6) is not satisfied. With ε > 0 and 0 < p < 1, to ensure that σ1 > 0 then,

2(2− p)εp−1 > 1 (A7)

⇔ 4εp−1 > 2(2− p)εp−1 > 2εp−1 > 1 (A8)

⇔ εp−1 >
1
2

(A9)

For the case of σ2,

σ1 =
ε1(2l1 − 1)

l1
> 0 (A10)

⇔
(2l1 − 1)

l1
> 0 (A11)

⇔


{

2l1 − 1 > 0
l1 > 0{

2l1 − 1 < 0
l1 < 0

, l1 , 0 (A12)

⇔

[
l1 > 1

2
l1 < 0

(A13)

From (26), it can be computed as[
(p− 1)εp−2 > 1

2
(p− 1)εp−2 < 0

⇔

[
2(p− 1)εp−2 > 1

εp−2 > 0
(A14)

With ε > 0 and 0 < p < 1,
0 < p < 1 (A15)

⇔ −2 < 2(p− 1) < 0 (A16)

⇔ −2εp−2 < 2(p− 1)εp−2 < 0 (A17)

To ensure that σ2 > 0,
εp−2 > 0 (A18)
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From (A9) and (A18), by choosing ε in order to meet εp−1 > 1
2 , σ1, σ2 will be larger than 0. �
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